Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.140
Filtrar
1.
Plant Cell Rep ; 43(7): 174, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878164

RESUMEN

KEY MESSAGE: Interactor of WOX2, CDC48A, is crucial for early embryo patterning and shoot meristem stem cell initiation, but is not required for WOX2 protein turnover or subcellular localization. During Arabidopsis embryo patterning, the WUSCHEL HOMEOBOX 2 (WOX2) transcription factor is a major regulator of protoderm and shoot stem cell initiation. Loss of WOX2 function results in aberrant protodermal cell divisions and, redundantly with its paralogs WOX1, WOX3, and WOX5, compromised shoot meristem formation. To elucidate the molecular basis for WOX2 function, we searched for protein interactors by IP-MS/MS from WOX2-overexpression roots displaying reprogramming toward shoot-like cell fates. Here, we report that WOX2 directly interacts with the type II AAA ATPase molecular chaperone CELL DIVISION CYCLE 48A (CDC48A). We confirmed this interaction with bimolecular fluorescence complementation and co-immunoprecipitation and found that both proteins co-localize in the nucleus. We show that CDC48A loss of function results in protoderm and shoot meristem stem cell initiation defects similar to WOX2 loss of function. We also provide evidence that CDC48A promotes WOX2 activity independently of proteolysis or the regulation of nuclear localization, common mechanisms of CDC48A function in other processes. Our results point to a new role of CDC48A in potentiating WOX2 function during early embryo patterning.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ciclo Celular , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio , Meristema , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/embriología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Meristema/metabolismo , Meristema/genética , Meristema/embriología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Semillas/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , ATPasas Asociadas con Actividades Celulares Diversas , Factores de Transcripción
2.
Development ; 151(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38884589

RESUMEN

Plants are dependent on divisions of stem cells to establish cell lineages required for growth. During embryogenesis, early division products are considered to be stem cells, whereas during post-embryonic development, stem cells are present in meristems at the root and shoot apex. PLETHORA/AINTEGUMENTA-LIKE (PLT/AIL) transcription factors are regulators of post-embryonic meristem function and are required to maintain stem cell pools. Despite the parallels between embryonic and post-embryonic stem cells, the role of PLTs during early embryogenesis has not been thoroughly investigated. Here, we demonstrate that the PLT regulome in the zygote, and apical and basal cells is in strong congruence with that of post-embryonic meristematic cells. We reveal that out of all six PLTs, only PLT2 and PLT4/BABY BOOM (BBM) are expressed in the zygote, and that these two factors are essential for progression of embryogenesis beyond the zygote stage and first divisions. Finally, we show that other PLTs can rescue plt2 bbm defects when expressed from the PLT2 and BBM promoters, establishing upstream regulation as a key factor in early embryogenesis. Our data indicate that generic PLT factors facilitate early embryo development in Arabidopsis by induction of meristematic potential.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Meristema , Factores de Transcripción , Meristema/metabolismo , Meristema/embriología , Meristema/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/embriología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación del Desarrollo de la Expresión Génica , Semillas/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Cigoto/metabolismo
3.
Plant Cell ; 36(7): 2550-2569, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38513608

RESUMEN

Embryo development in Arabidopsis (Arabidopsis thaliana) starts off with an asymmetric division of the zygote to generate the precursors of the embryo proper and the supporting extraembryonic suspensor. The suspensor degenerates as the development of the embryo proper proceeds beyond the heart stage. Until the globular stage, the suspensor maintains embryonic potential and can form embryos in the absence of the developing embryo proper. We report a mutant called meerling-1 (mrl-1), which shows a high penetrance of suspensor-derived polyembryony due to delayed development of the embryo proper. Eventually, embryos from both apical and suspensor lineages successfully develop into normal plants and complete their life cycle. We identified the causal mutation as a genomic rearrangement altering the promoter of the Arabidopsis U3 SMALL NUCLEOLAR RNA-ASSOCIATED PROTEIN 18 (UTP18) homolog that encodes a nucleolar-localized WD40-repeat protein involved in processing 18S preribosomal RNA. Accordingly, root-specific knockout of UTP18 caused growth arrest and accumulation of unprocessed 18S pre-rRNA. We generated the mrl-2 loss-of-function mutant and observed asynchronous megagametophyte development causing embryo sac abortion. Together, our results indicate that promoter rearrangement decreased UTP18 protein abundance during early stage embryo proper development, triggering suspensor-derived embryogenesis. Our data support the existence of noncell autonomous signaling from the embryo proper to prevent direct reprogramming of the suspensor toward embryonic fate.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mutación , Semillas , Arabidopsis/genética , Arabidopsis/embriología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutación/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , ARN Ribosómico/genética
4.
Nature ; 609(7929): 986-993, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36104568

RESUMEN

Nutrients and energy have emerged as central modulators of developmental programmes in plants and animals1-3. The evolutionarily conserved target of rapamycin (TOR) kinase is a master integrator of nutrient and energy signalling that controls growth. Despite its key regulatory roles in translation, proliferation, metabolism and autophagy2-5, little is known about how TOR shapes developmental transitions and differentiation. Here we show that glucose-activated TOR kinase controls genome-wide histone H3 trimethylation at K27 (H3K27me3) in Arabidopsis thaliana, which regulates cell fate and development6-10. We identify FERTILIZATION-INDEPENDENT ENDOSPERM (FIE), an indispensable component of Polycomb repressive complex 2 (PRC2), which catalyses H3K27me3 (refs. 6-8,10-12), as a TOR target. Direct phosphorylation by TOR promotes the dynamic translocation of FIE from the cytoplasm to the nucleus. Mutation of the phosphorylation site on FIE abrogates the global H3K27me3 landscape, reprogrammes the transcriptome and disrupts organogenesis in plants. Moreover, glucose-TOR-FIE-PRC2 signalling modulates vernalization-induced floral transition. We propose that this signalling axis serves as a nutritional checkpoint leading to epigenetic silencing of key transcription factor genes that specify stem cell destiny in shoot and root meristems and control leaf, flower and silique patterning, branching and vegetative-to-reproduction transition. Our findings reveal a fundamental mechanism of nutrient signalling in direct epigenome reprogramming, with broad relevance for the developmental control of multicellular organisms.


Asunto(s)
Arabidopsis , Glucosa , Diana Mecanicista del Complejo 2 de la Rapamicina , Fosfatidilinositol 3-Quinasas , Desarrollo de la Planta , Complejo Represivo Polycomb 2 , Proteínas Represoras , Transducción de Señal , Arabidopsis/embriología , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Glucosa/metabolismo , Histonas/química , Histonas/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Desarrollo de la Planta/genética , Complejo Represivo Polycomb 2/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética
5.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35046016

RESUMEN

Mitochondrial adrenodoxins (ADXs) are small iron-sulfur proteins with electron transfer properties. In animals, ADXs transfer electrons between an adrenodoxin reductase (ADXR) and mitochondrial P450s, which is crucial for steroidogenesis. Here we show that a plant mitochondrial steroidogenic pathway, dependent on an ADXR-ADX-P450 shuttle, is essential for female gametogenesis and early embryogenesis through a maternal effect. The steroid profile of maternal and gametophytic tissues of wild-type (WT) and adxr ovules revealed that homocastasterone is the main steroid present in WT gametophytes and that its levels are reduced in the mutant ovules. The application of exogenous homocastasterone partially rescued adxr and P450 mutant phenotypes, indicating that gametophytic homocastasterone biosynthesis is affected in the mutants and that a deficiency of this hormone causes the phenotypic alterations observed. These findings also suggest not only a remarkable similarity between steroid biosynthetic pathways in plants and animals but also a common function during sexual reproduction.


Asunto(s)
Adrenodoxina/metabolismo , Arabidopsis/embriología , Ferredoxina-NADP Reductasa/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/fisiología , Transporte de Electrón , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/fisiología , Desarrollo Embrionario/genética , Gametogénesis/fisiología , Células Germinativas de las Plantas/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Fitosteroles/biosíntesis , Unión Proteica
6.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884771

RESUMEN

Light and brassinosteroid (BR) are external stimuli and internal cue respectively, that both play critical roles in a wide range of developmental and physiological process. Seedlings grown in the light exhibit photomorphogenesis, while BR promotes seedling etiolation. Light and BR oppositely control the development switch from shotomorphogenesis in the dark to photomorphogenesis in the light. Recent progress report that substantial components have been identified as hubs to integrate light and BR signals. Photomorphogenic repressors including COP1, PIFs, and AGB1 have been reported to elevate BR response, while photomorphogenesis-promoting factors such as HY5, BZS1, and NF-YCs have been proven to repress BR signal. In addition, BR components also modulate light signal. Here, we review the current research on signaling network associated with light and brassinosteroids, with a focus on the integration of light and BR signals enabling plants to thrive in the changeable environment.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Brasinoesteroides/metabolismo , Luz , Reguladores del Crecimiento de las Plantas/metabolismo , Plantones/embriología , Arabidopsis/embriología , Arabidopsis/metabolismo , MicroARNs/genética , Desarrollo de la Planta/fisiología , Plantones/metabolismo
7.
Commun Biol ; 4(1): 1149, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599277

RESUMEN

Female germline cells in flowering plants differentiate from somatic cells to produce specialized reproductive organs, called ovules, embedded deep inside the flowers. We investigated the molecular basis of this distinctive developmental program by performing single-cell RNA sequencing (scRNA-seq) of 16,872 single cells of Arabidopsis thaliana ovule primordia at three developmental time points during female germline differentiation. This allowed us to identify the characteristic expression patterns of the main cell types, including the female germline and its surrounding nucellus. We then reconstructed the continuous trajectory of female germline differentiation and observed dynamic waves of gene expression along the developmental trajectory. A focused analysis revealed transcriptional cascades and identified key transcriptional factors that showed distinct expression patterns along the germline differentiation trajectory. Our study provides a valuable reference dataset of the transcriptional process during female germline differentiation at single-cell resolution, shedding light on the mechanisms underlying germline cell fate determination.


Asunto(s)
Arabidopsis/embriología , Diferenciación Celular , Células Germinativas de las Plantas/crecimiento & desarrollo , Transcriptoma , Ensayos Analíticos de Alto Rendimiento , Análisis de la Célula Individual
8.
PLoS Biol ; 19(8): e3001357, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34343166

RESUMEN

Plant mitochondrial genomes undergo frequent homologous recombination (HR). Ectopic HR activity is inhibited by the HR surveillance pathway, but the underlying regulatory mechanism is unclear. Here, we show that the mitochondrial RNase H1 AtRNH1B impairs the formation of RNA:DNA hybrids (R-loops) and participates in the HR surveillance pathway in Arabidopsis thaliana. AtRNH1B suppresses ectopic HR at intermediate-sized repeats (IRs) and thus maintains mitochondrial DNA (mtDNA) replication. The RNase H1 AtRNH1C is restricted to the chloroplast; however, when cells lack AtRNH1B, transport of chloroplast AtRNH1C into the mitochondria secures HR surveillance, thus ensuring the integrity of the mitochondrial genome and allowing embryogenesis to proceed. HR surveillance is further regulated by the single-stranded DNA-binding protein ORGANELLAR SINGLE-STRANDED DNA BINDING PROTEIN1 (OSB1), which decreases the formation of R-loops. This study uncovers a facultative dual targeting mechanism between organelles and sheds light on the roles of RNase H1 in organellar genome maintenance and embryogenesis.


Asunto(s)
Arabidopsis/embriología , Desarrollo Embrionario , Inestabilidad Genómica , Estructuras R-Loop , Ribonucleasa H/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/enzimología , Proteínas de Unión al ADN/metabolismo , Homeostasis , Recombinación Homóloga , Mitocondrias/enzimología
9.
Mol Cells ; 44(8): 602-612, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34462399

RESUMEN

DNA methylation is an important epigenetic mechanism affecting genome structure, gene regulation, and the silencing of transposable elements. Cell- and tissue-specific methylation patterns are critical for differentiation and development in eukaryotes. Dynamic spatiotemporal methylation data in these cells or tissues is, therefore, of great interest. However, the construction of bisulfite sequencing libraries can be challenging if the starting material is limited or the genome size is small, such as in Arabidopsis. Here, we describe detailed methods for the purification of Arabidopsis embryos at all stages, and the construction of comprehensive bisulfite libraries from small quantities of input. We constructed bisulfite libraries by releasing embryos from intact seeds, using a different approach for each developmental stage, and manually picking single-embryo with microcapillaries. From these libraries, reliable Arabidopsis methylome data were collected allowing, on average, 11-fold coverage of the genome using as few as five globular, heart, and torpedo embryos as raw input material without the need for DNA purification step. On the other hand, purified DNA from as few as eight bending torpedo embryos or a single mature embryo is sufficient for library construction when RNase A is treated before DNA extraction. This method can be broadly applied to cells from different tissues or cells from other model organisms. Methylome construction can be achieved using a minimal amount of input material using our method; thereby, it has the potential to increase our understanding of dynamic spatiotemporal methylation patterns in model organisms.


Asunto(s)
Arabidopsis/embriología , Arabidopsis/genética , Metilación de ADN/genética , ADN de Plantas/aislamiento & purificación , Biología Molecular/métodos , Semillas/metabolismo , Ribonucleasa Pancreática/metabolismo
10.
Dev Biol ; 479: 1-10, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34314693

RESUMEN

Along with a strict determinism of early embryogenesis in most living organisms, some of them exhibit variability of cell fates and developmental pathways. Here we discuss the phenomena of determinism and variability of developmental pathways, defining its dependence upon cell potency, cell sensitivity to the external signals and cell signaling. We propose a set of conjectures on the phenomenon of variability of developmental pathways, and denote a difference between a normal (local) variability, leading to an invariant final structure (e.g., embryo shape), and fundamental one, which is a switching between different developmental pathways, leading to different possible structures. For illustrating our conjectures, we analyzed early developmental stages of plant embryos with different levels of variability of morphogenesis pathways, and provide a set of computational experiments by Morphogenesis Software.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Desarrollo de la Planta/fisiología , Arabidopsis/embriología , Fumaria/embriología , Morfogénesis/fisiología , Desarrollo de la Planta/genética , Polygala/embriología , Pulsatilla/embriología
11.
Development ; 148(14)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34137447

RESUMEN

Arabidopsis VASCULATURE COMPLEXITY AND CONNECTIVITY (VCC) is a plant-specific transmembrane protein that controls the development of veins in cotyledons. Here, we show that the expression and localization of the auxin efflux carrier PIN-FORMED1 (PIN1) is altered in vcc developing cotyledons and that overexpression of PIN1-GFP partially rescues vascular defects of vcc in a dosage-dependent manner. Genetic analyses suggest that VCC and PINOID (PID), a kinase that regulates PIN1 polarity, are both required for PIN1-mediated control of vasculature development. VCC expression is upregulated by auxin, likely as part of a positive feedback loop for the progression of vascular development. VCC and PIN1 localized to the plasma membrane in pre-procambial cells but were actively redirected to vacuoles in procambial cells for degradation. In the vcc mutant, PIN1 failed to properly polarize in pre-procambial cells during the formation of basal strands, and instead, it was prematurely degraded in vacuoles. VCC plays a role in the localization and stability of PIN1, which is crucial for the transition of pre-procambial cells into procambial cells that are involved in the formation of basal lateral strands in embryonic cotyledons.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Arabidopsis/genética , Desarrollo Embrionario , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/genética , Transporte Biológico , Cotiledón/citología , Cotiledón/genética , Cotiledón/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Hojas de la Planta/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
12.
Development ; 148(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34142712

RESUMEN

Soon after fertilization of egg and sperm, plant genomes become transcriptionally activated and drive a series of coordinated cell divisions to form the basic body plan during embryogenesis. Early embryonic cells rapidly diversify from each other, and investigation of the corresponding gene expression dynamics can help elucidate underlying cellular differentiation programs. However, current plant embryonic transcriptome datasets either lack cell-specific information or have RNA contamination from surrounding non-embryonic tissues. We have coupled fluorescence-activated nuclei sorting together with single-nucleus mRNA-sequencing to construct a gene expression atlas of Arabidopsis thaliana early embryos at single-cell resolution. In addition to characterizing cell-specific transcriptomes, we found evidence that distinct epigenetic and transcriptional regulatory mechanisms operate across emerging embryonic cell types. These datasets and analyses, as well as the approach we devised, are expected to facilitate the discovery of molecular mechanisms underlying pattern formation in plant embryos. This article has an associated 'The people behind the papers' interview.


Asunto(s)
Arabidopsis/embriología , Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Núcleo Celular/metabolismo , Desarrollo Embrionario , Epigenómica , Perfilación de la Expresión Génica , Genoma de Planta , Células Vegetales/metabolismo , ARN Mensajero , Factores de Transcripción
13.
Nat Commun ; 12(1): 2508, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947865

RESUMEN

Plant somatic cells can be reprogrammed into totipotent embryonic cells that are able to form differentiated embryos in a process called somatic embryogenesis (SE), by hormone treatment or through overexpression of certain transcription factor genes, such as BABY BOOM (BBM). Here we show that overexpression of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED 15 (AHL15) gene induces formation of somatic embryos on Arabidopsis thaliana seedlings in the absence of hormone treatment. During zygotic embryogenesis, AHL15 expression starts early in embryo development, and AH15 and other AHL genes are required for proper embryo patterning and development beyond the globular stage. Moreover, AHL15 and several of its homologs are upregulated and required for SE induction upon hormone treatment, and they are required for efficient BBM-induced SE as downstream targets of BBM. A significant number of plants derived from AHL15 overexpression-induced somatic embryos are polyploid. Polyploidisation occurs by endomitosis specifically during the initiation of SE, and is caused by strong heterochromatin decondensation induced by AHL15 overexpression.


Asunto(s)
Secuencias AT-Hook , Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Arabidopsis/genética , Ensamble y Desensamble de Cromatina/genética , Regulación de la Expresión Génica de las Plantas/genética , Técnicas de Embriogénesis Somática de Plantas , Proteínas de Arabidopsis/genética , Segregación Cromosómica/genética , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Respuesta al Choque Térmico/genética , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Poliploidía , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba
14.
Genome Biol ; 22(1): 141, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33957942

RESUMEN

BACKGROUND: Hybridization of plants that differ in number of chromosome sets (ploidy) frequently causes endosperm failure and seed arrest, a phenomenon referred to as triploid block. In Arabidopsis, loss of function of NRPD1, encoding the largest subunit of the plant-specific RNA polymerase IV (Pol IV), can suppress the triploid block. Pol IV generates short RNAs required to guide de novo methylation in the RNA-directed DNA methylation (RdDM) pathway. Recent work suggests that suppression of the triploid block by mutants in RdDM components differs, depending on whether the diploid pollen is derived from tetraploid plants or from the omission in second division 1 (osd1) mutant. This study aims to understand this difference. RESULTS: In this study, we find that the ability of mutants in the RdDM pathway to suppress the triploid block depends on their degree of inbreeding. While first homozygous generation mutants in RdDM components NRPD1, RDR2, NRPE1, and DRM2 have weak or no ability to rescue the triploid block, they are able to suppress the triploid block with successive generations of inbreeding. Inbreeding of nrpd1 was connected with a transgenerational loss of non-CG DNA methylation on sites jointly regulated by CHROMOMETHYLASES 2 and 3. CONCLUSIONS: Our data reveal that loss of RdDM function differs in its effect in early and late generations, which has important implications when interpreting the effect of RdDM mutants.


Asunto(s)
Arabidopsis/genética , Metilación de ADN/genética , Mutación/genética , ARN de Planta/metabolismo , Triploidía , Arabidopsis/embriología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Endogamia , ARN de Planta/genética , Semillas/genética
15.
BMC Plant Biol ; 21(1): 232, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34034658

RESUMEN

BACKGROUND: The Arabidopsis RUS (ROOT UV-B SENSITIVE) gene family contains six members, each of which encodes a protein containing a DUF647 (domain of unknown function 647) that is commonly found in eukaryotes. Previous studies have demonstrated that RUS1 and RUS2 play critical roles in early seedling development. All six RUS genes are expressed throughout the plant, but little is known about the functional roles of RUS3, RUS4, RUS5 and RUS6. RESULTS: We used a reverse-genetic approach to identify knockout mutants for RUS3, RUS4, RUS5 and RUS6. Each mutant was confirmed by direct DNA sequencing and genetic segregation analysis. No visible phenotypic differences were observed in rus3, rus4, or rus5 knockout mutants under standard growth conditions, but rus6 knockout mutants displayed a strong embryo-lethal phenotype. Two independent knockout lines for RUS6 were characterized. The rus6 mutations could only be maintained through a heterozygote, because rus6 homozygous mutants did not survive. Closer examinations of homozygous rus6 embryos from rus6/ + parent plants revealed that RUS6 is required for early embryo development. Loss of RUS6 resulted in embryo lethality, specifically at the mid-globular stage. The embryo-lethality phenotype was complemented by a RUS6::RUS6-GFP transgene, and GFP signal was detected throughout the embryo. Histological analyses with the ß-glucuronidase reporter gene driven by the RUS6 promoter showed tissue- and development-specific expression of RUS6, which was highest in floral tissues. CONCLUSION: Our data revealed that RUS6 is essential for early embryo development in Arabidopsis, and that the RUS gene family functions in multiple stages of plant development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Arabidopsis/embriología , Proteínas de Arabidopsis/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Fenotipo , Regiones Promotoras Genéticas/genética
16.
Development ; 148(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34015094

RESUMEN

Plant growth, morphogenesis and development involve cellular adhesion, a process dependent on the composition and structure of the extracellular matrix or cell wall. Pectin in the cell wall is thought to play an essential role in adhesion, and its modification and cleavage are suggested to be highly regulated so as to change adhesive properties. To increase our understanding of plant cell adhesion, a population of ethyl methanesulfonate-mutagenized Arabidopsis were screened for hypocotyl adhesion defects using the pectin binding dye Ruthenium Red that penetrates defective but not wild-type (WT) hypocotyl cell walls. Genomic sequencing was used to identify a mutant allele of ELMO1 which encodes a 20 kDa Golgi membrane protein that has no predicted enzymatic domains. ELMO1 colocalizes with several Golgi markers and elmo1-/- plants can be rescued by an ELMO1-GFP fusion. elmo1-/- exhibits reduced mannose content relative to WT but no other cell wall changes and can be rescued to WT phenotype by mutants in ESMERALDA1, which also suppresses other adhesion mutants. elmo1 describes a previously unidentified role for the ELMO1 protein in plant cell adhesion.


Asunto(s)
Arabidopsis/embriología , Adhesión Celular/genética , Adhesión Celular/fisiología , Aparato de Golgi/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Aparato de Golgi/genética , Hipocótilo/citología , Hipocótilo/genética , Manosa/análisis , Proteínas de la Membrana/genética , Metiltransferasas/genética , Pectinas/metabolismo
17.
Sci Rep ; 11(1): 9688, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958633

RESUMEN

The germination timing of seeds is of the utmost adaptive importance for plant populations. Light is one of the best characterized factors promoting seed germination in several species. The germination is also finely regulated by changes in hormones levels, mainly those of gibberellin (GA) and abscisic acid (ABA). Here, we performed physiological, pharmacological, and molecular analyses to uncover the role of ATHB2, an HD-ZIP II transcription factor, in germination of Arabidopsis seeds. Our study demonstrated that ATHB2 is a negative regulator and sustains the expression of transcription factors to block germination promoted by light. Besides, we found that ATHB2 increases ABA sensitivity. Moreover, ABA and auxin content in athb2-2 mutant is higher than wild-type in dry seeds, but the differences disappeared during the imbibition in darkness and the first hours of exposition to light, respectively. Some ABA and light transcription factors are up-regulated by ATHB2, such as ABI5, ABI3, XERICO, SOMNUS and PIL5/PIF1. In opposition, PIN7, an auxin transport, is down-regulated. The role of ATHB2 as a repressor of germination induced by light affecting the gemination timing, could have differential effects on the establishment of seedlings altering the competitiveness between crops and weeds in the field.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/embriología , Germinación/fisiología , Semillas/crecimiento & desarrollo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas , Germinación/efectos de la radiación , Transducción de Señal/fisiología , Factores de Transcripción/genética
18.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33879620

RESUMEN

Quantitative variation in expression of the Arabidopsis floral repressor FLC influences whether plants overwinter before flowering, or have a rapid cycling habit enabling multiple generations a year. Genetic analysis has identified activators and repressors of FLC expression but how they interact to set expression level is poorly understood. Here, we show that antagonistic functions of the FLC activator FRIGIDA (FRI) and the repressor FCA, at a specific stage of embryo development, determine FLC expression and flowering. FRI antagonizes an FCA-induced proximal polyadenylation to increase FLC expression and delay flowering. Sector analysis shows that FRI activity during the early heart stage of embryo development maximally delays flowering. Opposing functions of cotranscriptional regulators during an early embryonic developmental window thus set FLC expression levels and determine flowering time.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/metabolismo , Proteínas de Unión al ARN/metabolismo , Arabidopsis/embriología , Arabidopsis/crecimiento & desarrollo , Desarrollo Embrionario , Flores/crecimiento & desarrollo , Poliadenilación
19.
Plant Cell ; 33(5): 1615-1632, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33793860

RESUMEN

TARGET OF RAPAMYCIN (TOR) is a conserved eukaryotic Ser/Thr protein kinase that coordinates growth and metabolism with nutrient availability. We conducted a medium-throughput functional genetic screen to discover essential genes that promote TOR activity in plants, and identified a critical regulatory enzyme, cytosolic phosphoribosyl pyrophosphate (PRPP) synthetase (PRS4). PRS4 synthesizes cytosolic PRPP, a key upstream metabolite in nucleotide synthesis and salvage pathways. We found that prs4 knockouts are embryo-lethal in Arabidopsis thaliana, and that silencing PRS4 expression in Nicotiana benthamiana causes pleiotropic developmental phenotypes, including dwarfism, aberrant leaf shape, and delayed flowering. Transcriptomic analysis revealed that ribosome biogenesis is among the most strongly repressed processes in prs4 knockdowns. Building on these results, we discovered that TOR activity is inhibited by chemical or genetic disruption of nucleotide biosynthesis, but that this effect can be reversed by supplying plants with nucleobases. Finally, we show that TOR transcriptionally promotes nucleotide biosynthesis to support the demands of ribosomal RNA synthesis. We propose that TOR coordinates ribosome biogenesis with nucleotide availability in plants to maintain metabolic homeostasis and support growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nucleótidos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ribosomas/metabolismo , Arabidopsis/embriología , Arabidopsis/genética , Citosol/metabolismo , Silenciador del Gen , Genes de Plantas , Fósforo/metabolismo , Células Vegetales/metabolismo , Desarrollo de la Planta , Purinas/biosíntesis , Pirimidinas/biosíntesis , Nicotiana/metabolismo , Transcriptoma/genética
20.
Mol Biol Evol ; 38(8): 3445-3458, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-33878189

RESUMEN

The high mutational load of mitochondrial genomes combined with their uniparental inheritance and high polyploidy favors the maintenance of deleterious mutations within populations. How cells compose and adapt to the accumulation of disadvantageous mitochondrial alleles remains unclear. Most harmful changes are likely corrected by purifying selection, however, the intimate collaboration between mitochondria- and nuclear-encoded gene products offers theoretical potential for compensatory adaptive changes. In plants, cytoplasmic male sterilities are known examples of nucleo-mitochondrial coadaptation situations in which nuclear-encoded restorer of fertility (Rf) genes evolve to counteract the effect of mitochondria-encoded cytoplasmic male sterility (CMS) genes and restore fertility. Most cloned Rfs belong to a small monophyletic group, comprising 26 pentatricopeptide repeat genes in Arabidopsis, called Rf-like (RFL). In this analysis, we explored the functional diversity of RFL genes in Arabidopsis and found that the RFL8 gene is not related to CMS suppression but essential for plant embryo development. In vitro-rescued rfl8 plantlets are deficient in the production of the mitochondrial heme-lyase complex. A complete ensemble of molecular and genetic analyses allowed us to demonstrate that the RFL8 gene has been selected to permit the translation of the mitochondrial ccmFN2 gene encoding a heme-lyase complex subunit which derives from the split of the ccmFN gene, specifically in Brassicaceae plants. This study represents thus a clear case of nuclear compensation to a lineage-specific mitochondrial genomic rearrangement in plants and demonstrates that RFL genes can be selected in response to other mitochondrial deviancies than CMS suppression.


Asunto(s)
Arabidopsis/genética , Genoma Mitocondrial , Selección Genética , Arabidopsis/embriología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Grupo Citocromo c/metabolismo , Desarrollo Embrionario , Biosíntesis de Proteínas , Empalme del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...