Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 783
1.
Exp Biol Med (Maywood) ; 249: 10175, 2024.
Article En | MEDLINE | ID: mdl-38756167

Diabetes mellitus is a prevalent disease that is often accompanied by ocular surface abnormalities including delayed epithelial wound healing and decreased corneal sensitivity. The impact of diabetes on the lacrimal functional unit (LFU) and the structures responsible for maintaining tear homeostasis, is not completely known. It has been shown that the Opioid Growth Factor Receptor (OGFr), and its ligand, Opioid Growth Factor (OGF), is dysregulated in the ocular surface of diabetic rats leading to overproduction of the inhibitory growth peptide OGF. The opioid antagonist naltrexone hydrochloride (NTX) blocks the OGF-OGFr pathway, and complete blockade following systemic or topical treatment with NTX restores the rate of re-epithelialization of corneal epithelial wounds, normalizes corneal sensitivity, and reverses dry eye in diabetic animal models. These effects occur rapidly and within days of initiating treatment. The present study was designed to understand mechanisms related to the fast reversal (<5 days) of dry eye by NTX in type 1 diabetes (T1D) by investigating dysregulation of the LFU. The approach involved examination of the morphology of the LFU before and after NTX treatment. Male and female adult Sprague-Dawley rats were rendered hyperglycemic with streptozotocin, and after 6 weeks rats were considered to be a T1D model. Rats received topical NTX twice daily to one eye for 10 days. During the period of treatment, tear production and corneal sensitivity were recorded. On day 11, animals were euthanized and orbital tissues including conjunctiva, eyelids, and lacrimal glands, were removed and processed for histologic examination including immunohistochemistry. Male and female T1D rats had significantly decreased tear production and corneal insensitivity, significantly decreased number and size of lacrimal gland acini, decreased expression of aquaporin-5 (AQP5) protein and decreased goblet cell size. Thus, 10 days of NTX treatment restored tear production and corneal sensitivity to normal values, increased AQP5 expression, and restored the surface area of goblet cells to normal. NTX had no effect on the number of lacrimal gland acini or the number of conjunctival goblet cells. In summary, blockade of the OGF-OGFr pathway with NTX reversed corneal and lacrimal gland complications and restored some components of tear homeostasis confirming the efficacy of topical NTX as a treatment for ocular defects in diabetes.


Aquaporin 5 , Diabetes Mellitus, Experimental , Lacrimal Apparatus , Naltrexone , Rats, Sprague-Dawley , Tears , Animals , Lacrimal Apparatus/metabolism , Lacrimal Apparatus/drug effects , Lacrimal Apparatus/pathology , Tears/metabolism , Tears/drug effects , Naltrexone/pharmacology , Male , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Rats , Aquaporin 5/metabolism , Administration, Topical , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/pathology , Dry Eye Syndromes/metabolism
2.
Free Radic Biol Med ; 218: 1-15, 2024 Jun.
Article En | MEDLINE | ID: mdl-38574973

Sjogren's syndrome (SS) is an autoimmune disease characterized by dysfunction of exocrine glands, such as salivary glands. However, the molecular mechanism of salivary secretion dysfunction in SS is still unclear. Given the significance of glutathione peroxidase 4 (GPX4) in cellular redox homeostasis, we hypothesized that dysregulation of GPX4 may play a pivotal role in the pathogenesis of salivary secretion dysfunction observed in SS. The salivary gland of SS patients and the SS mouse model exhibited reduced expression of the ferroptosis inhibitor GPX4 and the important protein aquaporin 5 (AQP5), which is involved in salivary secretion. GPX4 overexpression upregulated and GPX4 knockdown downregulated AQP5 expression in salivary gland epithelial cells (SGECs) and salivary secretion. Bioinformatics analysis of GSE databases from SS patients' salivary glands revealed STAT4 as a key intermediary regulator between GPX4 and AQP5. A higher level of nuclear pSTAT4 was observed in the salivary gland of the SS mouse model. GPX4 overexpression inhibited and GPX4 knockdown promoted STAT4 phosphorylation and nuclear translocation in SGECs. CHIP assay confirmed the binding of pSTAT4 within the promoter of AQP5 inhibiting AQP5 transcription. GPX4 downregulation accumulates intracellular lipid ROS in SGECs. Lipid ROS inhibitor ferrostatin-1 treatment during in vitro and in vivo studies confirmed that lipid ROS activates STAT4 phosphorylation and nuclear translocation in SGECs. In summary, the downregulated GPX4 in SGECs contributes to salivary secretion dysfunction in SS via the lipid ROS/pSTAT4/AQP5 axis. This study unraveled novel targets to revitalize the salivary secretion function in SS patients.


Aquaporin 5 , Epithelial Cells , Phospholipid Hydroperoxide Glutathione Peroxidase , Reactive Oxygen Species , STAT4 Transcription Factor , Salivary Glands , Sjogren's Syndrome , Sjogren's Syndrome/metabolism , Sjogren's Syndrome/genetics , Sjogren's Syndrome/pathology , Animals , Humans , Mice , Salivary Glands/metabolism , Salivary Glands/pathology , Aquaporin 5/metabolism , Aquaporin 5/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Reactive Oxygen Species/metabolism , STAT4 Transcription Factor/metabolism , STAT4 Transcription Factor/genetics , Disease Models, Animal , Female , Down-Regulation , Male , Signal Transduction , Gene Expression Regulation , Ferroptosis/genetics , Saliva/metabolism , Middle Aged
3.
Exp Cell Res ; 436(2): 113954, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38307188

The trafficking of aquaporin 5 (AQP5) is critical for salivary secretion. Synaptosomal-associated protein 23 (SNAP23) is an important regulator in the process of membrane fusion. However, the role of SNAP23 on AQP5 trafficking has not been explored. Botulinum toxin type A (BoNT/A) is a bacterial toxin that effectively treats sialorrhea. We previously reported that BoNT/A induced AQP5 redistribution in cultured acinar cells, but the mechanism remained unclear. In this study, SNAP23 was predominantly localized to the plasma membrane of acinar cells in the rat submandibular gland (SMG) and colocalized with AQP5 at the apical membrane of acinar cells. In stable GFP-AQP5-transfected SMG-C6 cells, the acetylcholine receptor agonist carbachol (CCh) induced trafficking of AQP5 from intracellular vesicles to the apical membrane. Furthermore, SNAP23 knockdown by siRNA significantly inhibited CCh-induced AQP5 trafficking, whereas this inhibitory effect was reversed by SNAP23 re-expression, indicating that SNAP23 was essential in AQP5 trafficking. More importantly, BoNT/A inhibited salivary secretion from SMGs, and the underlying mechanism involved that BoNT/A blocked CCh-triggered AQP5 trafficking by decreasing SNAP23 in acinar cells. Taken together, these results identified a crucial role for SNAP23 in AQP5 trafficking and provided new insights into the mechanism of BoNT/A in treating sialorrhea and thereby a theoretical basis for clinical applications.


Botulinum Toxins, Type A , Sialorrhea , Rats , Animals , Botulinum Toxins, Type A/pharmacology , Botulinum Toxins, Type A/metabolism , Aquaporin 5/genetics , Aquaporin 5/metabolism , Acinar Cells , Sialorrhea/metabolism , Submandibular Gland/metabolism
4.
Biol Pharm Bull ; 47(1): 138-144, 2024.
Article En | MEDLINE | ID: mdl-38171773

Sjögren's syndrome (SS) is an autoimmune disorder characterized by oral dryness that is primarily attributed to tumor necrosis factor alpha (TNF-α)-mediated reduction in saliva production. In traditional Chinese medicine, goji berries are recognized for their hydrating effect and are considered suitable to address oral dryness associated with Yin deficiency. In the present study, we used goji berry juice (GBJ) to investigate the potential preventive effect of goji berries on oral dryness caused by SS. Pretreatment of human salivary gland cells with GBJ effectively prevented the decrease in aquaporin-5 (AQP-5) mRNA and protein levels induced by TNF-α. GBJ also inhibited histone H4 deacetylation and suppressed the generation of intracellular reactive oxygen species (ROS). Furthermore, GBJ pretreatment reserved mitochondrial membrane potential and suppressed the upregulation of Bax and caspase-3, indicating that GBJ exerted an antiapoptotic effect. These findings suggest that GBJ provides protection against TNF-α in human salivary gland cells and prevents the reduction of AQP-5 expression on the cell membrane. Altogether, these results highlight the potential role of GBJ in preventing oral dryness caused by SS.


Lycium , Sjogren's Syndrome , Xerostomia , Humans , Tumor Necrosis Factor-alpha/metabolism , Lycium/metabolism , Salivary Glands/metabolism , Salivary Glands/pathology , Xerostomia/chemically induced , Xerostomia/prevention & control , Xerostomia/complications , Sjogren's Syndrome/complications , Sjogren's Syndrome/metabolism , Sjogren's Syndrome/pathology , Aquaporin 5/genetics
5.
Int J Mol Sci ; 25(1)2024 Jan 03.
Article En | MEDLINE | ID: mdl-38203778

Sepsis is a life-threatening condition caused by the dysregulated host response to infection. Novel therapeutic options are urgently needed and aquaporin inhibitors could suffice as aquaporin 5 (Aqp5) knockdown provided enhanced sepsis survival in a murine sepsis model. Potential AQP5 inhibitors provide sulfonamides and their derivatives. In this study, we tested the hypothesis that sulfonamides reduce AQP5 expression in different conditions. The impact of sulfonamides on AQP5 expression and immune cell migration was examined in cell lines REH and RAW 264.7 by qPCR, Western blot and migration assay. Subsequently, whether furosemide and methazolamide are capable of reducing AQP5 expression after LPS incubation was investigated in whole blood samples of healthy volunteers. Incubation with methazolamide (10-5 M) and furosemide (10-6 M) reduced AQP5 mRNA and protein expression by about 30% in REH cells. Pre-incubation of the cells with methazolamide reduced cell migration towards SDF1-α compared to non-preincubated cells to control level. Pre-incubation with methazolamide in PBMCs led to a reduction in LPS-induced AQP5 expression compared to control levels, while furosemide failed to reduce it. Methazolamide appears to reduce AQP5 expression and migration of immune cells. However, after LPS administration, the reduction in AQP5 expression by methazolamide is no longer possible. Hence, our study indicates that methazolamide is capable of reducing AQP5 expression and has the potential to be used in sepsis prophylaxis.


Methazolamide , Sepsis , Humans , Animals , Mice , Furosemide , Lipopolysaccharides , Sulfonamides , Cell Movement , Sulfanilamide , Sepsis/drug therapy , RNA, Messenger/genetics , Aquaporin 5/genetics
6.
Am J Physiol Cell Physiol ; 326(1): C206-C213, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38047298

People with primary focal hyperhidrosis (PFH) usually have an overactive sympathetic nervous system, which can activate the sweat glands through the chemical messenger of acetylcholine. The role of aquaporin 5 (AQP5) and Na-K-2Cl cotransporter 1 (NKCC1) in PFH is still unknown. The relative mRNA and protein levels of AQP5 and NKCC1 in the sweat gland tissues of three subtypes of patients with PFH (primary palmar hyperhidrosis, PPH; primary axillary hyperhidrosis, PAH; and primary craniofacial hyperhidrosis, PCH) were detected with real-time PCR (qPCR) and Western blot. Primary sweat gland cells from healthy controls (NPFH-SG) were incubated with different concentrations of acetylcholine, and the relative mRNA and protein expression of AQP5 and NKCC1 were also detected. NPFH-SG cells were also transfected with si-AQP5 or shNKCC1, and acetylcholine stimulation-induced calcium transients were assayed with Fluo-3 AM calcium assay. Upregulated AQP5 and NKCC1 expression were observed in sweat gland tissues, and AQP5 demonstrated a positive Pearson correlation with NKCC1 in patients with PPH (r = 0.66, P < 0.001), patients with PAH (r = 0.71, P < 0.001), and patients with PCH (r = 0.62, P < 0.001). Upregulated AQP5 and NKCC1 expression were also detected in primary sweat gland cells derived from three subtypes of patients with PFH when compared with primary sweat gland cells derived from healthy control. Acetylcholine stimulation could induce the upregulated AQP5 and NKCC1 expression in NPFH-SG cells, and AQP5 or NKCC1 inhibitions attenuated the calcium transients induced by acetylcholine stimulation in NPFH-SG cells. The dependence of ACh-stimulated calcium transients on AQP5 and NKCC1 expression may be involved in the development of PFH.NEW & NOTEWORTHY The dependence of ACh-stimulated calcium transients on AQP5 and Na-K-2Cl cotransporter 1 (NKCC1) expression may be involved in the development of primary focal hyperhidrosis (PFH).


Aquaporin 5 , Hyperhidrosis , Humans , Acetylcholine/pharmacology , Acetylcholine/metabolism , Aquaporin 5/genetics , Aquaporin 5/metabolism , Calcium/metabolism , Cell Culture Techniques , Hyperhidrosis/metabolism , RNA, Messenger/metabolism , Sweat Glands/chemistry , Sweat Glands/metabolism
7.
Radiat Res ; 201(1): 77-86, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38044712

Inflammatory response is one of the essential parts of various pathogenic mechanisms of radiation-induced salivary dysfunction. The effect of decreasing the levels of inflammatory cytokines on alleviating submandibular gland injuries after irradiation is unclear. This study aimed to explore the effect of the antibody against tumor necrosis factor-alpha, infliximab, on radiation-induced submandibular gland dysfunction in rats. Male Wistar rats received a single 20 Gy dose to the right submandibular gland region or sham irradiated. Meanwhile, the irradiated group was divided into infliximab treatment groups or untreated groups. Animals were euthanized at 1, 6, and 12 weeks postirradiation, and the irradiated submandibular gland was dissected for subsequent detection. Submandibular gland exposure caused obvious pathological changes. The increased levels of inflammatory cytokines, including tumor necrosis factor-alpha, interleukin-1ß, and interleukin-6, represent an aggravated inflammatory response. The results of the western blot, reverse transcription-quantitative polymerase chain reaction, and immunofluorescence staining showed upregulated levels of claudin-1, claudin-3, and aquaporin 5 and downregulated levels of claudin-4. Moreover, nuclear factor kappa-B phosphorylation levels were also up-regulated. In subsequent experiments, we found that infliximab alleviated inflammatory response, up-regulated tumor necrosis factor-alpha, interleukin-1ß, and interleukin-6 levels, and improved claudin-1, claudin-3, claudin-4, and aquaporin 5 expression. Our results indicate that infliximab might improve the para-cellular pathway and trans-cellular pathway destruction by reducing the inflammatory.


Submandibular Gland , Tumor Necrosis Factor-alpha , Rats , Male , Animals , Rats, Wistar , Infliximab/pharmacology , Infliximab/therapeutic use , Infliximab/metabolism , Tumor Necrosis Factor-alpha/metabolism , Submandibular Gland/metabolism , Submandibular Gland/pathology , Aquaporin 5/metabolism , Claudin-3/metabolism , Claudin-1/metabolism , Claudin-4/metabolism , Interleukin-1beta , Interleukin-6
8.
Anat Histol Embryol ; 53(1): e12978, 2024 Jan.
Article En | MEDLINE | ID: mdl-37792899

Aquaporins (AQPs) are integral membrane proteins that act as water channels for which a total of 13 orthologs of AQP genes in birds have been reported. Tissue expression and cellular or subcellular localization of AQPs have been poorly investigated in the male reproductive system of birds. We aimed to determine the distribution and localization of AQP5 and AQP7 proteins by immunocytochemistry in testicular tissues obtained from developing chicks (14, 21, 28, 35 and 42 days old). Totally 175 male chicks (Ross 308) were used in the study from which testicular tissue was removed, fixed in 10% formaldehyde solution, then embedded in paraffin blocks. Five µm sections were cut, mounted on poly-L-lysine slides, dried in an oven, then dehydrated using standard immunohistochemistry staining protocol. The sections were imaged with a Nikon Eclipse 50i trinocular light microscope. Immunohistochemical evaluation of the immune reactivity of AQP5 revealed a positive immune reaction in spermatocytes and interstitial areas of the testes in 14-day-old chicks. Testicular tissue AQP5 immune reactivity was observed in the tubule and the interstitial regions of 21-, 28-, 35- and 42-day-old chicks. AQP7 immune reactions were determined in the tubule and interstitial areas testes of developing chicks' testis tissue, with increasing positivity corresponding to older age. The expression of AQP5 and AQP7 appears to be species-specific due to differences in localization and expression in male chicks compared with studies of other mammals, which is likely to play an important role in regulating fluid and sperm volume. This research can serve as a base for future studies that will contribute to the understanding of the male genital system of AQPs.


Aquaporin 5 , Testis , Male , Animals , Testis/metabolism , Aquaporin 5/metabolism , Semen , Spermatozoa , Chickens , Aquaporin 1/metabolism , Mammals
9.
Zhen Ci Yan Jiu ; 48(10): 1025-1032, 2023 Oct 25.
Article En, Zh | MEDLINE | ID: mdl-37879953

OBJECTIVES: To observe the effect of acupuncture on the ocular surface symptoms and the protein expression of vasoactive intestinal peptide (VIP) / cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) / aquaporin 5(AQP5) signaling pathway in lacrimal gland tissue of aqueous tear deficiency (ATD) type dry eye model, so as to investigate its mechanism underlying improvement of ATD. METHODS: British shorthair guinea pigs were randomly divided into blank control, model, acupuncture, sham-acupuncture and medication group, with 8 guinea pigs in each group. The ATD model was established by subcutaneous injection of scopolamine hydrobromide (0.6 mg/dose, 4 times/d for 10 days). For guinea pigs of the acupuncture group, filiform needles were inserted into bilateral "Jingming"(BL1), "Cuanzhu"(BL2), "Sizhukong"(TE23), "Taiyang"(EX-HN5), and "Tongziliao"(GB1) for 15 min. For guinea pigs of the sham-acupuncture group, a blunt filiform needle was used to repeatedly prick (not pierce) the skin of the same acupoints mentioned above. The treatment in the above two groups was conducted once daily for 14 days. The guinea pigs in the medication group received administration of sodium hyaluronate eye drops in both eyes, three times a day for 14 days. The objective tests of tear film break-up time (BUT), corneal fluorescein staining score (FLS) and phenol red thread (PRT) test were conducted before and after modeling and after the intervention. After the intervention, the lacrimal index (weight of lacrimal gland/body weight) was calculated. Histopathological changes of the lacrimal gland were observed after H.E. staining. The expression of AQP5 in the lacrimal gland were detected by immunofluorescence, and the contents of VIP and AQP5 in the lacrimal gland were measured by ELISA, the protein expression levels of VIP, cAMP, PKA, p-PKA and AQP5 in the lacrimal gland were detected by Western blot. RESULTS: In comparison with the blank control group, the PRT, BUT, lacrimal index, AQP5 immunoactivity, contents of VIP and AQP5, and protein expression levels of VIP, cAMP, PKA, p-PKA and AQP5 were significantly decreased(P<0.01, P<0.05), and FLS was obviously increased (P<0.01) in the model group . Compared to the model group, the PRT, BUT, lacrimal index, AQP5 immunoactivity, contents of VIP and AQP5, and expression levels of VIP and AQP5 in both acupuncture and medication groups, and the expression levels of cAMP, PKA, p-PKA in the acupuncture group were considerably increased (P<0.01, P<0.05), while the FLS was markedly decreased in both acupuncture and medication groups (P<0.01, P<0.05). Compared with the medication group, the acupuncture group had increased PRT (P<0.05). CONCLUSIONS: Acupuncture intervention is effective in reducing ocular surface damage and promoting tear secretion in guinea pigs with ATD, which may be related to its function in activating VIP/cAMP/PKA signaling, and promoting the expression of AQP5 in the lacrimal gland.


Acupuncture Therapy , Dry Eye Syndromes , Lacrimal Apparatus , Xerophthalmia , Animals , Guinea Pigs , Cyclic AMP , Dry Eye Syndromes/genetics , Dry Eye Syndromes/therapy , Lacrimal Apparatus/metabolism , Signal Transduction , Vasoactive Intestinal Peptide/genetics , Aquaporin 5/metabolism
10.
Invest Ophthalmol Vis Sci ; 64(12): 27, 2023 09 01.
Article En | MEDLINE | ID: mdl-37707834

Purpose: Dry eye disease (DED) is multifactorial and associated with nerve abnormalities. We explored an Aquaporin 5 (AQP5)-deficiency-induced JunB activation mechanism, which causes abnormal lacrimal gland (LG) nerve distribution through Slit2 upregulation and Netrin-1 repression. Methods: Aqp5 knockout (Aqp5-/-) and wild-type (Aqp5+/+) mice were studied. LGs were permeabilized and stained with neuronal class III ß-tubulin, tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), and calcitonin gene-related peptide (CGRP). Whole-mount images were acquired through tissue clearing and 3D fluorescence imaging. Mouse primary trigeminal ganglion (TG) neurons were treated with LG extracts and Netrin-1/Slit2 neutralizing antibody. Transcription factor (TF) prediction and chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR) experiments verified the JunB binding and regulatory effect on Netrin-1 and Slit2. Results: Three-dimensional tissue and section immunofluorescence showed reduced LG nerves in Aqp5-/- mice, with sympathetic and sensory nerves significantly decreased. Netrin-1 was reduced and Slit2 increased in Aqp5-/- mice LGs. Aqp5+/+ mice LG tissue extracts (TEs) promoted Aqp5-/- TG neurons axon growth, but Netrin-1 neutralizing antibody (NAb) could inhibit that promotion. Aqp5-/- mice LG TEs inhibited Aqp5+/+ TG axon growth, but Slit2 NAb alleviated that inhibition. Furthermore, JunB, a Netrin-1 and Slit2 TF, could bind them and regulate their expression. SR11302, meanwhile, reversed the Netrin-1 and Slit2 shifts caused by AQP5 deficiency. Conclusions: AQP5 deficiency causes LG nerve abnormalities. Persistent JunB activation, the common denominator for Netrin-1 suppression and Slit2 induction, was found in Aqp5-/- mice LG epithelial cells. This affected sensory and sympathetic nerve fibers' distribution in LGs. Our findings provide insights into preventing, reversing, and treating DED.


Axon Guidance , Lacrimal Apparatus , Netrin-1 , Animals , Mice , Antibodies, Neutralizing , Aquaporin 5/genetics , Mice, Knockout , Netrin-1/genetics
11.
Orphanet J Rare Dis ; 18(1): 205, 2023 07 21.
Article En | MEDLINE | ID: mdl-37542348

BACKGROUND: Primary focal hyperhidrosis (PFH) may be attributed to the up-regulation of the cholinergic receptor nicotinic alpha 1 subunit (CHRNA1) in eccrine glands. Plasminogen activator inhibitor-1 (PAI1, encoded by SERPINE1) is reported to inhibit the expression of CHRNA1, while the role of PAI1 in hyperhidrosis is unknown. METHODS: Serpine1 KO mice, Serpine1-Tg mice, and wild type BALB/c mice were intraperitoneally injected with pilocarpine hydrochloride to induce PFH. Cisatracurium (CIS, antagonist of CHRNA1) or PAI-039 (small-molecule inhibitor of PAI1) was pre-administrated before the induction of hyperhidrosis. On the other hand, Chrna1-expressing AAV was constructed and administered to Serpine1-Tg mice with hydrochloride stimulation. Hydrochloride-related biomarkers, such as acetylcholine (ACH) in the serum, calcium voltage-gated channel subunit alpha1 C (CACNA1C), and aquaporin 5 (AQP5) in sweat glands of mice were assayed with ELISA, RT-PCR, and Western blot. RESULTS: The administration of PAI-039 or Pai1 knock-out increased Chrna1 expression, sweat secretion, and hydrochloride-related biomarkers (ACH, CACNA1C, and AQP5) expression. On the other hand, CIS administration diminished the strengthened hyperhidrosis phenotype induced by Pai1 knock-out with decreased sweat gland secretion. CONCLUSION: PAI1 inhibits CHRNA1-mediated hydrochloride-induced hyperhidrosis, with decreased sweat gland secretion and diminished ACH, AQP5, and CACNA1C expression. These results indicate the potential to utilize PAI1 to alleviate PFH.


Hyperhidrosis , Sweat Glands , Animals , Mice , Acetylcholine/metabolism , Aquaporin 5/genetics , Aquaporin 5/metabolism , Biomarkers/metabolism , Hyperhidrosis/genetics , Hyperhidrosis/metabolism , Hyperhidrosis/pathology , Sweat Glands/metabolism , Sweat Glands/pathology , Plasminogen Activator Inhibitor 1/metabolism
12.
J Proteome Res ; 22(9): 2803-2813, 2023 09 01.
Article En | MEDLINE | ID: mdl-37549151

Aging-related salivary gland degeneration usually causes poor oral health. Periductal fibrosis frequently occurs in the submandibular gland of the elderly. Transforming growth factor ß1 (TGF-ß1) is the primary driving factor for fibrosis, which exhibits an increase in the fibrotic submandibular gland tissue. This study aimed to investigate the effects of TGF-ß1 on the human submandibular gland (HSG) cell secretory function and its influences on aquaporin 5 (AQP5) expressions and distribution. We found that TGF-ß1 reduces the protein secretion amount of HSG and leads to the abundance alteration of 151 secretory proteins. Data are available via ProteomeXchange with the identifier PXD043185. The majority of HSG secretory proteins (84.11%) could be matched to the human saliva proteome. Meanwhile, TGF-ß1 enhances the expression of COL4A2, COL5A1, COL7A1, COL1A1, COL2A1, and α-SMA, hinting that TGF-ß1 possesses the potential to drive HSG fibrosis-related events. Besides, TGF-ß1 also attenuates the AQP5 expression and its membrane distribution in HSGs. The percentage for TGF-ß1-induced AQP5 reduction (52.28%) is much greater than that of the TGF-ß1-induced secretory protein concentration reduction (16.53%). Taken together, we concluded that TGF-ß1 triggers salivary hypofunction via attenuating protein secretion and AQP5 expression in HSGs, which may be associated with TGF-ß1-driven fibrosis events in HSGs.


Aquaporin 5 , Submandibular Gland , Transforming Growth Factor beta1 , Humans , Aquaporin 5/genetics , Aquaporin 5/metabolism , Collagen Type VII/metabolism , Saliva/metabolism , Submandibular Gland/cytology , Submandibular Gland/metabolism , Transforming Growth Factor beta1/pharmacology
13.
Chem Senses ; 482023 01 01.
Article En | MEDLINE | ID: mdl-37586060

Smell detection depends on nasal airflow, which can make absorption of odors to the olfactory epithelium by diffusion through the mucus layer. The odors then act on the chemo-sensitive epithelium of olfactory sensory neurons (OSNs). Therefore, any pathological changes in the olfactory area, for instance, dry nose caused by Sjögren's Syndrome (SS) may interfere with olfactory function. SS is an autoimmune disease in which aquaporin (AQP) 5 autoantibodies have been detected in the serum. However, the expression of AQP5 in olfactory mucosa and its function in olfaction is still unknown. Based on the study of the expression characteristics of AQP5 protein in the nasal mucosa, the olfaction dysfunction in AQP5 knockout (KO) mice was found by olfactory behavior analysis, which was accompanied by reduced secretion volume of Bowman's gland by using in vitro secretion measure system, and the change of acid mucin in nasal mucus layer was identified. By excluding the possibility that olfactory disturbance was caused by changes in OSNs, the result indicated that AQP5 contributes to olfactory functions by regulating the volume and composition of OE mucus layer, which is the medium for the dissolution of odor molecules. Our results indicate that AQP5 can affect the olfactory functions by regulating the water supply of BGs and the mucus layer upper the OE that can explain the olfactory loss in the patients of SS, and AQP5 KO mice might be used as an ideal model to study the olfactory dysfunction.


Olfaction Disorders , Sjogren's Syndrome , Mice , Humans , Animals , Smell , Olfactory Mucosa/metabolism , Sjogren's Syndrome/metabolism , Sjogren's Syndrome/pathology , Aquaporin 5/genetics , Aquaporin 5/metabolism , Olfaction Disorders/genetics , Olfaction Disorders/metabolism
14.
Exp Eye Res ; 233: 109557, 2023 08.
Article En | MEDLINE | ID: mdl-37380095

As a water channel protein, aquaporin 5 (AQP5) is essential for the maintenance of the normal physiological functions of ocular tissues. This review provides an overview of the expression and function of AQP5 in the eye and discusses their role in related eye diseases. Although AQP5 plays a vital role in ocular functions, such as maintaining corneal and lens transparency, regulating water movement, and maintaining homeostasis, some of its functions in ocular tissues are still unclear. Based on the key role of AQP5 in eye function, this review suggests that in the future, eye diseases may be treated by regulating the expression of aquaporin.


Eye Diseases , Lens, Crystalline , Humans , Aquaporin 5 , Cornea/metabolism , Lens, Crystalline/metabolism , Eye Diseases/metabolism , Ocular Physiological Phenomena
15.
Int J Mol Sci ; 24(10)2023 May 22.
Article En | MEDLINE | ID: mdl-37240426

In mice, the contraction of the ciliary muscle via the administration of pilocarpine reduces the zonular tension applied to the lens and activates the TRPV1-mediated arm of a dual feedback system that regulates the lens' hydrostatic pressure gradient. In the rat lens, this pilocarpine-induced reduction in zonular tension also causes the water channel AQP5 to be removed from the membranes of fiber cells located in the anterior influx and equatorial efflux zones. Here, we determined whether this pilocarpine-induced membrane trafficking of AQP5 is also regulated by the activation of TRPV1. Using microelectrode-based methods to measure surface pressure, we found that pilocarpine also increased pressure in the rat lenses via the activation of TRPV1, while pilocarpine-induced removal of AQP5 from the membrane observed using immunolabelling was abolished by pre-incubation of the lenses with a TRPV1 inhibitor. In contrast, mimicking the actions of pilocarpine by blocking TRPV4 and then activating TRPV1 resulted in sustained increase in pressure and the removal of AQP5 from the anterior influx and equatorial efflux zones. These results show that the removal of AQP5 in response to a decrease in zonular tension is mediated by TRPV1 and suggest that regional changes to PH2O contribute to lens hydrostatic pressure gradient regulation.


Aquaporins , Lens, Crystalline , Rats , Mice , Animals , Pilocarpine/pharmacology , Membranes , Aquaporin 5 , TRPV Cation Channels
16.
Adv Clin Exp Med ; 32(12): 1413-1422, 2023 Dec.
Article En | MEDLINE | ID: mdl-37212774

BACKGROUND: The regulatory effect of integrin ß6 (ITGB6) on sweat gland cells in primary palmar hyperhidrosis (PPH) remains unclear. OBJECTIVES: This study investigated the involvement of ITGB6 in the pathogenesis of PPH. MATERIAL AND METHODS: Sweat gland tissues were collected from PPH patients and healthy volunteers. The expression levels of ITGB6 in sweat gland tissues were detected with quantitative polymerase chain reaction (qPCR), western blot and immunohistochemical staining. Sweat gland cells were extracted from PPH patients, and identified with immunofluorescence staining of CEA and CK7. The expression of aquaporin 5 (AQP5) and Na-K-Cl cotransporter 1 (NKCC1) in primary sweat gland cells that overexpress ITGB6 were also detected. Through a series of bioinformatic methods, differentially expressed genes in sweat gland tissues were examined and validated via comparing PPH samples and controls. The key proteins and biological functions enriched in PPH were determined using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. RESULTS: The ITGB6 was upregulated in sweat gland tissues of PPH patients compared to that of healthy volunteers. The CEA and CK7 were positively expressed in sweat gland cells extracted from PPH patients. The overexpression of ITGB6 upregulated AQP5 and NKCC1 protein expression in the sweat gland cells of PPH patients. A total of 562 differentially expressed mRNAs were identified using high-throughput sequencing (394 upregulated, 168 downregulated), which were mainly active in the chemokine and Wnt signaling pathways. After verification with qPCR and western blot, the overexpression of ITGB6 significantly upregulated CXCL3, CXCL5, CXCL10, and CXCL11, and downregulated Wnt2 mRNA and protein expression in sweat gland cells. CONCLUSIONS: The ITGB6 is upregulated in PPH patients. It may be involved in the pathogenesis of PPH by upregulating AQP5, NKCC1, CXCL3, CXCL5, CXCL10, and CXCL11, and downregulating Wnt2 expression in sweat glands.


Hyperhidrosis , Sweat Glands , Humans , Up-Regulation , Sweat Glands/metabolism , Sweat Glands/pathology , Integrin beta Chains/genetics , Integrin beta Chains/metabolism , Aquaporin 5/genetics , Aquaporin 5/metabolism , Hyperhidrosis/genetics , Hyperhidrosis/metabolism , Hyperhidrosis/pathology
17.
Biomed Res ; 44(2): 51-63, 2023.
Article En | MEDLINE | ID: mdl-37005283

To clarify the role of the aquaporin 5 (AQP5) in salivary secretion, we evaluated acetylcholine (ACh)-induced secretion in Sprague-Dawley (SD) rats, rats expressing a low level of AQP5 protein (AQP5/low SD) which developed from SD rats, and Wistar/ST rats. The salivary secretion in AQP5/low SD rats in response to infusions of low-dose ACh (60-120 nmol/min) was 27-42% of that in SD rats. By contrast, Wistar/ST rats exhibited comparable secretion to that of SD rats in response to low-doses ACh, despite their low-level expression of AQP5. Experiments using spectrofluorometry and RT-PCR demonstrated no differences in the ACh-induced Ca2+ responses or the mRNA expression of muscarinic receptor, Cl- channel, or cotransporter between these strains. These findings imply that factors other than the function of salivary acinar cells regulates the secretion in response to weak stimuli. Monitoring of the hemodynamics in the submandibular gland revealed that low-doses ACh induced different patterns of the fluctuations in the blood flow in these strains. The blood flow decreased below the resting level in AQP5/low SD rats, but remained mostly above the resting level in Wistar/ST rats. The present study reveals that the contribution of AQP5-dependent transport of water is altered by stimulus intensity and blood flow.


Aquaporin 5 , Saliva , Rats , Animals , Saliva/metabolism , Aquaporin 5/genetics , Aquaporin 5/metabolism , Acetylcholine/pharmacology , Acetylcholine/metabolism , Rats, Wistar , Rats, Sprague-Dawley , Hemodynamics
18.
Curr Eye Res ; 48(8): 750-757, 2023 08.
Article En | MEDLINE | ID: mdl-37027237

PURPOSE: Extracellular vesicles (EVs) are lipid-bilayered nanoparticles that play an important role in cellular cross-talk, and as received attention for their role as diseases biomarker. Aquaporin-5 (AQP5) is a small integral membrane protein that help in the migration of cells, proliferation, and invasion. However, the association of AQP5 with fungal diseases is still unknown. The aim of this study was to evaluate the expression of AQP5 in EVs (EV-AQP5) extracted from the vitreous of patients with Fungal Endophthalmitis (FE). METHODS: Vitreous fluid was collected from 20 patients clinically suspected as FE, 10 patients from non-infectious conditions, and 10 patients with bacterial endophthalmitis as controls. EVs were isolated from human vitreous and characterized by dynamic light scattering, and scanning electron microscopy. Human Aquaporin-5 levels were evaluated using a commercial ELISA Kit. The Receiver Operating Characteristic (ROC) curves and its significance were correlated with microbiology data. RESULTS: Isolated EVs size were approx.250-380 nm in diameter. The measured levels of EV-AQP5 resulted significantly higher in FE patients (mean=216±15pg/ml; 95% confidence interval (CI): 182-250) in comparison to controls (mean=130±12pg/ml; 95%CI: 111-166)(p = .001). However, AQP5 levels in EVs derived from culture-proven bacteria patients were insignificant compared to controls (mean=169±4 pg/ml; 95%CI: 161-177). ROC curve was used to define the optimal cut-off level of the test at 180 pg/ml with an AUC of 98% (95%CI: 95-100) (p = .03), with a sensitivity of 100% and specificity of 90%. Additionally, the AQP5 level in EVs derived from culture-negative vitreous was above the threshold value (200 ± 10 pg/ml (95%CI: 180-230) in comparison to the control group (p < .001) However, no significant association was found between age or visual acuity and the level of AQP5 in FE. CONCLUSION: Our results reveal that the vitreous EV-AQP5 levels can aid in differentiating FE from non-infectious retinal conditions, mainly when the cultures are negative.


Endophthalmitis , Extracellular Vesicles , Eye Infections, Fungal , Humans , Aquaporin 5/metabolism , Endophthalmitis/metabolism , Vitreous Body/metabolism , Eye Infections, Fungal/diagnosis , Eye Infections, Fungal/metabolism , Extracellular Vesicles/metabolism
19.
Gut ; 73(1): 63-77, 2023 Dec 07.
Article En | MEDLINE | ID: mdl-36977555

OBJECTIVE: Early gastric cardia adenocarcinoma (EGCA) is a highly heterogeneous cancer, and the understanding of its classification and malignant progression is limited. This study explored the cellular and molecular heterogeneity in EGCA using single-cell RNA sequencing (scRNA-seq). DESIGN: scRNA-seq was conducted on 95 551 cells from endoscopic biopsies of low-grade intraepithelial neoplasia, well/moderately/poorly differentiated EGCA and their paired adjacent nonmalignant biopsy samples. Large-scale clinical samples and functional experiments were employed. RESULTS: Integrative analysis of epithelial cells revealed that chief cells, parietal cells and enteroendocrine cells were rarely detected in the malignant epithelial subpopulation, whereas gland and pit mucous cells and AQP5+ stem cells were predominant during malignant progression. Pseudotime and functional enrichment analyses showed that the WNT and NF-κB signalling pathways were activated during the transition. Cluster analysis of heterogeneous malignant cells revealed that NNMT-mediated nicotinamide metabolism was enriched in gastric mucin phenotype cell population, which was associated with tumour initiation and inflammation-induced angiogenesis. Furthermore, the expression level of NNMT was gradually increased during the malignant progression and associated with poor prognosis in cardia adenocarcinoma. Mechanistically, NNMT catalysed the conversion of nicotinamide to 1-methyl nicotinamide via depleting S-adenosyl methionine, which led to a reduction in H3K27 trimethylation (H3K27me3) and then activated the WNT signalling pathway to maintain the stemness of AQP5+ stem cells during EGCA malignant progression. CONCLUSION: Our study extends the understanding of the heterogeneity of EGCA and identifies a functional NNMT+/AQP5+ population that may drive malignant progression in EGCA and could be used for early diagnosis and therapy.


Adenocarcinoma , Stomach Neoplasms , Humans , Cardia/metabolism , S-Adenosylmethionine , Neoplastic Stem Cells/metabolism , Niacinamide , Nicotinamide N-Methyltransferase/genetics , Nicotinamide N-Methyltransferase/metabolism , Aquaporin 5
20.
Exp Gerontol ; 175: 112147, 2023 05.
Article En | MEDLINE | ID: mdl-36925084

Longer-term deterioration in saliva secretion has been observed to occur in response to aging. The functional deterioration of the salivary gland damages swallowing and chewing abilities and consequently reduces life quality of the elderly. There are, however, only a few proven effective treatments for aging salivary secretion disorders. Ganoderma lucidum polysaccharide (GLP) has been applied to treat various diseases because of its safety, efficacy, and low cost. We investigated the protective effect of GLP on the submandibular gland (SMG) during aging. D-galactose (D-gal) was used to treat the aging mice, and the body weight, water consumption, saliva secretion, and flow rate were measured after 6 weeks of modeling. Micromorphological changes of the SMG were assessed by hematoxylin-eosin staining and transmission electron microscopy. RT-qPCR and Western blot were used to detect the expression of apoptotic proteins and inflammatory cytokines. Aquaporins (AQPs) and rhythmic protein expression were analyzed by immunohistochemistry and immunofluorescence. The results showed that GLP effectively promoted the expression of AQP5, AQP4, and AQP1, inhibited the release of TNF-α, IL-6, and Bax, and reduced inflammation and apoptosis. Further experiments showed that GLP promoted the up-regulation of core clock genes and proteins and restored the co-localized expression of CLOCK and AQP5 that were weakened during aging, helping to attenuate aging-induced weight loss, decreased salivation, and structural and functional damage. The findings of this work contribute to understanding the nature of age-related modifications in SMG by identifying changes in AQP5 expression and regulatory mechanisms linked to SMG dysfunction during aging. GLP is a potential drug for maintaining healthy salivary gland (SG) status and preventing SG deficiency in the elderly.


Reishi , Salivation , Mice , Animals , Reishi/metabolism , Galactose , Aquaporin 5/metabolism , Aging , Polysaccharides/pharmacology
...