Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 802
Filtrar
1.
Curr Biol ; 34(8): 1646-1656.e4, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38518777

RESUMEN

The obesity epidemic is principally driven by the consumption of more calories than the body requires. It is therefore essential that the mechanisms underpinning feeding behavior are defined. Neurons within the brainstem dorsal vagal complex (DVC) receive direct information from the digestive system and project to second-order regions in the brain to regulate food intake. Although γ-aminobutyric acid is expressed in the DVC (GABADVC), its function in this region has not been defined. In order to discover the unique gene expression signature of GABADVC cells, we used single-nucleus RNA sequencing (Nuc-seq), and this revealed 19 separate clusters. We next probed the function of GABADVC cells and discovered that the selective activation of GABADVC neurons significantly controls food intake and body weight. Optogenetic interrogation of GABADVC circuitry identified GABADVC → hypothalamic arcuate nucleus (ARC) projections as appetite suppressive without creating aversion. Electrophysiological analysis revealed that GABADVC → ARC stimulation inhibits hunger-promoting neuropeptide Y (NPY) neurons via GABA release. Adopting an intersectional genetics strategy, we clarify that the GABADVC → ARC circuit curbs food intake. These data identify GABADVC as a new modulator of feeding behavior and body weight and a controller of orexigenic NPY neuron activity, thereby providing insight into the neural underpinnings of obesity.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Tronco Encefálico , Conducta Alimentaria , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/fisiología , Animales , Tronco Encefálico/fisiología , Tronco Encefálico/metabolismo , Ratones , Masculino , Conducta Alimentaria/fisiología , Neuronas GABAérgicas/fisiología , Neuronas GABAérgicas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ingestión de Alimentos/fisiología , Ratones Endogámicos C57BL , Femenino
2.
Neuron ; 111(10): 1651-1665.e5, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-36924773

RESUMEN

Feeding requires sophisticated orchestration of neural processes to satiate appetite in natural, capricious settings. However, the complementary roles of discrete neural populations in orchestrating distinct behaviors and motivations throughout the feeding process are largely unknown. Here, we delineate the behavioral repertoire of mice by developing a machine-learning-assisted behavior tracking system and show that feeding is fragmented and divergent motivations for food consumption or environment exploration compete throughout the feeding process. An iterative activation sequence of agouti-related peptide (AgRP)-expressing neurons in arcuate (ARC) nucleus, GABAergic neurons in the lateral hypothalamus (LH), and in dorsal raphe (DR) orchestrate the preparation, initiation, and maintenance of feeding segments, respectively, via the resolution of motivational conflicts. The iterative neural processing sequence underlying the competition of divergent motivations further suggests a general rule for optimizing goal-directed behaviors.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Neuronas GABAérgicas , Ratones , Animales , Núcleo Arqueado del Hipotálamo/fisiología , Neuronas GABAérgicas/metabolismo , Apetito , Área Hipotalámica Lateral , Proteína Relacionada con Agouti/metabolismo , Conducta Alimentaria
3.
Nutrients ; 14(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35956293

RESUMEN

d-allulose, a rare sugar, has sweetness with few calories. d-allulose regulates feeding and glycemia, and ameliorates hyperphagia, obesity and diabetes. All these functions involve the central nervous system. However, central mechanisms underlying these effects of d-allulose remain unknown. We recently reported that d-allulose activates the anorexigenic neurons in the hypothalamic arcuate nucleus (ARC), the neurons that respond to glucagon-like peptide-1 and that express proopiomelanocortin. However, its action on the orexigenic neurons remains unknown. This study investigated the effects of d-allulose on the ARC neurons implicated in hunger, by measuring cytosolic Ca2+ concentration ([Ca2+]i) in single neurons. d-allulose depressed the increases in [Ca2+]i induced by ghrelin and by low glucose in ARC neurons and inhibited spontaneous oscillatory [Ca2+]i increases in neuropeptide Y (NPY) neurons. d-allulose inhibited 10 of 35 (28%) ghrelin-responsive, 18 of 60 (30%) glucose-sensitive and 3 of 8 (37.5%) NPY neurons in ARC. Intracerebroventricular injection of d-allulose inhibited food intake at 20:00 and 22:00, the early dark phase when hunger is promoted. These results indicate that d-allulose suppresses hunger-associated feeding and inhibits hunger-promoting neurons in ARC. These central actions of d-allulose represent the potential of d-allulose to inhibit the hyperphagia with excessive appetite, thereby counteracting obesity and diabetes.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Neuropéptido Y , Animales , Apetito , Núcleo Arqueado del Hipotálamo/fisiología , Ingestión de Alimentos , Fructosa , Ghrelina/farmacología , Glucosa/farmacología , Hiperfagia/prevención & control , Ratones , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Obesidad/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley
5.
Nutrients ; 13(9)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34578979

RESUMEN

Environmental cues recalling palatable foods motivate eating beyond metabolic need, yet the timing of this response and whether it can develop towards a less palatable but readily available food remain elusive. Increasing evidence indicates that external stimuli in the olfactory modality communicate with the major hub in the feeding neurocircuitry, namely the hypothalamic arcuate nucleus (Arc), but the neural substrates involved have been only partially uncovered. By means of a home-cage hidden palatable food paradigm, aiming to mimic ubiquitous exposure to olfactory food cues in Western societies, we investigated whether the latter could drive the overeating of plain chow in non-food-deprived male rats and explored the neural mechanisms involved, including the possible engagement of the orexigenic ghrelin system. The olfactory detection of a familiar, palatable food impacted upon meal patterns, by increasing meal frequency, to cause the persistent overconsumption of chow. In line with the orexigenic response observed, sensing the palatable food in the environment stimulated food-seeking and risk-taking behavior, which are intrinsic components of food acquisition, and caused active ghrelin release. Our results suggest that olfactory food cues recruited intermingled populations of cells embedded within the feeding circuitry within the Arc, including, notably, those containing the ghrelin receptor. These data demonstrate the leverage of ubiquitous food cues, not only for palatable food searching, but also to powerfully drive food consumption in ways that resonate with heightened hunger, for which the orexigenic ghrelin system is implicated.


Asunto(s)
Señales (Psicología) , Conducta Alimentaria , Hiperfagia/fisiopatología , Olfato , Animales , Núcleo Arqueado del Hipotálamo/fisiología , Condicionamiento Operante , Conducta Alimentaria/fisiología , Conducta Alimentaria/psicología , Ghrelina/sangre , Hiperfagia/etiología , Masculino , Vías Nerviosas/fisiología , Ratas , Ratas Sprague-Dawley , Gusto/fisiología
6.
Front Endocrinol (Lausanne) ; 12: 727915, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34526970

RESUMEN

In obesity and type 2 diabetes, numerous genes are differentially expressed, and microRNAs are involved in transcriptional regulation of target mRNAs, but miRNAs critically involved in the appetite control are not known. Here, we identified upregulation of miR-342-3p and its host gene Evl in brain and adipose tissues in C57BL/6 mice fed with high fat-high sucrose (HFHS) chow by RNA sequencing. Mir342 (-/-) mice fed with HFHS chow were protected from obesity and diabetes. The hypothalamic arcuate nucleus neurons co-express Mir342 and EVL. The percentage of activated NPY+pSTAT3+ neurons were reduced, while POMC+pSTAT3+ neurons increased in Mir342 (-/-) mice, and they demonstrated the reduction of food intake and amelioration of metabolic phenotypes. Snap25 was identified as a major target gene of miR-342-3p and the reduced expression of Snap25 may link to functional impairment hypothalamic neurons and excess of food intake. The inhibition of miR-342-3p may be a potential candidate for miRNA-based therapy.


Asunto(s)
Regulación del Apetito/genética , MicroARNs/genética , Obesidad , Células 3T3-L1 , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/fisiología , Células Cultivadas , Dieta Alta en Grasa , Regulación de la Expresión Génica , Humanos , Hipotálamo/metabolismo , Hipotálamo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , MicroARNs/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Obesidad/etiología , Obesidad/genética , Obesidad/metabolismo , Regulación hacia Arriba/genética
7.
Cell Rep ; 36(6): 109502, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34380037

RESUMEN

Enhanced appetite occurs as a means of behavioral thermoregulation at low temperature. Neural circuitry mediating this crosstalk between behavioral thermoregulation and energy homeostasis remains to be elucidated. We find that the hypothalamic orexigenic agouti-related neuropeptide (AgRP) neurons in the arcuate nucleus (ARC) are profoundly activated by cold exposure. The calcium signals in ARCAgRP neurons display an immediate-response pattern in response to cold stimulation. Cold-responsive neurons in the medial preoptic area (mPOA) make excitatory synapses onto ARCAgRP neurons. Inhibition of either ARCAgRP neurons or ARC-projecting mPOA neurons attenuates cold-evoked feeding, while activation of the mPOA-to-ARC projection increases food intake. These findings reveal an mPOA-ARCAgRP neural pathway that modulates cold-evoked feeding behavior.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Núcleo Arqueado del Hipotálamo/fisiología , Frío , Conducta Alimentaria , Vías Nerviosas/fisiología , Área Preóptica/fisiología , Animales , Ratones Endogámicos C57BL , Neuronas/metabolismo , Sinapsis/metabolismo
8.
Front Endocrinol (Lausanne) ; 12: 705267, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220725

RESUMEN

Emerging evidence identifies a potent role for aerobic exercise to modulate activity of neurons involved in regulating appetite; however, these studies produce conflicting results. These discrepancies may be, in part, due to methodological differences, including differences in exercise intensity and pre-exercise energy status. Consequently, the current study utilized a translational, well-controlled, within-subject, treadmill exercise protocol to investigate the differential effects of energy status and exercise intensity on post-exercise feeding behavior and appetite-controlling neurons in the hypothalamus. Mature, untrained male mice were exposed to acute sedentary, low (10m/min), moderate (14m/min), and high (18m/min) intensity treadmill exercise in a randomized crossover design. Fed and 10-hour-fasted mice were used, and food intake was monitored 48h. post-exercise. Immunohistochemical detection of cFOS was performed 1-hour post-exercise to determine changes in hypothalamic NPY/AgRP, POMC, tyrosine hydroxylase, and SIM1-expressing neuron activity concurrent with changes in food intake. Additionally, stains for pSTAT3tyr705 and pERKthr202/tyr204 were performed to detect exercise-mediated changes in intracellular signaling. Results demonstrated that fasted high intensity exercise suppressed food intake compared to sedentary trials, which was concurrent with increased anorexigenic POMC neuron activity. Conversely, fed mice experienced augmented post-exercise food intake, with no effects on POMC neuron activity. Regardless of pre-exercise energy status, tyrosine hydroxylase and SIM1 neuron activity in the paraventricular nucleus was elevated, as well as NPY/AgRP neuron activity in the arcuate nucleus. Notably, these neuronal changes were independent from changes in pSTAT3tyr705 and pERKthr202/tyr204 signaling. Overall, these results suggest fasted high intensity exercise may be beneficial for suppressing food intake, possibly due to hypothalamic POMC neuron excitation. Furthermore, this study identifies a novel role for pre-exercise energy status to differentially modify post-exercise feeding behavior and hypothalamic neuron activity, which may explain the inconsistent results from studies investigating exercise as a weight loss intervention.


Asunto(s)
Núcleo Arqueado del Hipotálamo/fisiología , Metabolismo Energético , Conducta Alimentaria , Neuronas/fisiología , Condicionamiento Físico Animal , Proopiomelanocortina/metabolismo , Animales , Hipotálamo/fisiología , Masculino , Ratones , Transducción de Señal
9.
Clin Neurophysiol ; 132(8): 1966-1973, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34119407

RESUMEN

OBJECTIVE: We examined the feasibility of using cortico-cortical evoked potentials (CCEPs) to monitor the major cortical white matter tract involved in language, the arcuate fasciculus (AF), during surgery under general anaesthesia. METHODS: We prospectively recruited nine patients undergoing surgery for lesions in the left peri-sylvian cortex, for whom awake surgery was not indicated. High angular resolution diffusion imaging (HARDI) tractography was used to localise frontal and temporal AF terminations, which guided intraoperative cortical strip placement. RESULTS: CCEPs were successfully evoked in 5/9 patients, showing a positive potential (P1) at 12 ms and a negative component (N1) at 21 ms when stimulating from the frontal lobe and recording in the temporal lobe. CCEP responses peaked in the posterior middle temporal gyrus. No CCEPs were evoked when stimulating temporal sites and recording from frontal contacts. CONCLUSION: For the first time, we show that CCEPs can be evoked from the peri-sylvian cortices also in adult patients who are not candidates for awake procedures. Our results are akin to those described in the awake setting and suggest the recorded activity is conveyed by the arcuate fasciculus. SIGNIFICANCE: This intraoperative approach may have promising implications in reducing deficits in patients that require surgery in language areas under general anesthesia.


Asunto(s)
Anestesia General/métodos , Núcleo Arqueado del Hipotálamo/fisiología , Corteza Cerebral/fisiología , Potenciales Evocados/fisiología , Monitorización Neurofisiológica Intraoperatoria/métodos , Red Nerviosa/fisiología , Adulto , Anciano , Núcleo Arqueado del Hipotálamo/diagnóstico por imagen , Núcleo Arqueado del Hipotálamo/cirugía , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/fisiopatología , Neoplasias Encefálicas/cirugía , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/cirugía , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/cirugía , Estudios Prospectivos
10.
Cereb Cortex ; 31(9): 3975-3985, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34037726

RESUMEN

Musical training is thought to be related to improved language skills, for example, understanding speech in background noise. Although studies have found that musicians and nonmusicians differed in morphology of bilateral arcuate fasciculus (AF), none has associated such white matter features with speech-in-noise (SIN) perception. Here, we tested both SIN and the diffusivity of bilateral AF segments in musicians and nonmusicians using diffusion tensor imaging. Compared with nonmusicians, musicians had higher fractional anisotropy (FA) in the right direct AF and lower radial diffusivity in the left anterior AF, which correlated with SIN performance. The FA-based laterality index showed stronger right lateralization of the direct AF and stronger left lateralization of the posterior AF in musicians than nonmusicians, with the posterior AF laterality predicting SIN accuracy. Furthermore, hemodynamic activity in right superior temporal gyrus obtained during a SIN task played a full mediation role in explaining the contribution of the right direct AF diffusivity on SIN performance, which therefore links training-related white matter plasticity, brain hemodynamics, and speech perception ability. Our findings provide direct evidence that differential microstructural plasticity of bilateral AF segments may serve as a neural foundation of the cross-domain transfer effect of musical experience to speech perception amid competing noise.


Asunto(s)
Núcleo Arqueado del Hipotálamo/fisiología , Núcleo Arqueado del Hipotálamo/ultraestructura , Percepción Auditiva/fisiología , Música/psicología , Ruido , Percepción del Habla/fisiología , Anisotropía , Núcleo Arqueado del Hipotálamo/diagnóstico por imagen , Circulación Cerebrovascular , Imagen de Difusión Tensora , Femenino , Lateralidad Funcional , Humanos , Masculino , Plasticidad Neuronal/fisiología , Lóbulo Temporal/irrigación sanguínea , Lóbulo Temporal/fisiología , Sustancia Blanca/fisiología , Adulto Joven
11.
Domest Anim Endocrinol ; 74: 106499, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32858465

RESUMEN

Vasoactive intestinal polypeptide (VIP) is involved in gastric smooth muscle relaxation, vasodilation, and gastric secretions. It is also associated with appetite regulation, eliciting an anorexigenic response in mammals, birds, and fish; however, the molecular mechanism mediating this response is not well understood. The aim of the present study was thus to investigate hypothalamic mechanisms mediating VIP-induced satiety in 7-d old Japanese quail. In experiment 1, chicks that received intracerebroventricular (ICV) injection of VIP had reduced food intake for up to 180 min after injection and reduced water intake for 90 min. In experiment 2, VIP-treated chicks that were food restricted did not reduce water intake. In experiment 3, there was increased c-Fos immunoreactivity in the arcuate (ARC) and dorsomedial (DMN) nuclei of the hypothalamus in VIP-injected quail. In experiment 4, ICV VIP was associated with decreased neuropeptide Y mRNA in the ARC and DMN and an increase in corticotropin releasing factor mRNA in the DMN. In experiment 5, VIP-treated chicks displayed fewer feed pecks and locomotor behaviors. These results demonstrate that central VIP causes anorexigenic effects that are likely associated with reductions in orexigenic tone involving the ARC and DMN.


Asunto(s)
Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Coturnix , Núcleo Hipotalámico Dorsomedial/efectos de los fármacos , Péptido Intestinal Vasoactivo/farmacología , Animales , Núcleo Arqueado del Hipotálamo/fisiología , Conducta Animal/efectos de los fármacos , Núcleo Hipotalámico Dorsomedial/fisiología , Relación Dosis-Respuesta a Droga , Ingestión de Líquidos/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Inmunohistoquímica/veterinaria , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Péptido Intestinal Vasoactivo/administración & dosificación
12.
Neuroendocrinology ; 111(1-2): 45-69, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32028278

RESUMEN

OBJECTIVE: We examined whether pituitary adenylate cyclase-activating polypeptide (PACAP) excites proopiomelanocortin (POMC) neurons via PAC1 receptor mediation and transient receptor potential cation (TRPC) channel activation. METHODS: Electrophysiological recordings were done in slices from both intact male and ovariectomized (OVX) female PACAP-Cre mice and eGFP-POMC mice. RESULTS: In recordings from POMC neurons in eGFP-POMC mice, PACAP induced a robust inward current and increase in conductance in voltage clamp, and a depolarization and increase in firing in current clamp. These postsynaptic actions were abolished by inhibitors of the PAC1 receptor, TRPC channels, phospholipase C, phosphatidylinositol-3-kinase, and protein kinase C. Estradiol augmented the PACAP-induced inward current, depolarization, and increased firing, which was abrogated by estrogen receptor (ER) antagonists. In optogenetic recordings from POMC neurons in PACAP-Cre mice, high-frequency photostimulation induced inward currents, depolarizations, and increased firing that were significantly enhanced by Gq-coupled membrane ER signaling in an ER antagonist-sensitive manner. Importantly, the PACAP-induced excitation of POMC neurons was notably reduced in obese, high-fat (HFD)-fed males. In vivo experiments revealed that intra-arcuate nucleus (ARC) PACAP as well as chemogenetic and optogenetic stimulation of ventromedial nucleus (VMN) PACAP neurons produced a significant decrease in energy intake accompanied by an increase in energy expenditure, effects blunted by HFD in males and partially potentiated by estradiol in OVX females. CONCLUSIONS: These findings reveal that the PACAP-induced activation of PAC1 receptor and TRPC5 channels at VMN PACAP/ARC POMC synapses is potentiated by estradiol and attenuated under conditions of diet-induced obesity/insulin resistance. As such, they advance our understanding of how PACAP regulates the homeostatic energy balance circuitry under normal and pathophysiological circumstances.


Asunto(s)
Núcleo Arqueado del Hipotálamo/fisiología , Metabolismo Energético/fisiología , Neuronas/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Proopiomelanocortina , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/fisiología , Canales de Potencial de Receptor Transitorio/fisiología , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Fenómenos Electrofisiológicos , Metabolismo Energético/efectos de los fármacos , Femenino , Cobayas , Homeostasis , Masculino , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/efectos de los fármacos
13.
Front Neural Circuits ; 14: 595783, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33250721

RESUMEN

Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC) plays an essential role in the control of food intake and energy expenditure. Melanocortin-4 receptors (MC4Rs) are expressed in key areas that are implicated in regulating energy homeostasis. Although the importance of MC4Rs in the paraventricular hypothalamus (PVH) has been well documented, the role of MC4Rs in the medial amygdala (MeA) on feeding remains controversial. In this study, we specifically examine the role of a novel ARCPOMC→MeA neural circuit in the regulation of short-term food intake. To map a local melanocortinergic neural circuit, we use monosynaptic anterograde as well as retrograde viral tracers and perform double immunohistochemistry to determine the identity of the neurons receiving synaptic input from POMC neurons in the ARC. To investigate the role of the ARCPOMC→MeA projection on feeding, we optogenetically stimulate channelrhodopsin-2 (ChR2)-expressing POMC fibers in the MeA. Anterograde viral tracing studies reveal that ARC POMC neurons send axonal projections to estrogen receptor-α (ER-α)- and MC4R-expressing neurons in the MeA. Retrograde viral tracing experiments show that the neurons projecting to the MeA is located mainly in the lateral part of the ARC. Optogenetic stimulation of the ARCPOMC→MeA pathway reduces short-term food intake. This anorectic effect is blocked by treatment with the MC4R antagonist SHU9119. In addition to the melanocortinergic local circuits within the hypothalamus, this extrahypothalamic ARCPOMC→MeA neural circuit would play a role in regulating short-term food intake.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Ingestión de Alimentos/fisiología , Receptor alfa de Estrógeno/metabolismo , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Receptor de Melanocortina Tipo 4/metabolismo , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/fisiología , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/fisiología , Ingestión de Alimentos/efectos de los fármacos , Hormonas Estimuladoras de los Melanocitos/farmacología , Ratones , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas/efectos de los fármacos , Neuronas/fisiología , Optogenética , Receptor de Melanocortina Tipo 4/antagonistas & inhibidores
14.
Curr Biol ; 30(23): 4579-4593.e7, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-32976803

RESUMEN

Locomotion requires energy, yet animals need to increase locomotion in order to find and consume food in energy-deprived states. While such energy homeostatic coordination suggests brain origin, whether the central melanocortin 4 receptor (Mc4r) system directly modulates locomotion through motor circuits is unknown. Here, we report that hypothalamic Pomc neurons in zebrafish and mice have long-range projections into spinal cord regions harboring Mc4r-expressing V2a interneurons, crucial components of the premotor networks. Furthermore, in zebrafish, Mc4r activation decreases the excitability of spinal V2a neurons as well as swimming and foraging, while systemic or V2a neuron-specific blockage of Mc4r promotes locomotion. In contrast, in mice, electrophysiological recordings revealed that two-thirds of V2a neurons in lamina X are excited by the Mc4r agonist α-MSH, and acute inhibition of Mc4r signaling reduces locomotor activity. In addition, we found other Mc4r neurons in spinal lamina X that are inhibited by α-MSH, which is in line with previous studies in rodents where Mc4r agonists reduced locomotor activity. Collectively, our studies identify spinal V2a interneurons as evolutionary conserved second-order neurons of the central Mc4r system, providing a direct anatomical and functional link between energy homeostasis and locomotor control systems. The net effects of this modulatory system on locomotor activity can vary between different vertebrate species and, possibly, even within one species. We discuss the biological sense of this phenomenon in light of the ambiguity of locomotion on energy balance and the different living conditions of the different species.


Asunto(s)
Núcleo Arqueado del Hipotálamo/fisiología , Interneuronas/metabolismo , Locomoción/fisiología , Proopiomelanocortina/metabolismo , Médula Espinal/fisiología , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Núcleo Arqueado del Hipotálamo/citología , Evolución Biológica , Fenómenos Electrofisiológicos/efectos de los fármacos , Ratones , Modelos Animales , Red Nerviosa/fisiología , Proopiomelanocortina/genética , Receptor de Melanocortina Tipo 4/agonistas , Receptor de Melanocortina Tipo 4/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Pez Cebra , Proteínas de Pez Cebra/agonistas , Proteínas de Pez Cebra/genética
15.
J Neuroendocrinol ; 32(9): e12898, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32885528

RESUMEN

Central action of the adipocyte hormone leptin via the neuropeptide Y (NPY) system is considered critical for energy homeostatic control. However, the precise mechanisms for this control are still not clear. To specifically investigate how leptin signalling on the NPY neurone contributes to the control of energy homeostasis, we generated an inducible adult-onset NPY neurone-specific leptin receptor (Lepr) knockout model and performed a comprehensive metabolic phenotyping study. Here, we show that the NPY neurone subpopulation that is directly responsive to leptin is not required for the inhibition of fasting-induced hyperphagia by leptin, although it is essential for the regulation of adiposity independent of changes in energy balance or diet composition. Furthermore, under obesogenic conditions such as a high-fat diet, a lack of Lepr signalling on NPY neurones results in significant increases in food intake and concomitant reductions in energy expenditure, leading to accelerated accumulation of fat mass. Collectively, these findings support the notion that Lepr-expressing NPY neurones act as the key relay point where peripheral adipose storage information is sensed, and corresponding responses are initiated to protect adipose reserves.


Asunto(s)
Adiposidad/genética , Núcleo Arqueado del Hipotálamo/fisiología , Metabolismo Energético/genética , Conducta Alimentaria/fisiología , Receptores de Leptina/fisiología , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/metabolismo , Dieta , Femenino , Leptina/metabolismo , Leptina/fisiología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Neuronas/fisiología , Neuropéptido Y/metabolismo , Receptores de Leptina/genética , Transducción de Señal/fisiología
16.
Nat Neurosci ; 23(10): 1253-1266, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32747789

RESUMEN

Maintaining healthy body weight is increasingly difficult in our obesogenic environment. Dieting efforts are often overpowered by the internal drive to consume energy-dense foods. Although the selection of calorically rich substrates over healthier options is identifiable across species, the mechanisms behind this choice remain poorly understood. Using a passive devaluation paradigm, we found that exposure to high-fat diet (HFD) suppresses the intake of nutritionally balanced standard chow diet (SD) irrespective of age, sex, body mass accrual and functional leptin or melanocortin-4 receptor signaling. Longitudinal recordings revealed that this SD devaluation and subsequent shift toward HFD consumption is encoded at the level of hypothalamic agouti-related peptide neurons and mesolimbic dopamine signaling. Prior HFD consumption vastly diminished the capacity of SD to alleviate the negative valence associated with hunger and the rewarding properties of food discovery even after periods of HFD abstinence. These data reveal a neural basis behind the hardships of dieting.


Asunto(s)
Núcleo Arqueado del Hipotálamo/fisiología , Conducta Consumatoria/fisiología , Dieta Alta en Grasa , Preferencias Alimentarias/fisiología , Neuronas/fisiología , Área Tegmental Ventral/fisiología , Proteína Relacionada con Agouti/fisiología , Animales , Dopamina/fisiología , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/fisiología , Optogenética
17.
World J Gastroenterol ; 26(20): 2472-2478, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32523305

RESUMEN

The regulation of food intake is a complex mechanism, and the hypothalamus is the main central structure implicated. In particular, the arcuate nucleus appears to be the most critical area in the integration of multiple peripheral signals. Among these signals, those originating from the white adipose tissue and the gastrointestinal tract are known to be involved in the regulation of food intake. The present paper focuses on adiponectin, an adipokine secreted by white adipose tissue, which is reported to have a role in the control of feeding by acting centrally. The recent observation that adiponectin is also able to influence gastric motility raises the question of whether this action represents an additional peripheral mechanism that concurs with the central effects of the hormone on food intake. This possibility, which represents an emerging aspect correlating the central and peripheral effects of adiponectin in the hunger-satiety cycle, is discussed in the present paper.


Asunto(s)
Adiponectina/metabolismo , Núcleo Arqueado del Hipotálamo/fisiología , Conducta Alimentaria/fisiología , Estómago/fisiología , Tejido Adiposo Blanco/metabolismo , Animales , Motilidad Gastrointestinal , Humanos , Modelos Animales , Proopiomelanocortina/metabolismo , Respuesta de Saciedad/fisiología
18.
Mol Cells ; 43(7): 600-606, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32489185

RESUMEN

Numerous physiological processes in nature have multiple oscillations within 24 h, that is, ultradian rhythms. Compared to the circadian rhythm, which has a period of approximately one day, these short oscillations range from seconds to hours, and the mechanisms underlying ultradian rhythms remain largely unknown. This review aims to explore and emphasize the implications of ultradian rhythms and their underlying regulations. Reproduction and developmental processes show ultradian rhythms, and these physiological systems can be regulated by short biological rhythms. Specifically, we recently uncovered synchronized calcium oscillations in the organotypic culture of hypothalamic arcuate nucleus (ARN) kisspeptin neurons that regulate reproduction. Synchronized calcium oscillations were dependent on voltage-gated ion channel-mediated action potentials and were repressed by chemogenetic inhibition, suggesting that the network within the ARN and between the kisspeptin population mediates the oscillation. This minireview describes that ultradian rhythms are a general theme that underlies biological features, with special reference to calcium oscillations in the hypothalamic ARN from a developmental perspective. We expect that more attention to these oscillations might provide insight into physiological or developmental mechanisms, since many oscillatory features in nature still remain to be explored.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Señalización del Calcio , Kisspeptinas/metabolismo , Neuronas/metabolismo , Ritmo Ultradiano , Animales , Núcleo Arqueado del Hipotálamo/crecimiento & desarrollo , Núcleo Arqueado del Hipotálamo/fisiología , Señalización del Calcio/genética , Señalización del Calcio/fisiología , Humanos , Recién Nacido , Kisspeptinas/genética , Neuronas/citología , Ritmo Ultradiano/genética , Ritmo Ultradiano/fisiología
19.
Obesity (Silver Spring) ; 28 Suppl 1: S10-S17, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32538539

RESUMEN

In mammals, time and metabolism are tightly coupled variables; this relationship can be illustrated by numerous examples, such as the circadian variation in food intake or the circadian response to a glucose bolus. We review evidence that the interaction between the suprachiasmatic nucleus and the arcuate nucleus plays a key role in the execution of these functions. The nuclei are reciprocally connected via different projections, and this interaction provides an ideal anatomical framework to modify the temporal output of the hypothalamus to metabolic organs as a consequence of the feedback from the periphery. The suprachiasmatic nucleus-arcuate nucleus relationship is essential to integrate metabolic information into the circadian system and thus adapt circadian rhythms in core body temperature, locomotor activity, food intake, and circulating molecules such as glucose and corticosterone. With the rise in obesity-associated diseases in the world population, gaining knowledge about this relationship, and the consequences of disturbing this liaison, is essential to understand the pathogenesis of obesity.


Asunto(s)
Núcleo Arqueado del Hipotálamo/fisiología , Ritmo Circadiano/fisiología , Núcleo Supraquiasmático/fisiología , Femenino , Humanos , Masculino
20.
Artículo en Inglés | MEDLINE | ID: mdl-32380163

RESUMEN

Oxyntomodulin (OXM) is a proglucagon-derived peptide that suppresses hunger in humans. There are some differences in its food intake-inhibitory effects among species. The central mechanisms are unclear and it is unknown if OXM is more efficacious in a gallinaceous species that has not undergone as much selection for growth as the chicken. The objective was thus to determine the effects of OXM on food and water intake and hypothalamic physiology in Japanese quail. At 7 days post-hatch, 6-h-fasted quail were injected intracerebroventricularly (ICV) or intraperitoneally (IP) with 0.32, 0.65, or 1.3 nmol of OXM. All doses decreased food intake for 180 min post-ICV injection. On a cumulative basis, water intake was not affected until 120 min, with the lowest and highest doses decreasing water intake after ICV injection. The two highest doses were anorexigenic when administered via the IP route, whereas all doses were anti-dipsogenic starting at 30 min post-injection. In hypothalamic samples collected at 1-h post-ICV injection, there was an increase in c-Fos immunoreactivity, an indicator of recent neuronal activation, in the arcuate nucleus (ARC) and dorsomedial nucleus (DMN) of the hypothalamus in OXM-injected individuals. Results suggest that quail are more sensitive than chickens to the satiety-inducing effects of OXM. The central mechanism is likely mediated through a pathway in the ARC that is conserved among species, and through activation of the DMN, an effect that is unique to quail. Such knowledge is critical for facilitating the development of novel, side effect-free anti-eating strategies to promote weight-loss in obesity.


Asunto(s)
Apetito/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Coturnix/fisiología , Ingestión de Alimentos/efectos de los fármacos , Oxintomodulina/farmacología , Animales , Núcleo Arqueado del Hipotálamo/fisiología , Ingestión de Líquidos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA