Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 219
1.
Sci Rep ; 13(1): 8656, 2023 05 27.
Article En | MEDLINE | ID: mdl-37244921

Cyclooxygenase (COX) and Lipoxygenase (LOX) are essential enzymes for arachidonic acid (AA) to eicosanoids conversion. These AA-derived eicosanoids are essential for initiating immunological responses, causing inflammation, and resolving inflammation. Dual COX/5-LOX inhibitors are believed to be promising novel anti-inflammatory agents. They inhibit the synthesis of prostaglandins (PGs) and leukotrienes (LTs), but have no effect on lipoxin formation. This mechanism of combined inhibition circumvents certain limitations for selective COX-2 inhibitors and spares the gastrointestinal mucosa. Natural products, i.e. spice chemicals and herbs, offer an excellent opportunity for drug discovery. They have proven anti-inflammatory properties. However, the potential of a molecule to be a lead/ drug candidate can be much more enhanced if it has the property of inhibition in a dual mechanism. Synergistic activity is always a better option than the molecule's normal biological activity. Herein, we have explored the dual COX/5-LOX inhibition property of the three major potent phytoconsituents (curcumin, capsaicin, and gingerol) from Indian spices using in silico tools and biophysical techniques in a quest to identify their probable inhibitory role as anti-inflammatory agents. Results revealed the dual COX/5-LOX inhibitory potential of curcumin. Gingerol and capsaicin also revealed favorable results as dual COX/5-LOX inhibitors. Our results are substantiated by target similarity studies, molecular docking, molecular dynamics, energy calculations, DFT, and QSAR studies. In experimental inhibitory (in vitro) studies, curcumin exhibited the best dual inhibitory activities against COX-1/2 and 5-LOX enzymes. Capsaicin and gingerol also showed inhibitory potential against both COX and LOX enzymes. In view of the anti-inflammatory potential these spice chemicals, this research could pave the way for more scientific exploration in this area for drug discovery.


Curcumin , Humans , Curcumin/pharmacology , Molecular Docking Simulation , Lipoxygenase , Capsaicin/pharmacology , Spices , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase Inhibitors/chemistry , Cyclooxygenase 2 , Cyclooxygenase 2 Inhibitors , Anti-Inflammatory Agents/pharmacology , Inflammation , Arachidonate 5-Lipoxygenase/chemistry
2.
J Inorg Biochem ; 245: 112233, 2023 08.
Article En | MEDLINE | ID: mdl-37141763

In the search for new 5-LOX inhibitors, two ferrocenyl Schiff base complexes functionalized with catechol ((ƞ5-(E)-C5H4-NCH-3,4-benzodiol)Fe(ƞ5-C5H5) (3a)) and vanillin ((ƞ5-(E)-C5H4-NCH-3-methoxy-4-phenol)Fe(ƞ5-C5H5) (3b)) were obtained. Complexes 3a and 3b were biologically evaluated as 5-LOX inhibitors showed potent inhibition compared to their organic analogs (2a and 2b) and known commercial inhibitors, with IC50 = 0.17 ± 0.05 µM for (3a) and 0.73 ± 0.06 µM for (3b) demonstrated a highly inhibitory and potent effect against 5-LOX due to the incorporation of the ferrocenyl fragment. Molecular dynamic studies showed a preferential orientation of the ferrocenyl fragment toward the non-heme iron of 5-LOX, which, together with electrochemical and in-vitro studies, allowed us to propose a competitive redox deactivation mechanism mediated by water, where Fe(III)-enzyme can be reduced by the ferrocenyl fragment. An Epa/IC50 relationship was observed, and the stability of the Schiff bases was evaluated by SWV in the biological medium, observing that the hydrolysis does not affect the high potency of the complexes, making them interesting alternatives for pharmacological applications.


Arachidonate 5-Lipoxygenase , Schiff Bases , Schiff Bases/pharmacology , Schiff Bases/chemistry , Arachidonate 5-Lipoxygenase/chemistry , Arachidonate 5-Lipoxygenase/metabolism , Ferric Compounds , Molecular Dynamics Simulation , Oxidation-Reduction , Lipoxygenase Inhibitors/pharmacology , Structure-Activity Relationship
3.
J Biol Chem ; 298(9): 102282, 2022 09.
Article En | MEDLINE | ID: mdl-35863431

The synthesis of proinflammatory leukotrienes implicated in asthma, allergic rhinitis, and atherosclerosis is initiated by the enzyme 5-lipoxygenase (5-LOX). The crystal structure of human Stable-5-LOX revealed a conformation where the catalytic iron was inaccessible to bulk solvent as two aromatic residues on a conserved helix-α2 (Hα2) plugged the substrate access portal. Whether 5-LOX can also adopt a more open conformation has not been resolved. Here, we present a new conformation of 5-LOX where Hα2 adopts an elongated conformation equivalent to that described in other animal lipoxygenase structures. Our observation of the sigmoidal kinetic behavior of 5-LOX, which is indicative of positive cooperativity, is consistent with a substrate-induced conformational change that shifts the ensemble of enzyme populations to favor the catalytically competent state. Strategic point mutations along Hα2 designed to unlock the closed conformation and elongate Hα2 resulted in improved kinetic parameters, altered limited proteolysis data, and a drastic reduction in the length of the lag phase yielding the most active Stable-5-LOX to date. Structural predictions by AlphaFold2 of these variants statistically favor an elongated Hα2 and reinforce a model in which improved kinetic parameters correlate with a more readily adopted open conformation. Taken together, these data provide valuable insights into the synthesis of leukotrienes.


Arachidonate 5-Lipoxygenase , Leukotrienes , Animals , Arachidonate 5-Lipoxygenase/chemistry , Arachidonate 5-Lipoxygenase/genetics , Humans , Iron/chemistry , Kinetics , Leukotrienes/biosynthesis , Models, Molecular , Point Mutation , Protein Conformation, alpha-Helical , Solvents
4.
Chem Biodivers ; 19(1): e202100723, 2022 Jan.
Article En | MEDLINE | ID: mdl-34762766

Organic extract of the brown seaweed Turbinaria conoides (Sargassaceae) was chromatographically fractionated to yield an undescribed furanyl-substituted isochromanyl metabolite, named as turbinochromanone, which was characterized as methyl 4-[(3S)-8-{[(3R)-4-ethyl-2,3-dihydrofuran-3-yl]methyl}-1-oxo-3,4-dihydro-1H-2-benzopyran-3-yl]butanoate. The isochromanyl derivative possessed comparable attenuation potential against 5-lipoxygenase (IC50 3.70 µM) with standard 5-lipoxygenase inhibitor drug zileuton (IC50 2.41 µM). Noticeably, the index of anti-inflammatory selectivity of turbinochromanone (∼1.7) was considerably greater than that exhibited by the standard agent diclofenac (1.06). Antioxidant properties of turbinochromanone against oxidants (IC50 ∼24 µM) further supported its potential anti-inflammatory property. Greater electronic properties (topological polar surface area of 61.8) along with comparatively lesser docking parameters of the studied compound with aminoacyl residues of targeted enzymes (cyclooxygenase-2 and 5-lipoxygenase) (binding energy of -11.05 and -9.40 kcal mol-1 , respectively) recognized its prospective anti-inflammatory potential. In an aim to develop seaweed-based natural anti-inflammatory leads, the present study isolated turbinochromanone as promising 5-lipoxygenase and cyclooxygenase-2 inhibitor, which could be used for pharmaceutical and biotechnological applications.


Anti-Inflammatory Agents/chemistry , Chromans/chemistry , Seaweed/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/metabolism , Antioxidants/chemistry , Arachidonate 5-Lipoxygenase/chemistry , Arachidonate 5-Lipoxygenase/metabolism , Binding Sites , Chromans/isolation & purification , Chromans/metabolism , Cyclooxygenase 2/chemistry , Cyclooxygenase 2/metabolism , Furans/chemistry , Molecular Conformation , Molecular Docking Simulation , Plant Extracts/chemistry , Protein Structure, Tertiary , Seaweed/metabolism , Thermodynamics
5.
Exp Cell Res ; 409(2): 112934, 2021 12 15.
Article En | MEDLINE | ID: mdl-34801561

Hematopoietic stem cells (HSCs) are sensitive to ionizing radiation (IR) damage, and its injury is the primary cause of bone marrow (BM) hematopoietic failure and even death after exposure to a certain dose of IR. However, the underlying mechanisms remain incompletely understood. Here we show that mitochondrial oxidative damage, which is characterized by mitochondrial reactive oxygen species overproduction, mitochondrial membrane potential reduction and mitochondrial permeability transition pore opening, is rapidly induced in both human and mouse HSCs and directly accelerates HSC apoptosis after IR exposure. Mechanistically, 5-lipoxygenase (5-LOX) is induced by IR exposure and contributes to IR-induced mitochondrial oxidative damage through inducing lipid peroxidation. Intriguingly, a natural antioxidant, caffeic acid (CA), can attenuate IR-induced HSC apoptosis through suppressing 5-LOX-mediated mitochondrial oxidative damage, thus protecting against BM hematopoietic failure after IR exposure. These findings uncover a critical role for mitochondria in IR-induced HSC injury and highlight the therapeutic potential of CA in BM hematopoietic failure induced by IR.


Antioxidants/pharmacology , Arachidonate 5-Lipoxygenase/chemistry , Caffeic Acids/pharmacology , Cobalt Radioisotopes/toxicity , Hematopoietic Stem Cells/drug effects , Mitochondria/drug effects , Oxidative Stress , Animals , Apoptosis , Cell Proliferation , Cells, Cultured , DNA Damage , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Hematopoietic Stem Cells/radiation effects , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/radiation effects
6.
Cancer Chemother Pharmacol ; 88(6): 953-960, 2021 12.
Article En | MEDLINE | ID: mdl-34477945

BACKGROUND: Inhibitors of arachidonate lipoxygenase 5 (ALOX5) exhibit anticancer activity. Zileuton is an FDA-approved drug for treating asthma and an ALOX5 inhibitor. This study evaluated the efficacy of zileuton in cervical cancer, determined the molecular mechanism of action, and assessed ALOX5 expression in cervical cancer patients. METHODS: The effects of zileuton were evaluated using cervical cancer cell lines and xenograft mouse models. Loss-of-function analysis of ALOX5 was performed using siRNA. The levels of ALOX5 and 5-HETE were determined using immunohistochemistry and ELISA. RESULTS: Zileuton resulted in cell proliferation inhibition and apoptosis induction in a dose-dependent manner, regardless of cellular origin or HPV infection. In two independent cervical cancer xenograft mouse models, zileuton at nontoxic doses significantly prevented tumor formation and decreased tumor growth. Zileuton acts on cervical cancer cells by inhibiting the ALOX5-5-HETE axis. Of note, ALOX5-5-HETE was significantly upregulated in cervical cancer compared with normal tissue. Inhibition of ALOX5 via the siRNA approach mimics the inhibitory effects of zileuton and confirms the roles of ALOX5 in cervical cancer. CONCLUSIONS: Our work demonstrates that the ALOX5-5-HETE axis is activated in cervical cancer, with important roles in growth and survival, and this can be therapeutically targeted by zileuton. Our findings also provide preclinical evidence to assess the efficacy of zileuton in cervical cancer in clinical settings.


Arachidonate 5-Lipoxygenase/chemistry , Disease Models, Animal , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Hydroxyurea/analogs & derivatives , Lipoxygenase Inhibitors/pharmacology , Uterine Cervical Neoplasms/drug therapy , Animals , Apoptosis , Cell Proliferation , Female , Humans , Hydroxyurea/pharmacology , Mice , Mice, SCID , Tumor Cells, Cultured , Uterine Cervical Neoplasms/enzymology , Uterine Cervical Neoplasms/pathology , Xenograft Model Antitumor Assays
7.
Bioorg Chem ; 115: 105171, 2021 10.
Article En | MEDLINE | ID: mdl-34303896

Colorectal cancer (CRC) is the second cause of cancer death worldwide. Inhibitors of COX-2, 5-LOX and PIM-1 kinase were very effective in the treatment and prevention of CRC in mouse models in vivo. Furthermore, thymol was confirmed to inhibit CRC cell proliferation in cancer cell lines and inhibitory activity against COX-2 and 5-LOX. On the other hand, 4-thiazolidinone pharmacophore was incorporated in the structures of various reported COX-2, 5-LOX and PIM kinase inhibitors. Consequently, the aim of the present investigation was to combat CRC by synthesis and biological evaluation of new thymol - 4-thiazolidinone hybrids as multitarget anticancer agents that could inhibit the key COX-2, 5-LOX and PIM-1 kinase enzymes simultaneously. Compounds 5a-d and 5g displayed inhibitory activity against COX-2 nearly equal to Celecoxib with high selectivity index (SI). Moreover, compounds 5b-e showed 5-LOX inhibitory activity nearly equal to the reference Quercetin while compounds 5a, 5f and 5g elicited inhibitory activity slightly lower than Quercetin. Furthermore, in vivo formalin-induced paw edema test revealed that, compounds 5a, 5c, 5f and 5g showed higher % inhibition than Celecoxib and compounds 5a, 5f and 5g showed higher % inhibition than Diclofenac sodium. In addition, compounds 5a-c, 5e-g showed in vivo superior gastrointestinal safety profile as Celecoxib in fasted rats. Besides, compounds 5d, 5e and 5g exhibited the highest activity against human CRC cell lines (Caco-2 and HCT-116) at doses less than their EC100 on normal human cells. Furthermore, compounds 5e and 5g induced apoptosis-dependent death by above 50% in the treated CRC cell lines. Moreover, compounds 5e and 5g induced caspase activation by >50% in human CRC. Also, compounds 5d, 5e and 5g showed in vitro inhibitory activity against both PIM-1\2 kinases comparable to the reference Staurosporine. In silico docking studies were concordant with the biological results. In conclusion, compound 5g, of simple chemical structure, achieved the target goal of inhibiting three targets leading to inhibition of human CRC cell proliferation. It inhibited the target key enzymes COX-2, 5-LOX and PIM-1\2 kinase in vitro. Besides, it revealed in vitro inhibition of cell proliferation in cancer cell lines via activation of caspase 3\7 dependent-apoptosis in human CRC cell lines. In addition, it elicited in vivo anti-inflammatory activity in formalin-induced paw edema test and in vivo oral safety in gastric ulcerogenic activity test.


Antineoplastic Agents/chemistry , Arachidonate 5-Lipoxygenase/chemistry , Cyclooxygenase 2/chemistry , Enzyme Inhibitors/chemistry , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Small Molecule Libraries/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/therapeutic use , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Arachidonate 5-Lipoxygenase/metabolism , Binding Sites , Catalytic Domain , Cell Line, Tumor , Colorectal Neoplasms/pathology , Cyclooxygenase 2/metabolism , Drug Design , Edema/chemically induced , Edema/drug therapy , Edema/pathology , Edema/veterinary , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Proto-Oncogene Proteins c-pim-1/metabolism , Rats , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Structure-Activity Relationship , Thiazolidines/chemistry , Thiazolidines/metabolism , Thiazolidines/pharmacology , Thiazolidines/therapeutic use
8.
Steroids ; 172: 108858, 2021 08.
Article En | MEDLINE | ID: mdl-33971206

Two pregnane-type of steroid derivatives characterized as 5α-pregna-3ß-methyl pent-3-enoate-12ß, 16ß diol-20-one (clathroid A) and 12ß,15ß- dihydroxypregna-4,6-diene-3,20-dione (clathroid B) were purified from the crude extract of the marine sponge, Clathria (Thalysias) vulpina (family Microcionidae) by extensive chromatographic fractionation. Spectroscopic methods including nuclear magnetic resonance spectroscopy were employed to characterize the purified clathroids A-B. The studied compounds exhibited duel inhibitory potentials against pro-inflammatory cyclooxygenase-2 and 5-lipoxygenase (median inhibitory concentration, IC50 < 1 mM), whereas the attenuation property of clathroid A against 5-lipoxygenase (IC50 0.85 mM) was greater than the standard anti-inflammatory ibuprofen (IC50 4.51 mM, p < 0.05). Greater selectivity index (anti cyclooxygense-2/anti cyclooxygense-1) of the studied clathroids (>1) than ibuprofen (0.43) attributed the greater selective attenuation properties towards pro-inflammatory inducible cyclooxygenase-2 than its constitutive isoenzyme cyclooxygenase-1. The antioxidant potentials of clathroid A against 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (IC50 0.80 mM) and diphenyl-1-picrylhydrazyl (IC50 0.83 mM) free radicals were greater than those of clathroid B (IC50 0.86-0.96 mM). Structure-activity analyses showed that the bioactivities of the clathroids were directly related to their electronic parameters coupled with permissible hydrophobic properties. Clathroid A exhibited grater electronic parameter (topological polar surface area tPSA, 83.83) than clathroid B (74.60) and ibuprofen (37.30), which were found to be in agreement with the prospective anti-inflammatory profile of clathroid A. Clathroid A exhibited higher number of hydrogen bonding interactions with 5-lipoxygenase active site and lesser docking values, such as docking score (DS -12.90 kcal mol-1) and inhibition constant (Ki 1.11 nM) than those recorded by clathroid B (DS -10.49 kcal mol-1; Ki 13.88 nM). The molecular binding properties of clathroid A with 5-lipoxidase inferred that its docking score/ binding energy were positively correlated with their in vitro bioactivie potentilas. A putative biosynthetic pathway of the studied clathroids was proposed from a pregnenolone precursor. The present study recognized the potential of clathroid A isolated from C. (Thalysias) vulpina as prospective anti-inflammatory lead that could find its use in medicinal applications.


Anti-Inflammatory Agents/pharmacology , Arachidonate 5-Lipoxygenase/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/chemistry , Lipoxygenase Inhibitors/pharmacology , Porifera/chemistry , Tissue Extracts/pharmacology , Animals , Humans
9.
Steroids ; 172: 108860, 2021 08.
Article En | MEDLINE | ID: mdl-33971207

Four biogenic ß-sitosterol analogues were identified from methanolic extract of the leaves of loop-root mangrove Rhizophora mucronata. These were characterized as 4, 14, 23-trimethyl-3ß-sitosterol (1), 7-ethyl-3ß-sitosterol (2), sitosteryl-3ß-(33E)-pent-33-enoate (3) and 12α-hydroxy-3ß-sitosterol (4) based on comprehensive spectroscopic techniques. Anti-inflammatory activities of ß-sitosterol 4 against pro-inflammatory enzymes 5-lipoxygenase and cyclooxygenase-2 were found to be significantly higher (IC50 1.85 and 1.92 mM, respectively) compared to those demonstrated by compounds of 1-3 (p < 0.05). These ß-sitosterol analogues disclosed superior selectivity indices (1.43-2.07) with regard to inducible cyclooxygenase-2 than its constitutive isoform cyclooxygenase-1, when compared to the standard, ibuprofen (0.44). Antioxidant properties of 12α-hydroxy-ß-sitosterol (4) were found to be significantly greater (IC50 1.43-1.67 mM) than those of other sitosterol analogues. Structure-activity correlation analyses put forward that the bioactive potencies of the titled ß-sitosterols were positively correlated to their electronic parameters. Molecular docking simulations were carried out in the active sites of 5-lipoxygenase/cyclooxygenase-2, and the docking scores and binding energies of the studied ß-sitosterol analogues were positively correlated with their attenuation properties against 5-lipoxygenase and cyclooxygenase-2.


Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Lipoxygenase Inhibitors/pharmacology , Plant Extracts/pharmacology , Rhizophoraceae/chemistry , Sitosterols/pharmacology , Arachidonate 5-Lipoxygenase/chemistry , Cyclooxygenase 2/chemistry , Plant Roots/chemistry
10.
Molecules ; 25(20)2020 Oct 14.
Article En | MEDLINE | ID: mdl-33066378

A novel series of zileuton-hydroxycinnamic acid hybrids were synthesized and screened as 5-lipoxygenase (5-LO) inhibitors in stimulated HEK293 cells and polymorphonuclear leukocytes (PMNL). Zileuton's (1) benzo[b]thiophene and hydroxyurea subunits combined with hydroxycinnamic acid esters' ester linkage and phenolic acid moieties were investigated. Compound 28, bearing zileuton's (1) benzo[b]thiophene and sinapic acid phenethyl ester's (2) α,ß-unsaturated phenolic acid moiety 28, was shown to be equipotent to zileuton (1), the only clinically approved 5-LO inhibitor, in stimulated HEK293 cells. Compound 28 was three times as active as zileuton (1) for the inhibition of 5-LO in PMNL. Compound 37, bearing the same sinapic acid (3,5-dimethoxy-4-hydroxy substitution) moiety as 28, combined with zileuton's (1) hydroxyurea subunit was inactive. This result shows that the zileuton's (1) benzo[b]thiophene moiety is essential for the inhibition of 5-LO product biosynthesis with our hydrids. Unlike zileuton (1), Compound 28 formed two π-π interactions with Phe177 and Phe421 as predicted when docked into 5-LO. Compound 28 was the only docked ligand that showed a π-π interaction with Phe177 which may play a part in product specificity as reported.


Coumaric Acids/chemistry , Hydroxyurea/analogs & derivatives , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/pharmacology , Arachidonate 5-Lipoxygenase/chemistry , Arachidonate 5-Lipoxygenase/metabolism , Computer Simulation , Drug Evaluation, Preclinical , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , HEK293 Cells , Humans , Hydroxyurea/chemistry , Lipoxygenase Inhibitors/chemical synthesis , Molecular Docking Simulation , Neutrophils/drug effects , Neutrophils/metabolism , Structure-Activity Relationship
11.
Sci Rep ; 10(1): 15965, 2020 09 29.
Article En | MEDLINE | ID: mdl-32994508

Natural metabolites with their specific bioactivities are being considered as a potential source of materials for pharmacological studies. In this study, we successfully isolated and identified five known clerodane diterpenes, namely 16-oxo-cleroda-3,13(14)E-dien-15-oic acid (1), 16-hydroxy-cleroda-3,13-dien-15-oic acid (2), 16-hydroxy-cleroda-4(18),13-dien-16,15-olide (3), 3α,16α-dihydroxy-cleroda-4(18),13(14)Z-dien-15,16-olide (4), and 16α-hydroxy-cleroda-3,13(14)Z-dien-15,16-olide (5) from the methanolic extract of seeds of Polyalthia longifolia. Initially, all the isolated metabolites were investigated for COX-1, COX-2, and 5-LOX inhibitory activities using the standard inhibitory kits. Of which, compounds 3, 4, and 5 exhibited to be potent COX-1, COX-2, and 5-LOX inhibitors with the IC50 values similar or lower to those of the reference drugs. To understand the underlying mechanism, these compounds were subjected to molecular docking on COX-1, COX-2, and 5-LOX proteins. Interestingly, the in silico study results were in high accordance with in vitro studies where compounds 3, 4, and 5 hits assumed interactions and binding pattern comparable to that of reference drugs (indomethacin and diclofenac), as a co-crystallized ligand explaining their remarkable dual (COX/LOX) inhibitor actions. Taken together, our findings demonstrated that compounds 3, 4, and 5 functioned as dual inhibitors of COX/5-LOX and can contribute to the development of novel, more effective anti-inflammatory drugs with minimal side-effects.


Arachidonate 5-Lipoxygenase/metabolism , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Diterpenes, Clerodane/pharmacology , Polyalthia/chemistry , Arachidonate 5-Lipoxygenase/chemistry , Computer Simulation , Cyclooxygenase 1/chemistry , Cyclooxygenase 2/chemistry , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/pharmacology , Diterpenes, Clerodane/chemistry , Humans , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/pharmacology , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology , Seeds/chemistry
12.
Neurochem Res ; 45(10): 2245-2257, 2020 Oct.
Article En | MEDLINE | ID: mdl-32671628

Inflammation secondary to tissue injuries serves as a double-edged sword that determines the prognosis of tissue repair. As one of the most important enzymes controlling the inflammation process by producing leukotrienes, 5-lipoxygenase (5-LOX, also called 5-LO) has been one of the therapeutic targets in regulating inflammation for a long time. Although a large number of 5-LOX inhibitors have been explored, only a few of them can be applied clinically. Surprisingly, phosphorylation of 5-LOX reveals great significance in regulating the subcellular localization of 5-LOX, which has proven to be an important mechanism underlying the enzymatic activities of 5-LOX. There are at least three phosphorylation sites in 5-LOX jointly to determine the final inflammatory outcomes, and adjustment of phosphorylation of 5-LOX at different phosphorylation sites brings hope to provide an unrecognized means to regulate inflammation. The present review intends to shed more lights into the set-point-like mechanisms of phosphorylation of 5-LOX and its possible clinical application by summarizing the biological properties of 5-LOX, the relationship of 5-LOX with neurodegenerative diseases and brain injuries, the phosphorylation of 5-LOX at different sites, the regulatory effects and mechanisms of phosphorylated 5-LOX upon inflammation, as well as the potential anti-inflammatory application through balancing the phosphorylation-depended set-point.


Arachidonate 5-Lipoxygenase/metabolism , Brain Injuries/metabolism , Inflammation/metabolism , Neurodegenerative Diseases/metabolism , Animals , Arachidonate 5-Lipoxygenase/chemistry , Brain/enzymology , Brain/metabolism , Brain Injuries/enzymology , Humans , Inflammation/enzymology , Lipoxygenase Inhibitors/pharmacology , Neurodegenerative Diseases/enzymology , Phosphorylation/drug effects , Phosphorylation/physiology , Serine/chemistry
13.
Phytomedicine ; 77: 153284, 2020 Oct.
Article En | MEDLINE | ID: mdl-32707371

BACKGROUND: Modulation of the arachidonic acid (AA) cascade via 5-lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2) represent the two major pathways for treatments of inflammation and pain. The design and development of inhibitors targeting both 5-LOX and COX-2 has gained increasing popularity. As evidenced, 5-LOX and COX-2 dual targeted inhibitors have recently emerged as the front runners of anti-inflammatory drugs with improved efficacy and reduced side effects. Natural products represent a rich resource for the discovery of dual targeted 5-LOX and COX-2 inhibitors. By combining affinity ultrafiltration and high-performance liquid chromatography-mass spectrometry (AUF-LC-MS), an efficient method was developed to identify spirostanol glycosides and furostanol glycosides as the 5-LOX/COX-2 dual inhibitors from saponins extract of Anemarrhenae Rhizoma (SEAR). METHODS: A highly efficient method by combining affinity ultrafiltration and high-performance liquid chromatography-mass spectrometry (AUF-LC-MS) was first developed to screen and characterize the 5-LOX/COX-2 dual targeted inhibitors from SEAR. The structures of compounds in the ultrafiltrate were characterized by high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). In addition, in vitro 5-LOX/COX-2 inhibition assays and their dual expression in vivo were performed to confirm the inhibitory activities of the compounds screened by AUF-LC-MS. Molecular docking studies with the corresponding binding energy were obtained which fit nicely to both 5-LOX and COX-2 protein cavities and in agreement with our affinity studies. RESULTS: A total of 5 compounds, timosaponin A-II, timosaponin A-III, timosaponin B-II, timosaponin B-III and anemarrhenasaponin I, were identified as potential 5-LOX/COX-2 dual targeted inhibitors with specific binding values > 1.5 and IC50 ≤ 6.07 µM. CONCLUSION: The present work demonstrated that spirostanol glycoside and furostanol glycoside were identified as two novel classes of dual inhibitors of 5-LOX/COX-2 enzymes by employing a highly efficient screening method of AUF-LC-MS. These natural products represent a novel class of anti-inflammatory agents with the potential of improved efficacy and reduced side effects.


Anemarrhena/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Glycosides/chemistry , Lipoxygenase Inhibitors/pharmacology , Spirostans/chemistry , Sterols/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arachidonate 5-Lipoxygenase/chemistry , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/metabolism , Chromatography, High Pressure Liquid , Cyclooxygenase 2/chemistry , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/chemistry , Drug Evaluation, Preclinical , Glycosides/pharmacology , Inflammation/drug therapy , Lipoxygenase Inhibitors/chemistry , Mass Spectrometry , Molecular Docking Simulation , Rats , Rhizome/chemistry , Saponins/chemistry , Saponins/pharmacology , Spirostans/pharmacology , Steroids/chemistry , Steroids/pharmacology , Sterols/pharmacology , Ultrafiltration
14.
Nat Chem Biol ; 16(7): 783-790, 2020 07.
Article En | MEDLINE | ID: mdl-32393899

Leukotrienes (LT) are lipid mediators of the inflammatory response that are linked to asthma and atherosclerosis. LT biosynthesis is initiated by 5-lipoxygenase (5-LOX) with the assistance of the substrate-binding 5-LOX-activating protein at the nuclear membrane. Here, we contrast the structural and functional consequences of the binding of two natural product inhibitors of 5-LOX. The redox-type inhibitor nordihydroguaiaretic acid (NDGA) is lodged in the 5-LOX active site, now fully exposed by disordering of the helix that caps it in the apo-enzyme. In contrast, the allosteric inhibitor 3-acetyl-11-keto-beta-boswellic acid (AKBA) from frankincense wedges between the membrane-binding and catalytic domains of 5-LOX, some 30 Å from the catalytic iron. While enzyme inhibition by NDGA is robust, AKBA promotes a shift in the regiospecificity, evident in human embryonic kidney 293 cells and in primary immune cells expressing 5-LOX. Our results suggest a new approach to isoform-specific 5-LOX inhibitor development through exploitation of an allosteric site in 5-LOX.


Arachidonate 5-Lipoxygenase/chemistry , Biological Products/chemistry , Lipoxygenase Inhibitors/chemistry , Masoprocol/chemistry , Triterpenes/chemistry , Allosteric Site , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/metabolism , Biological Products/metabolism , Catalytic Domain , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Hydroxyeicosatetraenoic Acids/chemistry , Hydroxyeicosatetraenoic Acids/metabolism , Leukotriene B4/chemistry , Leukotriene B4/metabolism , Lipoxygenase Inhibitors/metabolism , Masoprocol/metabolism , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Triterpenes/metabolism
15.
Molecules ; 25(10)2020 May 21.
Article En | MEDLINE | ID: mdl-32455632

Soxhlet (SE), microwave-assisted (MAE) and ultrasound-assisted (UAE) extraction were compared using ten extraction solvents for their efficiency to extract phenolic and flavonoid antioxidants from Eastern Canada propolis. Extracts were compared for total phenolic (TPC) and total flavonoid (TFC) content, and radical scavenging activities. Anti-inflammatory activity through inhibition of 5-lipoxygenase (5-LO) products biosynthesis in HEK293 cells was also evaluated. The results showed that SE extracts using polar solvents had the highest TPC and TFC. Extracts obtained with ethanol, methanol and acetone were effective free radical scavengers, and showed 5-LO inhibition similar to zileuton. UAE was an effective extraction method since the extracts obtained were comparable to those using SE and the MAE while being done at room temperature. With UAE, extracts of less polar solvents showed similar free radical scavenging and 5-LO inhibition to extracts of much more polar solvents such as methanol or ethanol. Reversed-phase liquid chromatography tandem mass spectrometry confirmed the presence of 21 natural compounds in the propolis extracts based on the comparison of intact mass, chromatographic retention time and fragmentation patterns derived from commercial analytical standards. The current study is the first of its kind to concurrently investigate solvent polarity as well as extraction techniques of propolis.


Antioxidants/chemistry , Biological Products/chemistry , Lipoxygenase Inhibitors/chemistry , Propolis/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Arachidonate 5-Lipoxygenase/chemistry , Biological Products/classification , Biological Products/isolation & purification , HEK293 Cells , Humans , Lipoxygenase Inhibitors/isolation & purification , Lipoxygenase Inhibitors/pharmacology , Phenols/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Propolis/pharmacology
16.
Biochem Biophys Res Commun ; 525(4): 909-914, 2020 05 14.
Article En | MEDLINE | ID: mdl-32171526

Propofol is a clinically important intravenous anesthetic. We previously reported that it directly inhibited 5-lipoxygenase (5-LOX), a key enzyme for leukotriene biosynthesis. Because the hydroxyl group in propofol (propofol 1-hydroxyl) is critical for its anesthetic effect, we examined if its presence would be inevitable for 5-lipoxygenase recognition. Fropofol is developed by substituting the hydroxy group in propofol with fluorine. We found that propofol 1-hydroxyl was important for 5-lipoxygenase recognition, but it was not absolutely necessary. Azi-fropofol bound to 5-LOX at one of the two propofol binding sites of 5-LOX (pocket around Phe-187), suggesting that propofol 1-hydroxyl is important for 5-LOX inhibition at the other propofol binding site (pocket around Val-431). Interestingly, 5-hydroperoxyeicosatetraenoic acid (5-HpETE) production was significantly increased by stimulation with calcium ionophore A23187 in HEK293 cells expressing 5-LOX, suggesting that the fropofol binding site is important for the conversion from 5-HpETE to leukotriene A4. We also indicated that propofol 1-hydroxyl might have contributed to interaction with wider targets among our body.


Arachidonate 5-Lipoxygenase/metabolism , Propofol/chemistry , Propofol/metabolism , Anesthetics, Intravenous/chemistry , Anesthetics, Intravenous/metabolism , Arachidonate 5-Lipoxygenase/chemistry , Arachidonate 5-Lipoxygenase/genetics , Arachidonic Acid/blood , Binding Sites , Calcimycin/pharmacology , Calcium Ionophores/pharmacology , HEK293 Cells , Humans , Leukotriene B4/metabolism , Leukotrienes/metabolism , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/metabolism , Molecular Docking Simulation , Mutagenesis , Propofol/pharmacology , Protein Conformation , Structure-Activity Relationship
17.
J Ethnopharmacol ; 254: 112733, 2020 May 23.
Article En | MEDLINE | ID: mdl-32145333

ETHNOPHARMACOLOGICAL RELEVANCE: Zi-shen pill (ZSP), a traditional Chinese medicine, is widely used for the treatment of benign prostatic hyperplasia (BPH) and has remarkable curative effect. AIM OF THE STUDY: To screen the potential 5-Lipoxygenase(5-LOX) inhibitors from ZSP extract. MATERIALS AND METHODS: A new approach based on affinity ultrafiltration-ultra performance liquid chromatography-mass spectrometry(UPLC-MS) was established and validated. Zileuton and glipizide were chosen as positive and negative control drug, respectively. For better screening result, the concentration of 5-LOX enzyme, incubation temperature and time, pH and ion strength were optimized. In addition, 5-LOX inhibitory assay in vitro and molecular docking technique were used for further verification. RESULTS: 20 compounds were characterized in the ultrafiltrate by high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and 16 ligands showed binding ability to 5-LOX. Among them, six ligands were deduced as high-potential 5-LOX inhibitors with their high specific binding values (>2.0). The inhibitory activities of anemarrhenasaponin I, timosaponin AI, nyasol and demethyleneberberine were confirmed by the 5-LOX inhibitory assay for validating the reliability of affinity ultrafiltration approach and the computer-simulated molecular docking technique further clarified the possible mechanism of action between the active compounds and the 5-LOX active sites.


Lipoxygenase Inhibitors/analysis , Arachidonate 5-Lipoxygenase/chemistry , Chromatography, High Pressure Liquid , Ligands , Molecular Docking Simulation , Phytochemicals/analysis , Spectrometry, Mass, Electrospray Ionization , Ultrafiltration
18.
FEBS J ; 287(20): 4481-4499, 2020 10.
Article En | MEDLINE | ID: mdl-32096311

5-Lipoxygenase (5-LO) is the initial enzyme in the biosynthesis of leukotrienes, which are mediators involved in pathophysiological conditions such as asthma and certain cancer types. Knowledge of proteins involved in 5-LO pathway regulation, including gene regulatory proteins, is needed to evaluate all options for therapeutic intervention in these diseases. Here, we present a mass spectrometric screening of ALOX5 promoter-interacting proteins, obtained by DNA pulldown and label-free quantitative mass spectrometry. Protein preparations from myeloid and B-lymphocytic cell lines were screened for promoter DNA interactors. Through statistical analysis, 66 proteins were identified as specific ALOX5 promotor binding proteins. Among those, the 15 most likely candidates for a prominent role in ALOX5 gene regulation are the known ALOX5 interactors Sp1 and Sp3, the related factor Sp2, two Krüppel-like factors (KLF13 and KLF16) and six other zinc finger proteins (MAZ, PRDM10, VEZF1, ZBTB7A, ZNF281 and ZNF579). Intriguingly, we also identified two helicases (BLM and DHX36) and the proteins hnRNPD and hnRNPK, which are, together with the protein MAZ, known to interact with DNA G-quadruplex structures. As G-quadruplexes are implicated in gene regulation, spectroscopic and antibody-based methods were used to confirm their presence within the GC-rich sequence of the ALOX5 promoter. In summary, we have systematically characterized the interactome of the ALOX5 promoter, identifying several zinc finger proteins as novel potential ALOX5 gene regulators. Further, we have shown that the ALOX5 promoter can form DNA G-quadruplex structures, which may play a functional role in ALOX5 gene regulation.


Carrier Proteins/analysis , Proteomics , Arachidonate 5-Lipoxygenase/chemistry , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/metabolism , Carrier Proteins/metabolism , Cells, Cultured , DNA/chemistry , G-Quadruplexes , Humans , Mass Spectrometry , Promoter Regions, Genetic/genetics
19.
Eur J Med Chem ; 189: 112066, 2020 Mar 01.
Article En | MEDLINE | ID: mdl-31982653

The current therapeutic demand focuses more on the discovery of safer NSAIDs rather than exploring more potent alternatives. The dual COX-2/5-LOX inhibition is a promising strategy for designing compounds with an enhanced efficacy, reduced side-effects and a broader anti-inflammatory spectrum in comparison to classical NSAIDs. In the present study, a hybridization strategy was adopted to combine the binding features of the non-selective COX inhibitor "sulindac" and the selective COX-2 inhibitor "celecoxib" which show 5-LOX inhibitory activity with that of licofelone and a celecoxib pyridone analogue which show dual COX-2/5-LOX inhibitory activity to design new series of pyrazole sulfonamide derivatives which, by design, should possess dual COX-2/5-LOX inhibitory activity. All the newly synthesized compounds were initially tested for their potential analgesic activity, then candidates that showed potential analgesic activity, were selected for the subsequent anti-inflammatory activity evaluation, as well as, ulcerogenicity testing. Moreover, in vitro assessment of their COX-1, COX-2 and 5-LOX inhibitory activities were performed. The benzothiophen-2-yl pyrazole carboxylic acid derivative 5b showed the most potent analgesic and anti-inflammatory activities surpassing that of celecoxib and indomethacin. It showed potent COX-1, COX-2 and 5-LOX inhibitory activity with IC50 of 5.40, 0.01 and 1.78 µM, respectively, showing a selectivity index of 344.56 that was much better than the used reference standards and its parent compounds, confirming its selectivity towards COX-2 over COX-1. The prodrug ester derivatives 6c and 6d showed equipotent activity to their parent compound 5b with no gastric ulcerogenicity. Molecular docking simulations confirmed that the newly synthesized compounds possess the structural features required for binding to the target enzymes COX-2 and 5-LOX.


Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Ulcer Agents/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Drug Design , Lipoxygenase Inhibitors/pharmacology , Analgesics/chemical synthesis , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Ulcer Agents/chemical synthesis , Arachidonate 5-Lipoxygenase/chemistry , Cyclooxygenase 1/chemistry , Cyclooxygenase 2 Inhibitors/chemical synthesis , Humans , Lipoxygenase Inhibitors/chemical synthesis , Male , Mice , Pyrazoles/chemistry , Rats , Rats, Wistar , Stomach Ulcer/drug therapy , Sulfonamides/chemistry
20.
Nat Prod Res ; 34(24): 3470-3482, 2020 Dec.
Article En | MEDLINE | ID: mdl-30887827

Phytochemical investigation on biologically active compounds of an intertidal red seaweed Gracilaria salicornia (family Gracilariaceae) guided to the separation of two previously undisclosed 2H-chromenyl derivatives. The compounds were characterised as 4'-[10'-[7-hydroxy-2,8-dimethyl-6-(pentyloxy)-2H-chromen-2-yl]ethyl]-3',4'-dimethyl-cyclohexanone (1) and 3'-[10'-(8-hydroxy-5-methoxy-2,6,7-trimethyl-2H-chromen-2-yl)ethyl]-3'-methyl-2'-methylene cyclohexyl butyrate (2) by extensive spectroscopic experiments. The studied metabolites recorded prospective bioactivities against 5-lipoxygenase (IC50 < 2.50 mM), whereas their selectivity indices were significantly greater (∼1) than ibuprofen (0.89) (p < 0.05), which attributed higher anti-inflammatory selectivity of 2H-chromenyl compounds against inducible cyclooxygenase-2 than its constitutive pro-inflammatory isoform of cyclooxygenase-1. The radical scavenging potential of 2 against oxidants, 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis-3 ethylbenzothiozoline-6-sulfonic acid were higher (IC50 < 1.35 mM) than standard antioxidant, α-tocopherol (IC50 1.42-1.79 mM). The greater hydrogen bond interactions and binding affinity of 2 (-7.35 kcal mol-1) bearing 2H-chromenyl ethyl-3'-methyl-4'-methylenecyclohexyl butyrate moiety with 5-lipoxygenase, along with higher electronic properties and permissible hydrophobic-hydrophilic balance, manifested towards its greater anti-inflammatory activity than 1.


Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Gracilaria/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antioxidants/chemistry , Arachidonate 5-Lipoxygenase/chemistry , Arachidonate 5-Lipoxygenase/metabolism , Benzopyrans/chemistry , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Drug Evaluation, Preclinical , Hydrogen Bonding , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/pharmacology , Molecular Docking Simulation , Molecular Structure , Plant Extracts/chemistry , Seaweed/chemistry
...