Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.759
1.
Nat Commun ; 15(1): 3699, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698035

In silico identification of viral anti-CRISPR proteins (Acrs) has relied largely on the guilt-by-association method using known Acrs or anti-CRISPR associated proteins (Acas) as the bait. However, the low number and limited spread of the characterized archaeal Acrs and Aca hinders our ability to identify Acrs using guilt-by-association. Here, based on the observation that the few characterized archaeal Acrs and Aca are transcribed immediately post viral infection, we hypothesize that these genes, and many other unidentified anti-defense genes (ADG), are under the control of conserved regulatory sequences including a strong promoter, which can be used to predict anti-defense genes in archaeal viruses. Using this consensus sequence based method, we identify 354 potential ADGs in 57 archaeal viruses and 6 metagenome-assembled genomes. Experimental validation identified a CRISPR subtype I-A inhibitor and the first virally encoded inhibitor of an archaeal toxin-antitoxin based immune system. We also identify regulatory proteins potentially akin to Acas that can facilitate further identification of ADGs combined with the guilt-by-association approach. These results demonstrate the potential of regulatory sequence analysis for extensive identification of ADGs in viruses of archaea and bacteria.


Archaea , Archaeal Viruses , Archaeal Viruses/genetics , Archaea/genetics , Archaea/virology , Archaea/immunology , Promoter Regions, Genetic/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Regulatory Sequences, Nucleic Acid/genetics , Viral Proteins/genetics , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Metagenome/genetics , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems/genetics
2.
Biomolecules ; 14(5)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38785941

Only a few halophilic archaea producing carboxylesterases have been reported. The limited research on biocatalytic characteristics of archaeal esterases is primarily due to their very low production in native organisms. A gene encoding carboxylesterase from Halobacterium salinarum NRC-1 was cloned and successfully expressed in Haloferax volcanii. The recombinant carboxylesterase (rHsEst) was purified by affinity chromatography with a yield of 81%, and its molecular weight was estimated by SDS-PAGE (33 kDa). The best kinetic parameters of rHsEst were achieved using p-nitrophenyl valerate as substrate (KM = 78 µM, kcat = 0.67 s-1). rHsEst exhibited great stability to most metal ions tested and some solvents (diethyl ether, n-hexane, n-heptane). Purified rHsEst was effectively immobilized using Celite 545. Esterase activities of rHsEst were confirmed by substrate specificity studies. The presence of a serine residue in rHsEst active site was revealed through inhibition with PMSF. The pH for optimal activity of free rHsEst was 8, while for immobilized rHsEst, maximal activity was at a pH range between 8 to 10. Immobilization of rHsEst increased its thermostability, halophilicity and protection against inhibitors such as EDTA, BME and PMSF. Remarkably, immobilized rHsEst was stable and active in NaCl concentrations as high as 5M. These biochemical characteristics of immobilized rHsEst reveal its potential as a biocatalyst for industrial applications.


Carboxylesterase , Cloning, Molecular , Halobacterium salinarum , Recombinant Proteins , Carboxylesterase/genetics , Carboxylesterase/metabolism , Carboxylesterase/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Halobacterium salinarum/enzymology , Halobacterium salinarum/genetics , Enzymes, Immobilized/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/genetics , Hydrogen-Ion Concentration , Kinetics , Enzyme Stability , Archaeal Proteins/genetics , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Temperature
3.
Microbiology (Reading) ; 170(5)2024 May.
Article En | MEDLINE | ID: mdl-38787390

Archaeal cell biology is an emerging field expected to identify fundamental cellular processes, help resolve the deep evolutionary history of cellular life, and contribute new components and functions in biotechnology and synthetic biology. To facilitate these, we have developed plasmid vectors that allow convenient cloning and production of proteins and fusion proteins with flexible, rigid, or semi-rigid linkers in the model archaeon Haloferax volcanii. For protein subcellular localization studies using fluorescent protein (FP) tags, we created vectors incorporating a range of codon-optimized fluorescent proteins for N- or C-terminal tagging, including GFP, mNeonGreen, mCherry, YPet, mTurquoise2 and mScarlet-I. Obtaining functional fusion proteins can be challenging with proteins involved in multiple interactions, mainly due to steric interference. We demonstrated the use of the new vector system to screen for improved function in cytoskeletal protein FP fusions, and identified FtsZ1-FPs that are functional in cell division and CetZ1-FPs that are functional in motility and rod cell development. Both the type of linker and the type of FP influenced the functionality of the resulting fusions. The vector design also facilitates convenient cloning and tandem expression of two genes or fusion genes, controlled by a modified tryptophan-inducible promoter, and we demonstrated its use for dual-colour imaging of tagged proteins in H. volcanii cells. These tools should promote further development and applications of archaeal molecular and cellular biology and biotechnology.


Archaeal Proteins , Cloning, Molecular , Genetic Vectors , Haloferax volcanii , Luminescent Proteins , Plasmids , Haloferax volcanii/genetics , Haloferax volcanii/metabolism , Genetic Vectors/genetics , Genetic Vectors/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Plasmids/genetics , Plasmids/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Gene Expression , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism
4.
Biochem Biophys Res Commun ; 714: 149966, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38657448

U47 phosphorylation (Up47) is a novel tRNA modification discovered recently; it can confer thermal stability and nuclease resistance to tRNAs. U47 phosphorylation is catalyzed by Archaeal RNA kinase (Ark1) in an ATP-dependent manner. However, the structural basis for tRNA and/or ATP binding by Ark1 is unclear. Here, we report the expression, purification, and crystallization studies of Ark1 from G. acetivorans (GaArk1). In addition to the Apo-form structure, one GaArk1-ATP complex was also determined in atomic resolution and revealed the detailed basis for ATP binding by GaArk1. The GaArk1-ATP complex represents the only ATP-bound structure of the Ark1 protein. The majority of the ATP-binding residues are conserved, suggesting that GaArk1 and the homologous proteins share similar mechanism in ATP binding. Sequence and structural analysis further indicated that endogenous guanosine will only inhibit the activities of certain Ark1 proteins, such as Ark1 from T. kodakarensis.


Adenosine Triphosphate , Models, Molecular , Crystallography, X-Ray , Adenosine Triphosphate/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Amino Acid Sequence , Protein Conformation , Protein Binding , Binding Sites
5.
mSystems ; 9(5): e0133823, 2024 May 16.
Article En | MEDLINE | ID: mdl-38591896

Methanococcus maripaludis utilizes selenocysteine- (Sec-) containing proteins (selenoproteins), mostly active in the organism's primary energy metabolism, methanogenesis. During selenium depletion, M. maripaludis employs a set of enzymes containing cysteine (Cys) instead of Sec. The genes coding for these Sec-/Cys-containing isoforms were the only genes known of which expression is influenced by the selenium status of the cell. Using proteomics and transcriptomics, approx. 7% and 12%, respectively, of all genes/proteins were found differentially expressed/synthesized in response to the selenium supply. Some of the genes identified involve methanogenesis, nitrogenase functions, and putative transporters. An increase of transcript abundance for putative transporters under selenium depletion indicated the organism's effort to tap into alternative sources of selenium. M. maripaludis is known to utilize selenite and dimethylselenide as selenium sources. To expand this list, a selenium-responsive reporter strain was assessed with nine other, environmentally relevant selenium species. While the effect of some was very similar to that of selenite, others were effectively utilized at lower concentrations. Conversely, selenate and seleno-amino acids were only utilized at unphysiologically high concentrations and two compounds were not utilized at all. To address the role of the selenium-regulated putative transporters, M. maripaludis mutant strains lacking one or two of the putative transporters were tested for the capability to utilize the different selenium species. Of the five putative transporters analyzed by loss-of-function mutagenesis, none appeared to be absolutely required for utilizing any of the selenium species tested, indicating they have redundant and/or overlapping specificities or are not dedicated selenium transporters. IMPORTANCE: While selenium metabolism in microorganisms has been studied intensively in the past, global gene expression approaches have not been employed so far. Furthermore, the use of different selenium sources, widely environmentally interconvertible via biotic and abiotic processes, was also not extensively studied before. Methanococcus maripaludis JJ is ideally suited for such analyses, thanks to its known selenium usage and available genetic tools. Thus, an overall view on the selenium regulon of M. maripaludis was obtained via transcriptomic and proteomic analyses, which inspired further experimentation. This led to demonstrating the use of selenium sources M. maripaludis was previously not known to employ. Also, an attempt-although so far unsuccessful-was made to pinpoint potential selenium transporter genes, in order to deepen our understanding of trace element utilization in this important model organism.


Methanococcus , Proteomics , Selenium , Methanococcus/metabolism , Methanococcus/genetics , Selenium/metabolism , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Gene Expression Profiling , Transcriptome , Gene Expression Regulation, Archaeal , Selenoproteins/genetics , Selenoproteins/metabolism
6.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38673759

This study investigated the effect of polycationic and uncharged polymers (and oligomers) on the catalytic parameters and thermostability of L-asparaginase from Thermococcus sibiricus (TsA). This enzyme has potential applications in the food industry to decrease the formation of carcinogenic acrylamide during the processing of carbohydrate-containing products. Conjugation with the polyamines polyethylenimine and spermine (PEI and Spm) or polyethylene glycol (PEG) did not significantly affect the secondary structure of the enzyme. PEG contributes to the stabilization of the dimeric form of TsA, as shown by HPLC. Furthermore, neither polyamines nor PEG significantly affected the binding of the L-Asn substrate to TsA. The conjugates showed greater maximum activity at pH 7.5 and 85 °C, 10-50% more than for native TsA. The pH optima for both TsA-PEI and TsA-Spm conjugates were shifted to lower pH ranges from pH 10 (for the native enzyme) to pH 8.0. Additionally, the TsA-Spm conjugate exhibited the highest activity at pH 6.5-9.0 among all the samples. Furthermore, the temperature optimum for activity at pH 7.5 shifted from 90-95 °C to 80-85 °C for the conjugates. The thermal inactivation mechanism of TsA-PEG appeared to change, and no aggregation was observed in contrast to that of the native enzyme. This was visually confirmed and supported by the analysis of the CD spectra, which remained almost unchanged after heating the conjugate solution. These results suggest that TsA-PEG may be a more stable form of TsA, making it a potentially more suitable option for industrial use.


Asparaginase , Biocatalysis , Enzyme Stability , Thermococcus , Asparaginase/chemistry , Asparaginase/metabolism , Thermococcus/enzymology , Hydrogen-Ion Concentration , Polyethylene Glycols/chemistry , Temperature , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism
7.
Biochem Biophys Res Commun ; 712-713: 149893, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38657529

RecJ exonucleases are members of the DHH phosphodiesterase family ancestors of eukaryotic Cdc45, the key component of the CMG (Cdc45-MCM-GINS) complex at the replication fork. They are involved in DNA replication and repair, RNA maturation and Okazaki fragment degradation. Bacterial RecJs resect 5'-end ssDNA. Conversely, archaeal RecJs are more versatile being able to hydrolyse in both directions and acting on ssDNA as well as on RNA. In Methanocaldococcus jannaschii two RecJs were previously characterized: RecJ1 is a 5'→3' DNA exonuclease, MjaRecJ2 works only on 3'-end DNA/RNA with a preference for RNA. Here, I present the crystal structure of MjaRecJ2, solved at a resolution of 2.8 Å, compare it with the other RecJ structures, in particular the 5'→3' TkoGAN and the bidirectional PfuRecJ, and discuss its characteristics in light of the more recent knowledge on RecJs. This work adds new structural data that might improve the knowledge of these class of proteins.


Methanocaldococcus , Models, Molecular , Methanocaldococcus/enzymology , Crystallography, X-Ray , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Exonucleases/metabolism , Exonucleases/chemistry , Protein Conformation , Amino Acid Sequence , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics
8.
Nat Commun ; 15(1): 3464, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658536

TnpBs encoded by the IS200/IS605 family transposon are among the most abundant prokaryotic proteins from which type V CRISPR-Cas nucleases may have evolved. Since bacterial TnpBs can be programmed for RNA-guided dsDNA cleavage in the presence of a transposon-adjacent motif (TAM), these nucleases hold immense promise for genome editing. However, the activity and targeting specificity of TnpB in homology-directed gene editing remain unknown. Here we report that a thermophilic archaeal TnpB enables efficient gene editing in the natural host. Interestingly, the TnpB has different TAM requirements for eliciting cell death and for facilitating gene editing. By systematically characterizing TAM variants, we reveal that the TnpB recognizes a broad range of TAM sequences for gene editing including those that do not elicit apparent cell death. Importantly, TnpB shows a very high targeting specificity on targets flanked by a weak TAM. Taking advantage of this feature, we successfully leverage TnpB for efficient single-nucleotide editing with templated repair. The use of different weak TAM sequences not only facilitates more flexible gene editing with increased cell survival, but also greatly expands targeting scopes, and this strategy is probably applicable to diverse CRISPR-Cas systems.


CRISPR-Cas Systems , Gene Editing , Gene Editing/methods , DNA Transposable Elements/genetics , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Transposases/metabolism , Transposases/genetics
9.
Nucleic Acids Res ; 52(8): 4644-4658, 2024 May 08.
Article En | MEDLINE | ID: mdl-38375885

Pseudouridine, one of the most abundant RNA modifications, is synthesized by stand-alone or RNA-guided pseudouridine synthases. Here, we comprehensively mapped pseudouridines in rRNAs, tRNAs and small RNAs in the archaeon Sulfolobus islandicus and identified Cbf5-associated H/ACA RNAs. Through genetic deletion and in vitro modification assays, we determined the responsible enzymes for these modifications. The pseudouridylation machinery in S. islandicus consists of the stand-alone enzymes aPus7 and aPus10, and six H/ACA RNA-guided enzymes that account for all identified pseudouridines. These H/ACA RNAs guide the modification of all eleven sites in rRNAs, two sites in tRNAs, and two sites in CRISPR RNAs. One H/ACA RNA shows exceptional versatility by targeting eight different sites. aPus7 and aPus10 are responsible for modifying positions 13, 54 and 55 in tRNAs. We identified four atypical H/ACA RNAs that lack the lower stem and the ACA motif and confirmed their function both in vivo and in vitro. Intriguingly, atypical H/ACA RNAs can be modified by Cbf5 in a guide-independent manner. Our data provide the first global view of pseudouridylation in archaea and reveal unexpected structures, substrates, and activities of archaeal H/ACA RNPs.


Pseudouridine , RNA, Archaeal , RNA, Transfer , Sulfolobus , Pseudouridine/metabolism , Sulfolobus/genetics , Sulfolobus/metabolism , RNA, Transfer/metabolism , RNA, Transfer/genetics , RNA, Archaeal/genetics , RNA, Archaeal/metabolism , RNA, Archaeal/chemistry , RNA, Ribosomal/metabolism , RNA, Ribosomal/genetics , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , RNA Processing, Post-Transcriptional , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism
10.
Mol Microbiol ; 121(5): 882-894, 2024 May.
Article En | MEDLINE | ID: mdl-38372181

The sole unifying feature of the incredibly diverse Archaea is their isoprenoid-based ether-linked lipid membranes. Unique lipid membrane composition, including an abundance of membrane-spanning tetraether lipids, impart resistance to extreme conditions. Many questions remain, however, regarding the synthesis and modification of tetraether lipids and how dynamic changes to archaeal lipid membrane composition support hyperthermophily. Tetraether membranes, termed glycerol dibiphytanyl glycerol tetraethers (GDGTs), are generated by tetraether synthase (Tes) by joining the tails of two bilayer lipids known as archaeol. GDGTs are often further specialized through the addition of cyclopentane rings by GDGT ring synthase (Grs). A positive correlation between relative GDGT abundance and entry into stationary phase growth has been observed, but the physiological impact of inhibiting GDGT synthesis has not previously been reported. Here, we demonstrate that the model hyperthermophile Thermococcus kodakarensis remains viable when Tes (TK2145) or Grs (TK0167) are deleted, permitting phenotypic and lipid analyses at different temperatures. The absence of cyclopentane rings in GDGTs does not impact growth in T. kodakarensis, but an overabundance of rings due to ectopic Grs expression is highly fitness negative at supra-optimal temperatures. In contrast, deletion of Tes resulted in the loss of all GDGTs, cyclization of archaeol, and loss of viability upon transition to the stationary phase in this model archaea. These results demonstrate the critical roles of highly specialized, dynamic, isoprenoid-based lipid membranes for archaeal survival at high temperatures.


Membrane Lipids , Thermococcus , Membrane Lipids/metabolism , Thermococcus/metabolism , Thermococcus/genetics , Glyceryl Ethers/metabolism , Archaeal Proteins/metabolism , Archaea/metabolism , Lipids/chemistry
11.
Nucleic Acids Res ; 52(7): 3924-3937, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38421610

RNA ligases are important enzymes in molecular biology and are highly useful for the manipulation and analysis of nucleic acids, including adapter ligation in next-generation sequencing of microRNAs. Thermophilic RNA ligases belonging to the RNA ligase 3 family are gaining attention for their use in molecular biology, for example a thermophilic RNA ligase from Methanobacterium thermoautotrophicum is commercially available for the adenylation of nucleic acids. Here we extensively characterise a newly identified RNA ligase from the thermophilic archaeon Palaeococcus pacificus (PpaRnl). PpaRnl exhibited significant substrate adenylation activity but low ligation activity across a range of oligonucleotide substrates. Mutation of Lys92 in motif I to alanine, resulted in an enzyme that lacked adenylation activity, but demonstrated improved ligation activity with pre-adenylated substrates (ATP-independent ligation). Subsequent structural characterisation revealed that in this mutant enzyme Lys238 was found in two alternate positions for coordination of the phosphate tail of ATP. In contrast mutation of Lys238 in motif V to glycine via structure-guided engineering enhanced ATP-dependent ligation activity via an arginine residue compensating for the absence of Lys238. Ligation activity for both mutations was higher than the wild-type, with activity observed across a range of oligonucleotide substrates with varying sequence and secondary structure.


RNA Ligase (ATP) , RNA Ligase (ATP)/metabolism , RNA Ligase (ATP)/genetics , RNA Ligase (ATP)/chemistry , Substrate Specificity , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Archaeal Proteins/chemistry , Planococcaceae/enzymology , Planococcaceae/genetics , Protein Engineering , Mutation , Models, Molecular , Adenosine Triphosphate/metabolism , Oligonucleotides/metabolism , Oligonucleotides/genetics
12.
Nat Commun ; 15(1): 1414, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38360755

Archaea play indispensable roles in global biogeochemical cycles, yet many crucial cellular processes, including cell-shape determination, are poorly understood. Haloferax volcanii, a model haloarchaeon, forms rods and disks, depending on growth conditions. Here, we used a combination of iterative proteomics, genetics, and live-cell imaging to identify mutants that only form rods or disks. We compared the proteomes of the mutants with wild-type cells across growth phases, thereby distinguishing between protein abundance changes specific to cell shape and those related to growth phases. The results identified a diverse set of proteins, including predicted transporters, transducers, signaling components, and transcriptional regulators, as important for cell-shape determination. Through phenotypic characterization of deletion strains, we established that rod-determining factor A (RdfA) and disk-determining factor A (DdfA) are required for the formation of rods and disks, respectively. We also identified structural proteins, including an actin homolog that plays a role in disk-shape morphogenesis, which we named volactin. Using live-cell imaging, we determined volactin's cellular localization and showed its dynamic polymerization and depolymerization. Our results provide insights into archaeal cell-shape determination, with possible implications for understanding the evolution of cell morphology regulation across domains.


Archaeal Proteins , Haloferax volcanii , Cell Shape , Archaeal Proteins/genetics , Archaeal Proteins/metabolism
13.
Proteins ; 92(6): 768-775, 2024 Jun.
Article En | MEDLINE | ID: mdl-38235908

The biosynthesis pathways of coenzyme A (CoA) in most archaea involve several unique enzymes including dephospho-CoA kinase (DPCK) that converts dephospho-CoA to CoA in the final step of CoA biosynthesis in all domains of life. The archaeal DPCK is unrelated to the analogous bacterial and eukaryotic enzymes and shows no significant sequence similarity to any proteins with known structures. Unusually, the archaeal DPCK utilizes GTP as the phosphate donor although the analogous bacterial and eukaryotic enzymes are ATP-dependent kinases. Here, we report the crystal structure of DPCK and its complex with GTP and a magnesium ion from the archaeal hyperthermophile Thermococcus kodakarensis. The crystal structure demonstrates why GTP is the preferred substrate of this kinase. We also report the activity analyses of site-directed mutants of crucial residues determined based on sequence conservation and the crystal structure. From these results, the key residues involved in the reaction of phosphoryl transfer and the possible dephospho-CoA binding site are inferred.


Amino Acid Sequence , Archaeal Proteins , Guanosine Triphosphate , Magnesium , Models, Molecular , Phosphotransferases (Alcohol Group Acceptor) , Thermococcus , Thermococcus/enzymology , Thermococcus/genetics , Thermococcus/chemistry , Crystallography, X-Ray , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/chemistry , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Magnesium/metabolism , Magnesium/chemistry , Mutagenesis, Site-Directed , Catalytic Domain , Binding Sites , Substrate Specificity , Coenzyme A/metabolism , Coenzyme A/chemistry , Protein Binding
14.
Mol Microbiol ; 121(4): 742-766, 2024 Apr.
Article En | MEDLINE | ID: mdl-38204420

Microbial cells must continually adapt their physiology in the face of changing environmental conditions. Archaea living in extreme conditions, such as saturated salinity, represent important examples of such resilience. The model salt-loving organism Haloferax volcanii exhibits remarkable plasticity in its morphology, biofilm formation, and motility in response to variations in nutrients and cell density. However, the mechanisms regulating these lifestyle transitions remain unclear. In prior research, we showed that the transcriptional regulator, TrmB, maintains the rod shape in the related species Halobacterium salinarum by activating the expression of enzyme-coding genes in the gluconeogenesis metabolic pathway. In Hbt. salinarum, TrmB-dependent production of glucose moieties is required for cell surface glycoprotein biogenesis. Here, we use a combination of genetics and quantitative phenotyping assays to demonstrate that TrmB is essential for growth under gluconeogenic conditions in Hfx. volcanii. The ∆trmB strain rapidly accumulated suppressor mutations in a gene encoding a novel transcriptional regulator, which we name trmB suppressor, or TbsP (a.k.a. "tablespoon"). TbsP is required for adhesion to abiotic surfaces (i.e., biofilm formation) and maintains wild-type cell morphology and motility. We use functional genomics and promoter fusion assays to characterize the regulons controlled by each of TrmB and TbsP, including joint regulation of the glucose-dependent transcription of gapII, which encodes an important gluconeogenic enzyme. We conclude that TrmB and TbsP coregulate gluconeogenesis, with downstream impacts on lifestyle transitions in response to nutrients in Hfx. volcanii.


Archaeal Proteins , Haloferax volcanii , Haloferax volcanii/genetics , Glucose/metabolism , Metabolic Networks and Pathways , Membrane Glycoproteins/metabolism , Phenotype , Archaeal Proteins/metabolism
15.
mBio ; 15(2): e0309223, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38189270

The identification of microbial genes essential for survival as those with lethal knockout phenotype (LKP) is a common strategy for functional interrogation of genomes. However, interpretation of the LKP is complicated because a substantial fraction of the genes with this phenotype remains poorly functionally characterized. Furthermore, many genes can exhibit LKP not because their products perform essential cellular functions but because their knockout activates the toxicity of other genes (conditionally essential genes). We analyzed the sets of LKP genes for two archaea, Methanococcus maripaludis and Sulfolobus islandicus, using a variety of computational approaches aiming to differentiate between essential and conditionally essential genes and to predict at least a general function for as many of the proteins encoded by these genes as possible. This analysis allowed us to predict the functions of several LKP genes including previously uncharacterized subunit of the GINS protein complex with an essential function in genome replication and of the KEOPS complex that is responsible for an essential tRNA modification as well as GRP protease implicated in protein quality control. Additionally, several novel antitoxins (conditionally essential genes) were predicted, and this prediction was experimentally validated by showing that the deletion of these genes together with the adjacent genes apparently encoding the cognate toxins caused no growth defect. We applied principal component analysis based on sequence and comparative genomic features showing that this approach can separate essential genes from conditionally essential ones and used it to predict essential genes in other archaeal genomes.IMPORTANCEOnly a relatively small fraction of the genes in any bacterium or archaeon is essential for survival as demonstrated by the lethal effect of their disruption. The identification of essential genes and their functions is crucial for understanding fundamental cell biology. However, many of the genes with a lethal knockout phenotype remain poorly functionally characterized, and furthermore, many genes can exhibit this phenotype not because their products perform essential cellular functions but because their knockout activates the toxicity of other genes. We applied state-of-the-art computational methods to predict the functions of a number of uncharacterized genes with the lethal knockout phenotype in two archaeal species and developed a computational approach to predict genes involved in essential functions. These findings advance the current understanding of key functionalities of archaeal cells.


Archaea , Archaeal Proteins , Archaea/genetics , Archaea/metabolism , Genes, Essential , Genome, Archaeal , Genomics , Phenotype , Archaeal Proteins/genetics , Archaeal Proteins/metabolism
16.
Nucleic Acids Res ; 52(5): 2530-2545, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38197228

Argonaute (Ago) proteins are present in all three domains of life (bacteria, archaea and eukaryotes). They use small (15-30 nucleotides) oligonucleotide guides to bind complementary nucleic acid targets and are responsible for gene expression regulation, mobile genome element silencing, and defence against viruses or plasmids. According to their domain organization, Agos are divided into long and short Agos. Long Agos found in prokaryotes (long-A and long-B pAgos) and eukaryotes (eAgos) comprise four major functional domains (N, PAZ, MID and PIWI) and two structural linker domains L1 and L2. The majority (∼60%) of pAgos are short pAgos, containing only the MID and inactive PIWI domains. Here we focus on the prokaryotic Argonaute AfAgo from Archaeoglobus fulgidus DSM4304. Although phylogenetically classified as a long-B pAgo, AfAgo contains only MID and catalytically inactive PIWI domains, akin to short pAgos. We show that AfAgo forms a heterodimeric complex with a protein encoded upstream in the same operon, which is a structural equivalent of the N-L1-L2 domains of long pAgos. This complex, structurally equivalent to a long PAZ-less pAgo, outperforms standalone AfAgo in guide RNA-mediated target DNA binding. Our findings provide a missing piece to one of the first and the most studied pAgos.


Archaeal Proteins , Archaeoglobus fulgidus , Argonaute Proteins , Archaeoglobus fulgidus/metabolism , Argonaute Proteins/metabolism , Bacteria/genetics , Eukaryota/genetics , Prokaryotic Cells/metabolism , Protein Domains , RNA, Guide, CRISPR-Cas Systems , Archaeal Proteins/metabolism
17.
Microbiol Spectr ; 11(6): e0281123, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-37909787

IMPORTANCE: Small proteins containing fewer than 70 amino acids, which were previously disregarded due to computational prediction and biochemical detection challenges, have gained increased attention in the scientific community in recent years. However, the number of functionally characterized small proteins, especially in archaea, is still limited. Here, by using biochemical and genetic approaches, we demonstrate a crucial role of the small protein sP36 in the nitrogen metabolism of M. mazei, which modulates the ammonium transporter AmtB1 according to nitrogen availability. This modulation might represent an ancient archaeal mechanism of AmtB1 inhibition, in contrast to the well-studied uridylylation-dependent regulation in bacteria.


Ammonium Compounds , Archaeal Proteins , Methanosarcina/genetics , Methanosarcina/metabolism , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Bacteria/metabolism , Nitrogen/metabolism , Ammonium Compounds/metabolism
18.
Genes (Basel) ; 14(10)2023 09 25.
Article En | MEDLINE | ID: mdl-37895209

Tubulin, an extensively studied self-assembling protein, forms filaments in eukaryotic cells that affect cell shape, among other functions. The model archaeon Haloferax volcanii uses two tubulin-like proteins (FtsZ1/FtsZ2) for cell division, similar to bacteria, but has an additional six related tubulins called CetZ. One of them, CetZ1, was shown to play a role in cell shape. Typically, discoid and rod shapes are observed in planktonic growth, but under biofilm formation conditions (i.e., attached to a substratum), H. volcanii can grow filamentously. Here, we show that the deletion mutants of all eight tubulin-like genes significantly impacted morphology when cells were allowed to form a biofilm. ΔftsZ1, ΔcetZ2, and ΔcetZ4-6 created longer, less round cells than the parental and a higher percentage of filaments. ΔcetZ1 and ΔcetZ3 were significantly rounder than the parental, and ΔftsZ2 generated larger, flat, amorphic cells. The results show all tubulin homologs affect morphology at most timepoints, which therefore suggests these genes indeed have a function.


Archaeal Proteins , Haloferax volcanii , Tubulin/genetics , Tubulin/metabolism , Haloferax volcanii/metabolism , Cell Shape , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Biofilms
19.
Carbohydr Res ; 534: 108963, 2023 Dec.
Article En | MEDLINE | ID: mdl-37890267

Archaea are microorganisms that comprise a distinct branch of the universal tree of life and which are best known as extremophiles, residing in a variety of environments characterized by harsh physical conditions. One seemingly universal trait of Archaea is the ability to perform N-glycosylation. At the same time, archaeal N-linked glycans present variety in terms of both composition and architecture not seen in the parallel eukaryal or bacterial processes. In this mini-review, many of the unique and unusual sugars found in archaeal N-linked glycans as identified by nuclear magnetic resonance spectroscopy are described.


Archaea , Archaeal Proteins , Glycosylation , Archaea/metabolism , Sugars , Polysaccharides , Archaeal Proteins/metabolism
20.
Biol Chem ; 404(11-12): 1085-1100, 2023 10 26.
Article En | MEDLINE | ID: mdl-37709673

Posttranscriptional processes in Bacteria include the association of small regulatory RNAs (sRNA) with a target mRNA. The sRNA/mRNA annealing process is often mediated by an RNA chaperone called Hfq. The functional role of bacterial and eukaryotic Lsm proteins is partially understood, whereas knowledge about archaeal Lsm proteins is scarce. Here, we used the genetically tractable archaeal hyperthermophile Pyrococcus furiosus to identify the protein interaction partners of the archaeal Sm-like proteins (PfuSmAP1) using mass spectrometry and performed a transcriptome-wide binding site analysis of PfuSmAP1. Most of the protein interaction partners we found are part of the RNA homoeostasis network in Archaea including ribosomal proteins, the exosome, RNA-modifying enzymes, but also RNA polymerase subunits, and transcription factors. We show that PfuSmAP1 preferentially binds messenger RNAs and antisense RNAs recognizing a gapped poly(U) sequence with high affinity. Furthermore, we found that SmAP1 co-transcriptionally associates with target RNAs. Our study reveals that in contrast to bacterial Hfq, PfuSmAP1 does not affect the transcriptional activity or the pausing behaviour of archaeal RNA polymerases. We propose that PfuSmAP1 recruits antisense RNAs to target mRNAs and thereby executes its putative regulatory function on the posttranscriptional level.


Archaeal Proteins , Pyrococcus furiosus , RNA, Small Untranslated , Pyrococcus furiosus/genetics , Pyrococcus furiosus/metabolism , RNA, Messenger/metabolism , RNA, Archaeal/genetics , RNA, Archaeal/chemistry , RNA, Archaeal/metabolism , Binding Sites , Bacteria/metabolism , Archaeal Proteins/genetics , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , RNA, Small Untranslated/metabolism
...