Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 943
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167176, 2024 Jun.
Article En | MEDLINE | ID: mdl-38641013

Ferroptosis is a programmed form of cell death regulated by iron and has been linked to the development of asthma. However, the precise mechanisms driving ferroptosis in asthma remain elusive. To gain deeper insights, we conducted an analysis of nasal epithelial and sputum samples from the GEO database using three machine learning methods. Our investigation identified a pivotal gene, Arachidonate 15-lipoxygenase (ALOX15), associated with ferroptosis in asthma. Through both in vitro and in vivo experiments, we further confirmed the significant role of ALOX15 in ferroptosis in asthma. Our results demonstrate that ferroptosis manifests in an HDM/LPS-induced allergic airway inflammation (AAI) mouse model, mimicking human asthma, and in HDM/LPS-stimulated 16HBE cells. Moreover, we observed an up-regulation of ALOX15 expression in HDM/LPS-induced mice and cells. Notably, silencing ALOX15 markedly decreased HDM/LPS-induced ferroptosis in 16HBE cells. These findings indicate that ferroptosis may be implicated in the onset and progression of asthma, with ALOX15-induced lipid peroxidation raising the susceptibility to ferroptosis in asthmatic epithelial cells.


Arachidonate 15-Lipoxygenase , Asthma , Epithelial Cells , Ferroptosis , Lipid Peroxidation , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Animals , Asthma/pathology , Asthma/metabolism , Asthma/genetics , Humans , Mice , Epithelial Cells/metabolism , Epithelial Cells/pathology , Disease Models, Animal , Cell Line , Female , Arachidonate 12-Lipoxygenase
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167182, 2024 Jun.
Article En | MEDLINE | ID: mdl-38653359

OBJECTIVE: This work aimed to investigate the role of rhythm gene PER1 in mediating granulosa cell ferroptosis and lipid metabolism of polycystic ovary syndrome (PCOS). METHODS: We injected dehydroepiandrosterone and Ferrostatin-1 (Fer-1) into mice to explore the mechanism of ferroptosis in PCOS. The effect of PER1 on ferroptosis-like changes in granulosa cells was explored by overexpression of PER1 plasmid transfection and Fer-1 treatment. RESULTS: We found that Fer-1 ameliorated the characteristic polycystic ovary morphology, suppressed ferroptosis in the PCOS mice. PER1 and ALOX15 were highly expressed in PCOS, whereas SREBF2 was lowly expressed. Overexpression of PER1 decreased granulosa cell viability and inhibited proliferation. Meanwhile, overexpression of PER1 increased lipid reactive oxygen species, 4-Hydroxynonenal (4-HNE), Malondialdehyde (MDA), total Fe, and Fe2+ levels in granulosa cells and decreased Glutathione (GSH) content. Fer-1, SREBF2 overexpression, or ALOX15 silencing treatment reversed the effects of PER1 overexpression on granulosa cells. PER1 binds to the SREBF2 promoter and represses SREBF2 transcription. SREBF2 binds to the ALOX15 promoter and represses ALOX15 transcription. Correlation analysis of clinical trials showed that PER1 was positively correlated with total cholesterol, low-density lipoprotein cholesterol, luteinizing hormone, testosterone, 4-HNE, MDA, total Fe, Fe2+, and ALOX15. In contrast, PER1 was negatively correlated with SREBF2, high-density lipoprotein cholesterol, follicle-stimulating hormone, progesterone, and GSH. CONCLUSION: This study demonstrates that the rhythm gene PER1 promotes ferroptosis and dysfunctional lipid metabolism in granulosa cells in PCOS by inhibiting SREBF2/ALOX15 signaling.


Ferroptosis , Granulosa Cells , Lipid Metabolism , Polycystic Ovary Syndrome , Ferroptosis/genetics , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/pathology , Female , Animals , Lipid Metabolism/genetics , Mice , Granulosa Cells/metabolism , Granulosa Cells/pathology , Humans , Phenylenediamines/pharmacology , Cyclohexylamines/pharmacology , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Dehydroepiandrosterone/metabolism , Reactive Oxygen Species/metabolism , Arachidonate 12-Lipoxygenase
3.
Molecules ; 29(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38675565

The understanding of the role of LXR in the regulation of macrophages during inflammation is emerging. Here, we show that LXR agonist T09 specifically increases 15-LOX abundance in primary human M2 macrophages. In time- and dose-dependent incubations with T09, an increase of 3-fold for ALOX15 and up to 15-fold for 15-LOX-derived oxylipins was observed. In addition, LXR activation has no or moderate effects on the abundance of macrophage marker proteins such as TLR2, TLR4, PPARγ, and IL-1RII, as well as surface markers (CD14, CD86, and CD163). Stimulation of M2-like macrophages with FXR and RXR agonists leads to moderate ALOX15 induction, probably due to side activity on LXR. Finally, desmosterol, 24(S),25-Ep cholesterol and 22(R)-OH cholesterol were identified as potent endogenous LXR ligands leading to an ALOX15 induction. LXR-mediated ALOX15 regulation is a new link between the two lipid mediator classes sterols, and oxylipins, possibly being an important tool in inflammatory regulation through anti-inflammatory oxylipins.


Arachidonate 15-Lipoxygenase , Liver X Receptors , Macrophages , Oxylipins , Humans , Anti-Inflammatory Agents/pharmacology , Arachidonate 15-Lipoxygenase/metabolism , Liver X Receptors/metabolism , Liver X Receptors/agonists , Macrophages/metabolism , Macrophages/drug effects , Oxylipins/metabolism , Sterols/pharmacology , Sterols/metabolism
4.
Redox Biol ; 72: 103149, 2024 Jun.
Article En | MEDLINE | ID: mdl-38581859

Macrophage cholesterol homeostasis is crucial for health and disease and has been linked to the lipid-peroxidizing enzyme arachidonate 15-lipoxygenase type B (ALOX15B), albeit molecular mechanisms remain obscure. We performed global transcriptome and immunofluorescence analysis in ALOX15B-silenced primary human macrophages and observed a reduction of nuclear sterol regulatory element-binding protein (SREBP) 2, the master transcription factor of cellular cholesterol biosynthesis. Consequently, SREBP2-target gene expression was reduced as were the sterol biosynthetic intermediates desmosterol and lathosterol as well as 25- and 27-hydroxycholesterol. Mechanistically, suppression of ALOX15B reduced lipid peroxidation in primary human macrophages and thereby attenuated activation of mitogen-activated protein kinase ERK1/2, which lowered SREBP2 abundance and activity. Low nuclear SREBP2 rendered both, ALOX15B-silenced and ERK1/2-inhibited macrophages refractory to SREBP2 activation upon blocking the NPC intracellular cholesterol transporter 1. These studies suggest a regulatory mechanism controlling macrophage cholesterol homeostasis based on ALOX15B-mediated lipid peroxidation and concomitant ERK1/2 activation.


Arachidonate 15-Lipoxygenase , Cholesterol , Homeostasis , Lipid Peroxidation , Macrophages , Sterol Regulatory Element Binding Protein 2 , Sterol Regulatory Element Binding Protein 2/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Humans , Cholesterol/metabolism , Macrophages/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 1/genetics , Gene Expression Regulation
5.
Phytomedicine ; 128: 155475, 2024 Jun.
Article En | MEDLINE | ID: mdl-38492368

BACKGROUND: The intricate interactions between chronic psychological stress and susceptibility to breast cancer have been recognized, yet the underlying mechanisms remain unexplored. Danzhi Xiaoyao Powder (DZXY), a traditional Chinese medicine (TCM) formula, has found clinical utility in the treatment of breast cancer. Macrophages, as the predominant immune cell population within the tumor microenvironment (TME), play a pivotal role in orchestrating tumor immunosurveillance. Emerging evidence suggests that lipid oxidation accumulation in TME macrophages, plays a critical role in breast cancer development and progression. However, a comprehensive understanding of the pharmacological mechanisms and active components of DZXY related to its clinical application in the treatment of stress-aggravated breast cancer remains elusive. PURPOSE: This study sought to explore the plausible regulatory mechanisms and identify the key active components of DZXY contributing to its therapeutic efficacy in the context of breast cancer. METHODS: Initially, we conducted an investigation into the relationship between the phagocytic capacity of macrophages damaged by psychological stress and phospholipid peroxidation using flow cytometry and LC-MS/MS-based phospholipomics. Subsequently, we evaluated the therapeutic efficacy of DZXY based on the results of the tumor size, tumor weight, the phospholipid peroxidation pathway and phagocytosis of macrophage. Additionally, the target-mediated characterization strategy based on binding of arachidonate 15-lipoxygenase (ALOX15) to phosphatidylethanolamine-binding protein-1 (PEBP1), including molecular docking analysis, microscale thermophoresis (MST) assay, co-immunoprecipitation analysis and activity verification, has been further implemented to reveal the key bio-active components in DZXY. Finally, we evaluated the therapeutic efficacy of isochlorogenic acid C (ICAC) based on the results of tumor size, tumor weight, the phospholipid peroxidation pathway, and macrophage phagocytosis in vivo. RESULTS: The present study demonstrated that phospholipid peroxides, as determined by LC-MS/MS-based phospholipidomics, triggered in macrophages, which in turn compromised their capacity to eliminate tumor cells through phagocytosis. Furthermore, we elucidate the mechanism behind stress-induced PEBP1 to form a complex with ALOX15, thereby mediating membrane phospholipid peroxidation in macrophages. DZXY, demonstrates potent anti-breast cancer therapeutic effects by disrupting the ALOX15/PEBP1 interaction and inhibiting phospholipid peroxidation, ultimately enhancing macrophages' phagocytic capability towards tumor cells. Notably, ICAC emerged as a promising active component in DZXY, which can inhibit the ALOX15/PEBP1 interaction, thereby mitigating phospholipid peroxidation in macrophages. CONCLUSION: Collectively, our findings elucidate stress increases the susceptibility of breast cancer by driving lipid peroxidation of macrophages and suggest the ALOX15/PEBP1 complex as a promising intervention target for DZXY.


Arachidonate 15-Lipoxygenase , Drugs, Chinese Herbal , Lipid Peroxidation , Macrophages , Phospholipids , Tumor Microenvironment , Drugs, Chinese Herbal/pharmacology , Tumor Microenvironment/drug effects , Animals , Macrophages/drug effects , Macrophages/metabolism , Female , Mice , Arachidonate 15-Lipoxygenase/metabolism , Lipid Peroxidation/drug effects , Humans , Breast Neoplasms/drug therapy , Stress, Psychological/drug therapy , Molecular Docking Simulation , Phagocytosis/drug effects , Mice, Inbred BALB C , RAW 264.7 Cells
6.
Arch Pharm (Weinheim) ; 357(5): e2300615, 2024 May.
Article En | MEDLINE | ID: mdl-38315093

Novel arylidene-5(4H)-imidazolone derivatives 4a-r were designed and evaluated as multidrug-directed ligands, that is, inflammatory, proinflammatory mediators, and reactive oxygen species (ROS) inhibitors. All of the tested compounds showed cyclooxygenase (COX)-1 inhibitory effect more than celecoxib and less than indomethacin and also demonstrated an improved inhibitory activity against 15-lipoxygenase (15-LOX). Compounds 4f, 4l, and 4p exhibited COX-2 selectivity comparable to that of celecoxib, while 4k was the most selective COX-2 inhibitor. Interestingly, the screened results showed that compound 4k exhibited a superior inhibition effect against 15-LOX and was found to be the most selective COX-2 inhibitor over celecoxib, whereas compound 4f showed promising COX-2 and 15-LOX inhibitory activities besides its inhibitory effect against ROS production and its lowering effect of both tumor necrosis factor-α and interleukin-6 levels by ∼80%. Moreover, compound 4f attenuated the lipopolysaccharide-mediated increase in NF-κB activation in RAW 264.7 macrophages. The preferred binding affinity of these molecules was confirmed by docking studies. We conclude that arylidene-5(4H)-imidazolone scaffolds provide promising hits for developing new synthons with anti-inflammatory and antioxidant activities.


Arachidonate 15-Lipoxygenase , Cyclooxygenase 2 Inhibitors , Drug Design , Lipoxygenase Inhibitors , Molecular Docking Simulation , Reactive Oxygen Species , Mice , Animals , RAW 264.7 Cells , Structure-Activity Relationship , Arachidonate 15-Lipoxygenase/metabolism , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Molecular Structure , Reactive Oxygen Species/metabolism , Cyclooxygenase 2/metabolism , Dose-Response Relationship, Drug , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Macrophages/drug effects , Macrophages/metabolism , Humans
7.
Int J Mol Sci ; 25(4)2024 Feb 15.
Article En | MEDLINE | ID: mdl-38396985

Retinitis pigmentosa (RP) is a retinal degenerative disease associated with a diversity of genetic mutations. In a natural progression study (NPS) evaluating the molecular changes in Royal College of Surgeons (RCS) rats using lipidomic profiling, RNA sequencing, and gene expression analyses, changes associated with retinal degeneration from p21 to p60 were evaluated, where reductions in retinal ALOX15 expression corresponded with disease progression. This important enzyme catalyzes the formation of specialized pro-resolving mediators (SPMs) such as lipoxins (LXs), resolvins (RvDs), and docosapentaenoic acid resolvins (DPA RvDs), where reduced ALOX15 corresponded with reduced SPMs. Retinal DPA RvD2 levels were found to correlate with retinal structural and functional decline. Retinal RNA sequencing comparing p21 with p60 showed an upregulation of microglial inflammatory pathways accompanied by impaired damage-associated molecular pattern (DAMP) clearance pathways. This analysis suggests that ALXR/FPR2 activation can ameliorate disease progression, which was supported by treatment with an LXA4 analog, NAP1051, which was able to promote the upregulation of ALOX12 and ALOX15. This study showed that retinal inflammation from activated microglia and dysregulation of lipid metabolism were central to the pathogenesis of retinal degeneration in RP, where ALXR/FPR2 activation was able to preserve retinal structure and function.


Retinal Degeneration , Retinitis Pigmentosa , Surgeons , Humans , Rats , Animals , Retinal Degeneration/pathology , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Retina/metabolism , Retinitis Pigmentosa/metabolism , Disease Progression , Disease Models, Animal
8.
Clin Transl Gastroenterol ; 15(4): e00664, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38318864

INTRODUCTION: Eosinophilic esophagitis (EoE) variants have been recently characterized as conditions with symptoms of esophageal dysfunction resembling EoE, but absence of significant esophageal eosinophilia. Their disease course and severity have yet to be determined. METHODS: Patients from 6 EoE centers with symptoms of esophageal dysfunction, but peak eosinophil counts of <15/hpf in esophageal biopsies and absence of gastroesophageal reflux disease with at least one follow-up visit were included. Clinical, (immuno)histological, and molecular features were determined and compared with EoE and healthy controls. RESULTS: We included 54 patients with EoE variants (EoE-like esophagitis 53.7%; lymphocytic esophagitis 13.0%; and nonspecific esophagitis 33.3%). In 8 EoE-like esophagitis patients, EoE developed after a median of 14 months (interquartile range 3.6-37.6). Such progression increased over time (17.6% year 1, 32.0% year 3, and 62.2% year 6). Sequential RNA sequencing analyses revealed only 7 genes associated with this progression (with TSG6 and ALOX15 among the top 3 upregulated genes) with upregulation of a previously attenuated Th2 pathway. Immunostaining confirmed the involvement of eosinophil-associated proteins (TSG6 and ALOX15) and revealed a significantly increased number of GATA3-positive cells during progression, indicating a Th1/Th2 switch. Transition from one EoE variant (baseline) to another variant (during follow-up) was seen in 35.2% (median observation time of 17.3 months). DISCUSSION: Transition of EoE variants to EoE suggests the presence of a disease spectrum. Few genes seem to be associated with the progression to EoE with upregulation of a previously attenuated Th2 signal. These genes, including GATA3 as a Th1/Th2 switch regulator, may represent potential therapeutic targets in early disease pathogenesis.


Disease Progression , Eosinophilic Esophagitis , Esophagus , Humans , Eosinophilic Esophagitis/genetics , Eosinophilic Esophagitis/pathology , Eosinophilic Esophagitis/diagnosis , Female , Male , Adult , Esophagus/pathology , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Adolescent , Eosinophils/pathology , Eosinophils/immunology , Young Adult , GATA3 Transcription Factor/genetics , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Child , Biopsy , Th2 Cells/immunology , Middle Aged , Case-Control Studies , Leukocyte Count
9.
Angew Chem Int Ed Engl ; 63(9): e202314710, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38230815

The vast majority of membrane phospholipids (PLs) include two asymmetrically positioned fatty acyls: oxidizable polyunsaturated fatty acids (PUFA) attached predominantly at the sn2 position, and non-oxidizable saturated/monounsaturated acids (SFA/MUFA) localized at the sn1 position. The peroxidation of PUFA-PLs, particularly sn2-arachidonoyl(AA)- and sn2-adrenoyl(AdA)-containing phosphatidylethanolamines (PE), has been associated with the execution of ferroptosis, a program of regulated cell death. There is a minor subpopulation (≈1-2 mol %) of doubly PUFA-acylated phospholipids (di-PUFA-PLs) whose role in ferroptosis remains enigmatic. Here we report that 15-lipoxygenase (15LOX) exhibits unexpectedly high pro-ferroptotic peroxidation activity towards di-PUFA-PEs. We revealed that peroxidation of several molecular species of di-PUFA-PEs occurred early in ferroptosis. Ferrostatin-1, a typical ferroptosis inhibitor, effectively prevented peroxidation of di-PUFA-PEs. Furthermore, co-incubation of cells with di-AA-PE and 15LOX produced PUFA-PE peroxidation and induced ferroptotic death. The decreased contents of di-PUFA-PEs in ACSL4 KO A375 cells was associated with lower levels of di-PUFA-PE peroxidation and enhanced resistance to ferroptosis. Thus, di-PUFA-PE species are newly identified phospholipid peroxidation substrates and regulators of ferroptosis, representing a promising therapeutic target for many diseases related to ferroptotic death.


Arachidonate 15-Lipoxygenase , Phosphatidylethanolamines , Phosphatidylethanolamines/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Cell Death , Phospholipids/metabolism , Fatty Acids, Unsaturated/metabolism , Lipid Peroxidation
10.
Nat Commun ; 15(1): 221, 2024 Jan 04.
Article En | MEDLINE | ID: mdl-38177096

Lymphedema (LD) is characterized by the accumulation of interstitial fluid, lipids and inflammatory cell infiltrate in the limb. Here, we find that LD tissues from women who developed LD after breast cancer exhibit an inflamed gene expression profile. Lipidomic analysis reveals decrease in specialized pro-resolving mediators (SPM) generated by the 15-lipoxygenase (15-LO) in LD. In mice, the loss of SPM is associated with an increase in apoptotic regulatory T (Treg) cell number. In addition, the selective depletion of 15-LO in the lymphatic endothelium induces an aggravation of LD that can be rescued by Treg cell adoptive transfer or ALOX15-expressing lentivector injections. Mechanistically, exogenous injections of the pro-resolving cytokine IFN-ß restores both 15-LO expression and Treg cell number in a mouse model of LD. These results provide evidence that lymphatic 15-LO may represent a therapeutic target for LD by serving as a mediator of Treg cell populations to resolve inflammation.


Arachidonate 15-Lipoxygenase , Lymphedema , Humans , Mice , Female , Animals , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Inflammation/metabolism , Cytokines/metabolism , T-Lymphocytes, Regulatory/metabolism
11.
J Enzyme Inhib Med Chem ; 39(1): 2301756, 2024 Dec.
Article En | MEDLINE | ID: mdl-38213304

The oxidation of unsaturated lipids, facilitated by the enzyme Arachidonic acid 15-lipoxygenase (ALOX15), is an essential element in the development of ferroptosis. This study combined a dual-score exclusion strategy with high-throughput virtual screening, naive Bayesian and recursive partitioning machine learning models, the already established ALOX15 inhibitor i472, and a docking-based fragment substitution optimisation approach to identify potential ALOX15 inhibitors, ultimately leading to the discovery of three FDA-approved drugs that demonstrate optimal inhibitory potential against ALOX15. Through fragment substitution-based optimisation, seven new inhibitor structures have been developed. To evaluate their practicality, ADMET predictions and molecular dynamics simulations were performed. In conclusion, the compounds found in this study provide a novel approach to combat conditions related to ferroptosis-related injury by inhibiting ALOX15.


Lipoxygenase Inhibitors , Molecular Dynamics Simulation , Arachidonate 15-Lipoxygenase/metabolism , Bayes Theorem , Machine Learning , Molecular Docking Simulation , Lipoxygenase Inhibitors/pharmacology
12.
Mol Med ; 29(1): 163, 2023 Dec 04.
Article En | MEDLINE | ID: mdl-38049738

BACKGROUND: Acute kidney injury (AKI) due to ischemia-reperfusion (IR) is a serious and frequent complication in clinical settings, and mortality rates remain high. There are well established sex differences in renal IR, with males exhibiting greater injury following an ischemic insult compared to females. We recently reported that males have impaired renal recovery from ischemic injury vs. females. However, the mechanisms mediating sex differences in renal recovery from IR injury remain poorly understood. Elevated 12/15 lipoxygenase (LOX) activity has been reported to contribute to the progression of numerous kidney diseases. The goal of the current study was to test the hypothesis that enhanced activation of 12/15 LOX contributes to impaired recovery post-IR in males vs. females. METHODS: 13-week-old male and female spontaneously hypertensive rats (SHR) were randomized to sham or 30-minute warm bilateral IR surgery. Additional male and female SHR were randomized to treatment with vehicle or the specific 12/15 LOX inhibitor ML355 1 h prior to sham/IR surgery, and every other day following up to 7-days post-IR. Blood was collected from all rats 1-and 7-days post-IR. Kidneys were harvested 7-days post-IR and processed for biochemical, histological, and Western blot analysis. 12/15 LOX metabolites 12 and 15 HETE were measured in kidney samples by liquid chromatography-mass spectrometry (LC/MS). RESULTS: Male SHR exhibited delayed recovery of renal function post-IR vs. male sham and female IR rats. Delayed recovery in males was associated with activation of renal 12/15 LOX, increased renal 12-HETE, enhanced endoplasmic reticulum (ER) stress, lipid peroxidation, renal cell death and inflammation compared to females 7-days post-IR. Treatment of male SHR with ML355 lowered levels of 12-HETE and resulted in reduced renal lipid peroxidation, ER stress, tubular cell death and inflammation 7-days post-IR with enhanced recovery of renal function compared to vehicle-treated IR male rats. ML355 treatment did not alter IR-induced increases in plasma creatinine in females, however, tubular injury and cell death were attenuated in ML355 treated females compared to vehicle-treated rats 7 days post-IR. CONCLUSION: Our data demonstrate that sustained activation 12/15 LOX contributes to impaired renal recovery post ischemic injury in male and female SHR, although males are more susceptible on this mechanism than females.


Acute Kidney Injury , Reperfusion Injury , Animals , Female , Male , Rats , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism , Acute Kidney Injury/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Inflammation/metabolism , Ischemia/pathology , Kidney/metabolism , Rats, Inbred SHR , Reperfusion Injury/drug therapy
13.
Front Immunol ; 14: 1248547, 2023.
Article En | MEDLINE | ID: mdl-38035115

Activation of pancreatic stellate cells (PSCs) to cancer-associated fibroblasts (CAFs) is responsible for the extensive desmoplastic reaction observed in PDAC stroma: a key driver of pancreatic ductal adenocarcinoma (PDAC) chemoresistance leading to poor prognosis. Specialized pro-resolving mediators (SPMs) are prime modulators of inflammation and its resolution, traditionally thought to be produced by immune cells. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based lipid mediator profiling PSCs as well as primary human CAFs express enzymes and receptors to produce and respond to SPMs. Human PSC/CAF SPM secretion profile can be modulated by rendering these cells activated [transforming growth factor beta (TGF-ß)] or quiescent [all-trans retinoic acid (ATRA)]. ATRA-induced nuclear translocation of arachidonate-15-lipoxygenase (ALOX15) was linked to increased production of n-3 docosapentaenoic acid-derived Resolvin D5 (RvD5n-3 DPA), among other SPMs. Inhibition of RvD5n-3 DPA formation increases cancer cell invasion, whereas addback of this molecule reduced activated PSC-mediated cancer cell invasion. We also observed that circulating concentrations of RvD5n-3 DPA levels were decreased in peripheral blood of metastatic PDAC patients when compared with those measured in plasma of non-metastatic PDAC patients. Together, these findings indicate that RvD5n-3 DPA may regulate cancer-stroma cross-talk and invasion.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Arachidonate 15-Lipoxygenase/metabolism , Pancreatic Stellate Cells/metabolism , Pancreatic Stellate Cells/pathology , Chromatography, Liquid , Tandem Mass Spectrometry , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Tretinoin/metabolism , Neoplasm Invasiveness/pathology
14.
BMC Complement Med Ther ; 23(1): 414, 2023 Nov 17.
Article En | MEDLINE | ID: mdl-37978392

BACKGROUND: Bei Mu Gua Lou San (BMGLS) is an ancient formulation known for its moisturizing and expectorant properties, but the underlying mechanisms remain unknown. We investigated concentration-dependent effects of BMGLS on its rehydrating and mucus-modulating properties using an air-liquid-interface (ALI) cell culture model of the Calu-3 human bronchial epithelial cell line and primary normal human bronchial epithelial cells (NHBE), and specifically focused on quantity and composition of the two major mucosal proteins MUC5AC and MUC5B. METHODS: ALI cultures were treated with BMGLS at different concentrations over three weeks and evaluated by means of histology, immunostaining and electron microscopy. MUC5AC and MUC5B mRNA levels were assessed and quantified on protein level using an automated image-based approach. Additionally, expression levels of the major mucus-stimulating enzyme 15-lipoxygenase (ALOX15) were evaluated. RESULTS: BMGLS induced concentration-dependent morphological changes in NHBE but not Calu-3 ALI cultures that resulted in increased surface area via the formation of herein termed intra-epithelial structures (IES). While cellular rates of proliferation, apoptosis or degeneration remained unaffected, BMGLS caused swelling of mucosal granules, increased the area of secreted mucus, decreased muco-glycoprotein density, and dispensed MUC5AC. Additionally, BMGLS reduced expression levels of MUC5AC, MUC5B and the mucus-stimulating enzyme 15-lipoxygenase (ALOX15). CONCLUSIONS: Our studies suggest that BMGLS rehydrates airway mucus while stimulating mucus secretion by increasing surface areas and regulating goblet cell differentiation through modulating major mucus-stimulating pathways.


Arachidonate 15-Lipoxygenase , Respiratory Mucosa , Humans , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/pharmacology , Cells, Cultured , Respiratory Mucosa/metabolism , Mucus/metabolism , Cell Culture Techniques
15.
PeerJ ; 11: e16239, 2023.
Article En | MEDLINE | ID: mdl-37849828

Arachidonic acid 15-lipoxygenase (ALOX15), as one of the lipoxygenase family, is mainly responsible for catalyzing the oxidation of various fatty acids to produce a variety of lipid components, contributing to the pathophysiological processes of various immune and inflammatory diseases. Studies have shown that ALOX15 and its related products are widely distributed in human tissues and related to multiple diseases such as liver, cardiovascular, cerebrovascular diseases, diabetes mellitus and other diseases. Diabetes mellitus (DM), the disease studied in this article, is a metabolic disease characterized by a chronic increase in blood glucose levels, which is significantly related to inflammation, oxidative stress, ferroptosis and other mechanisms, and it has a high incidence in the population, accompanied by a variety of complications. Figuring out how ALOX15 is involved in DM is critical to understanding its role in diseases. Therefore, ALOX15 inhibitors or combination therapy containing inhibitors may deliver a novel research direction for the treatment of DM and its complications. This article aims to review the biological effect and the possible function of ALOX15 in the pathogenesis of DM.


Arachidonate 15-Lipoxygenase , Diabetes Mellitus , Humans , Arachidonate 15-Lipoxygenase/metabolism , Diabetes Mellitus/drug therapy , Fatty Acids , Oxidative Stress , Inflammation
16.
Inflamm Res ; 72(12): 2145-2153, 2023 Dec.
Article En | MEDLINE | ID: mdl-37874359

OBJECTIVE AND DESIGN: 15-Lipoxygenase-1 (15-LOX-1) catalyzes the biosynthesis of many anti-inflammatory and immunomodulatory lipid mediators and was reported to have protective properties in several inflammatory conditions, including osteoarthritis (OA). This study was designed to evaluate the expression of 15-LOX-1 in cartilage from normal donors and patients with OA, and to determine whether it is regulated by DNA methylation. METHODS: Cartilage samples were obtained at autopsy from normal knee joints and from OA-affected joints at the time of total knee joint replacement surgery. The expression of 15-LOX-1 was evaluated using real-time polymerase chain reaction (PCR). The role of DNA methylation in 15-LOX-1 expression was assessed using the DNA methyltransferase inhibitor 5-Aza-2'-desoxycytidine (5-Aza-dC). The effect of CpG methylation on 15-LOX-1 promoter activity was evaluated using a CpG-free luciferase vector. The DNA methylation status of the 15-LOX-1 promoter was determined by pyrosequencing. RESULTS: Expression of 15-LOX-1 was upregulated in OA compared to normal cartilage. Treatment with 5-Aza-dC increased 15-LOX-1 mRNA levels in chondrocytes, and in vitro methylation decreased 15-LOX-1 promoter activity. There was no difference in the methylation status of the 15-LOX-1 gene promoter between normal and OA cartilage. CONCLUSION: The expression level of 15-LOX-1 was elevated in OA cartilage, which may be part of a repair process. The upregulation of 15-LOX-1 in OA cartilage was not associated with the methylation status of its promoter, suggesting that other mechanisms are involved in its upregulation.


Arachidonate 15-Lipoxygenase , Osteoarthritis , Humans , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Chondrocytes/metabolism , DNA Methylation , Epigenesis, Genetic , Osteoarthritis/genetics , Osteoarthritis/metabolism , Scavenger Receptors, Class E/genetics , Scavenger Receptors, Class E/metabolism
17.
Free Radic Biol Med ; 208: 458-467, 2023 11 01.
Article En | MEDLINE | ID: mdl-37678654

Ferroptosis is a regulated form of cell death, the mechanism of which is still to be understood. 15-lipoxygenase (15LOX) complex with phosphatidylethanolamine (PE)-binding protein 1 (PEBP1) catalyzes the generation of pro-ferroptotic cell death signals, hydroperoxy-polyunsaturated PE. We focused on gaining new insights into the molecular basis of these pro-ferroptotic interactions using computational modeling and liquid chromatography-mass spectrometry experiments. Simulations of 15LOX-1/PEBP1 complex dynamics and interactions with lipids revealed that association with the membrane triggers a conformational change in the complex. This conformational change facilitates the access of stearoyl/arachidonoyl-PE (SAPE) substrates to the catalytic site. Furthermore, the binding of SAPE promotes tight interactions within the complex and induces further conformational changes that facilitate the oxidation reaction. The reaction yields two hydroperoxides as products, 15-HpETE-PE and 12-HpETE-PE, at a ratio of 5:1. A significant effect of PEBP1 is observed only on the predominant product. Moreover, combined experiments and simulations consistently demonstrate the significance of PEBP1 P112E mutation in generating ferroptotic cell death signals.


Arachidonate 15-Lipoxygenase , Ferroptosis , Phosphatidylethanolamine Binding Protein , Cell Death , Ferroptosis/physiology , Oxidation-Reduction , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/physiology , Phosphatidylethanolamine Binding Protein/metabolism , Phosphatidylethanolamine Binding Protein/physiology , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/metabolism , Humans , Animals , Swine
18.
Int J Mol Sci ; 24(13)2023 Jun 29.
Article En | MEDLINE | ID: mdl-37446059

Inflammation of the fetal membranes is an indispensable event of parturition, with increasing prostaglandin E2 (PGE2) synthesis as one of the ultimate products that prime labor onset. In addition to PGE2, the fetal membranes also boast a large capacity for cortisol regeneration. It is intriguing how increased PGE2 synthesis is achieved in the presence of increasing amounts of classical anti-inflammatory glucocorticoids in the fetal membranes at parturition. 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) synthesized by lipoxygenase 15/15B (ALOX15/15B) has been shown to enhance inflammation-induced PGE2 synthesis in amnion fibroblasts. Here, we examined whether glucocorticoids could induce ALOX15/15B expression and 15(S)-HETE production to promote PGE2 synthesis in amnion fibroblasts at parturition. We found that cortisol and 15(S)-HETE abundance increased parallelly in the amnion at parturition. Cortisol induced ALOX15/15B expression and 15(S)-HETE production paradoxically in amnion fibroblasts. Mechanism study revealed that this paradoxical induction was mediated by p300-mediated histone acetylation and interaction of glucocorticoid receptor with transcription factors CREB and STAT3. Conclusively, cortisol regenerated in the fetal membranes can paradoxically induce ALOX15/15B expression and 15(S)-HETE production in human amnion fibroblasts, which may further assist in the induction of PGE2 synthesis in the inflammatory responses of the fetal membranes for parturition.


Amnion , Hydrocortisone , Pregnancy , Female , Humans , Hydrocortisone/metabolism , Amnion/metabolism , Glucocorticoids/metabolism , Dinoprostone/metabolism , Parturition , Extraembryonic Membranes/metabolism , Fibroblasts/metabolism , Inflammation/metabolism , Arachidonate 15-Lipoxygenase/metabolism
19.
Inflamm Res ; 72(8): 1649-1664, 2023 Aug.
Article En | MEDLINE | ID: mdl-37498393

BACKGROUND, OBJECTIVES AND DESIGN: Arachidonic acid 15-lipoxygenase (ALOX15) has been implicated in the pathogenesis of inflammatory diseases but since pro- and anti-inflammatory roles have been suggested, the precise function of this enzyme is still a matter of discussion. To contribute to this discussion, we created transgenic mice, which express human ALOX15 under the control of the activating protein 2 promoter (aP2-ALOX15 mice) and compared the sensitivity of these gain-of-function animals in two independent mouse inflammation models with Alox15-deficient mice (loss-of-function animals) and wildtype control animals. MATERIALS AND METHODS: Transgenic aP2-ALOX15 mice were tested in comparison with Alox15 knockout mice (Alox15-/-) and corresponding wildtype control animals (C57BL/6J) in the complete Freund's adjuvant induced hind-paw edema model and in the dextran sulfate sodium induced colitis (DSS-colitis) model. In the paw edema model, the degree of paw swelling and the sensitivity of the inflamed hind-paw for mechanic (von Frey test) and thermal (Hargreaves test) stimulation were quantified as clinical readout parameters. In the dextran sodium sulfate induced colitis model the loss of body weight, the colon lengths and the disease activity index were determined. RESULTS: In the hind-paw edema model, systemic inactivation of the endogenous Alox15 gene intensified the inflammatory symptoms, whereas overexpression of human ALOX15 reduced the degree of hind-paw inflammation. These data suggest anti-inflammatory roles for endogenous and transgenic ALOX15 in this particular inflammation model. As mechanistic reason for the protective effect downregulation of the pro-inflammatory ALOX5 pathways was suggested. However, in the dextran sodium sulfate colitis model, in which systemic inactivation of the Alox15 gene protected female mice from DSS-induced colitis, transgenic overexpression of human ALOX15 did hardly impact the intensity of the inflammatory symptoms. CONCLUSION: The biological role of ALOX15 in the pathogenesis of inflammation is variable and depends on the kind of the animal inflammation model.


Arachidonate 15-Lipoxygenase , Colitis , Humans , Mice , Female , Animals , Mice, Transgenic , Freund's Adjuvant , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/therapeutic use , Dextrans/adverse effects , Dextrans/metabolism , Mice, Inbred C57BL , Inflammation/chemically induced , Inflammation/genetics , Inflammation/drug therapy , Colitis/metabolism , Colon/metabolism , Anti-Inflammatory Agents/pharmacology , Mice, Knockout , Edema/chemically induced , Edema/genetics , Edema/metabolism , Dextran Sulfate/adverse effects , Dextran Sulfate/metabolism , Disease Models, Animal
20.
Mol Neurobiol ; 60(10): 6121-6132, 2023 Oct.
Article En | MEDLINE | ID: mdl-37421564

Neuropathic pain affects globally about 7-10% of the general population. Electroacupuncture (EA) effectively relieves neuropathic pain symptoms without causing any side effects; however, the underlying molecular mechanisms remain unclear. We established a chronic constriction injury (CCI)-induced rat model of neuropathic pain. RNA sequencing was used to screen for differentially expressed genes in the dorsal root ganglion after CCI and EA treatment. We identified gene markers of ferroptosis spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15) to be dysregulated in the CCI-induced neuropathic pain model. Furthermore, EA relieved CCI-induced pain as well as ferroptosis-related symptoms in the dorsal root ganglion, including lipid peroxidation and iron overload. Finally, SAT1 knockdown also alleviated mechanical and thermal pain hypersensitivity and reversed ferroptosis damage. In conclusion, we showed that EA inhibited ferroptosis by regulating the SAT1/ALOX15 pathway to treat neuropathic pain. Our findings provide insight into the mechanisms of EA and suggest a novel therapeutic target for neuropathic pain.


Electroacupuncture , Ferroptosis , Neuralgia , Rats , Humans , Animals , Rats, Sprague-Dawley , Ganglia, Spinal/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Neuralgia/therapy , Neuralgia/metabolism
...