Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 111
1.
Mikrochim Acta ; 191(7): 366, 2024 06 04.
Article En | MEDLINE | ID: mdl-38833071

Aristolochic acids (AAs), which are a group of nitrophenanthrene carboxylic acids formed by Aristolochia plant, have become an increasing serious threat to humans due to their nephrotoxicity and carcinogenicity. Fast and accurate approaches capable of simultaneous sensing of aristolochic acids (I-IV) are vital to avoid intake of such compounds. In this research, the novel ratiometric fluorescence zinc metal-organic framework and its nanowire have been prepared. The two different coordination modes (tetrahedral configuration and twisted triangular bipyramidal configuration) within zinc metal-organic framework lead to the significant double emissions. The ratiometric fluorescence approach based on nanowire provides a broader concentration range (3.00 × 10-7~1.00 × 10-4 M) and lower limit of detection (3.70 × 10-8 M) than that based on zinc metal-organic framework (1.00 × 10-6~1.00 × 10-4 M, 5.91 × 10-7 M). The RSDs of the results are in the range 1.4-3.5% (nanowire). The density functional theory calculations and UV-Vis absorption verify that the sensing mechanism is due to charge transfer and energy transfer. Excellent spiked recoveries for AAs(I-IV) in soil and water support that nanowire is competent to simultaneously detect these targets in real samples, and the proposed approach has potential as a fluorescence sensing platform for the simultaneous detection of AAs (I-IV) in complex systems.


Aristolochic Acids , Limit of Detection , Metal-Organic Frameworks , Nanowires , Aristolochic Acids/analysis , Aristolochic Acids/chemistry , Metal-Organic Frameworks/chemistry , Nanowires/chemistry , Zinc/chemistry , Spectrometry, Fluorescence/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Luminescent Measurements/methods , Fluorescent Dyes/chemistry
2.
Toxicon ; 244: 107771, 2024 Jun.
Article En | MEDLINE | ID: mdl-38795849

In recent years, the nephrotoxicity and carcinogenicity of aristolochic acid have attracted worldwide attention, and the traditional Chinese medicine containing this ingredient has been banned in many places, affecting the TCM industry. To meet this challenge, researchers have developed various detection methods, such as high-performance liquid chromatography, gas chromatography-mass spectrometry and thin-layer chromatography. A rapid detection method must therefore be developed to ensure safety. A polyclonal antibody capable of recognizing aristolochic acid was prepared, and an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was established to detect the amount of aristolochic acid in the sample to be measured. Methods Using 1-(4-chlorophenyl) cyclobutylamine as a hapten, immunogens and coating antigens were obtained by coupling with bovine serum albumin (BSA) and chicken ovalbumin (OVA) using the active ester method. UV scanning confirmed the successful coupling of the conjugate, and New Zealand white rabbits were immunized. The obtained antibody serum was screened for the best antibody by ic-ELISA detection. Use the chessboard method to determine three optimal combinations of original coating concentration and antibody dilution ratio, establish a standard curve for each combination to obtain the best combination, and establish a rapid detection method. Finally, the standard aristolochic acid A was added to the purchased apple vinegar and canned coffee for recycling experiments to verify the detection method.By changing the antigen antibody concentration, the antibody showed the highest sensitivity to aristolochic acid standard at the original coating, 1000-fold dilution, IC50 of 24.88 ng/mL, limit of detection IC10 of 3.19 ng/mL, and detection range IC20-IC80 of 6.81-90.91 ng/mL. The recovery experiments under this conditions yielded a recovery rate of 92%-105%, within reasonable limits, indicating the success of the ELISA rapid detection method. Conclusion The enzyme-linked immunoassay method established in this paper can quickly detect the content of aristolochic acid in the sample to be tested, and the antibody prepared by this method has good broad-spectrum and can detect other aristolochic acid, such as aristolochic acid A, aristolochic acid B, aristolochic acid C, and aristolochic acid D.


Aristolochic Acids , Enzyme-Linked Immunosorbent Assay , Aristolochic Acids/analysis , Enzyme-Linked Immunosorbent Assay/methods , Animals , Rabbits , Antibodies , Haptens
3.
Chem Res Toxicol ; 37(6): 873-877, 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38780306

Emerging evidence showing urothelial cancer in herbalists is linked to aristolochic acid (AA) exposure; however, the exposure pathway remains unclear. Here, we show that dermal contact and inhalation of fine powders of AA-containing herbs are significant occupational AA exposure pathways for herbalists. We initiated the study by quantifying the amount of AA in the AA-containing powder deposited on gloves and face masks worn by the operators of an AA-containing herb grinding machine. Then, we measured the kinetics of dermal absorption and dissolution of AA from fine powders of AA-containing herbs into artificial sweat and surrogate lung fluid. Lastly, we quantified the mutagenic AA-DNA adduct levels formed in the kidneys of mice exposed to AA-containing fine powders through dermal contact. Our findings highlight an urgent occupational risk that should demand implementation of safety standards for herbalists exposed to AA-containing fine powders.


Aristolochic Acids , Occupational Exposure , Powders , Aristolochic Acids/analysis , Occupational Exposure/adverse effects , Powders/chemistry , Animals , Humans , Mice , DNA Adducts/analysis , Inhalation Exposure/adverse effects , Urothelium/drug effects , Urothelium/pathology , Traditional Medicine Practitioners
4.
Phytomedicine ; 121: 155092, 2023 Dec.
Article En | MEDLINE | ID: mdl-37804820

BACKGROUND: The risk of compounds/drugs, including aristolochic acid-induced nephrotoxicity remains high and is a significant public health concern. Therefore, it is particularly important to select reasonable animal models for rapid screening and evaluation of different samples with complex chemical systems. The zebrafish (Danio rerio) has been used to study chemical-induced renal toxicity. However, most of the published literature was performed on individual components or drugs, and the key evidence confirming the applicability of zebrafish larvae for the evaluation of aristolochic acid-related nephrotoxicity in complex chemical systems, such as in traditional Chinese medicine (TCM), was insufficient. METHODS: High-performance liquid chromatography (HPLC) was used to determine the content of aristolochic acid (AA) in herbs and Chinese patent medicines. The zebrafish larvae at 4 days post-fertilization (dpf) were used to evaluate the nephrotoxicity of various samples, respectively, based on the phenotype of the kidney and histological, and biochemical. Transcriptome technology was used to investigate the related signaling pathways and potential mechanisms after treatment with AA, which was verified by RT-PCR technology. RESULTS: The results showed that the total amounts of AAI, AAII, and ALI ranged from 0.0004 to 0.1858 g·g-1( %) from different samples, including Aristolochia debilis, Fibraurea recisa, Asarum, Wantongjingu tablets, Jiuweiqianghuo granules, and Xiaoqinglong granules in descending order. Moreover, compared with the negative/blank control, substantial changes in phenotype, histomorphology and biochemical parameters of renal function were observed in the groups challenged with the sublethal concentration of drugs. The transcriptomics results showed the upregulation of most genes in PERK/ATF4/CHOP, ATM/Chk2/p53, Caspase/Bax/Bcl-2a, TGF/Smad/ERK, PI3K/Akt, induced by aristolochic acid analogues, which were essentially consistent with those of the q-RT-PCR experiments, highlighting the similar toxicity response to the previously published article with the other traditional evaluation model. CONCLUSION: The stability, accuracy and feasibility of the zebrafish larval model in screening and evaluating the nephrotoxicity of TCM were validated for the first time on the AAs-related drugs in a unified manner, confirming and promoting the applicability of zebrafish in assessing nephrotoxicity of samples with complex chemical character.


Aristolochic Acids , Renal Insufficiency , Animals , Zebrafish , Phosphatidylinositol 3-Kinases/metabolism , Aristolochic Acids/toxicity , Aristolochic Acids/analysis , Aristolochic Acids/metabolism , Kidney/pathology , Renal Insufficiency/metabolism , Renal Insufficiency/pathology
5.
Anal Chem ; 95(33): 12365-12372, 2023 08 22.
Article En | MEDLINE | ID: mdl-37565718

Aristolochic acids (AAs) are nephrotoxic and carcinogenic nitrophenanthrene carboxylic acids produced naturally by plants from the Aristolochia and Asarum genera, which have been used extensively as herbal medicines. In addition to consuming AA-containing herbal medicinal products, there is emerging evidence that humans are also exposed to AA through the environment. In 2022, the World Health Organization (WHO) called for global action to remove AA exposure sources and to implement preventative measures against the development of AA-associated cancers. Herein, we report the development of a simple and efficient iron powder-packed reduction column that allows online post-column conversion of the nonfluorescing AA to its corresponding strongly fluorescing aristolactam (AL), facilitating the sensitive and selective detection of AA in herbal medicinal products, food grain, arable soil, or groundwater samples by high-performance liquid chromatography with fluorescence detection. Moreover, AL, a group of naturally occurring derivatives of AA that have demonstrated toxicity to cultured bacteria, human cells, and rats, is monitored and quantified simultaneously with AA in one single run without sacrificing sensitivity. In comparison with existing analytical methods for AA measurement, the newly developed method is not only inexpensive and less laborious, but it also offers improved sensitivity. We believe this novel method will find wide application in identifying the presence of AA in food, herbal medicines, and environmental samples, thus assisting in the identification and removal of AA exposure sources.


Aristolochic Acids , Drugs, Chinese Herbal , Plants, Medicinal , Humans , Rats , Animals , Chromatography, High Pressure Liquid/methods , Aristolochic Acids/analysis , Plants, Medicinal/chemistry , Herbal Medicine , Drugs, Chinese Herbal/analysis
6.
Anal Methods ; 15(28): 3449-3456, 2023 07 20.
Article En | MEDLINE | ID: mdl-37409615

Aristolochic acid, a substance in herbs, is highly nephrotoxic, so it is crucial to develop an assay that can rapidly and accurately analyze its content. In this study, bowl-shaped hollow carbon spheres (BHCs) were synthesized using a complex template method, and a MoS2 layer was grown in situ on their surface using a hydrothermal method. The synthesized MoS2-BHCs were used to fabricate an electrochemical sensor for the ultrasensitive and highly selective detection of aristolochic acids (AAs). The optimal conditions for AA detection were determined by tailoring the amount of MoS2 used to modify the BHCs and the pH of the electrolyte. Under optimal conditions, the MoS2-BHC-based sensor presented excellent AA detection performance. The linear concentration ranges of the MoS2-BHC-based sensor for the detection of AA were 0.05-10 µmol L-1 and 10-80 µmol L-1, and the limit of detection of the sensor was 14.3 nmol L-1. Moreover, the MoS2-BHC-based sensor detected AA in Aristolochia and Asarum sieboldii samples. The results were consistent with high-performance liquid chromatography data, demonstrating the satisfactory recovery and accuracy of the sensor. Therefore, we believe that MoS2-BHC-based sensors can be used as effective platforms for detecting AA in traditional Chinese herbs.


Antineoplastic Agents , Aristolochic Acids , Molybdenum/chemistry , Aristolochic Acids/analysis , Aristolochic Acids/chemistry , Carbon , Chromatography, High Pressure Liquid/methods
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122918, 2023 Nov 05.
Article En | MEDLINE | ID: mdl-37269653

Herbs containing aristolochic acids (AAs) have already been proven to be highly carcinogenic and nephrotoxic. In this study, a novel surface-enhanced Raman scattering (SERS) identification method was developed. Ag-APS nanoparticles with a particle size of 3.53 ± 0.92 nm were produced by combining silver nitrate and 3-aminopropylsilatrane. The reaction between the carboxylic acid group of aristolochic acid I (AAI) and amine group of Ag-APS NPs was used to form amide bonds, and thus, concentrate AAI, rendering it easy to detect via SERS and amplified to obtain the best SERS enhancement effect. Detection limit was calculated to be approximately 40 nM. Using the SERS method, AAI was successfully detected in the samples of four Chinese herbal medicines containing AAI. Therefore, this method has a high potential to be applied in the future development of AAI analysis and rapid qualitative and quantitative analysis of AAI in dietary supplements and edible herbs.


Aristolochic Acids , Drugs, Chinese Herbal , Metal Nanoparticles , Nanoparticles , Aristolochic Acids/analysis , Spectrum Analysis, Raman/methods , Nanoparticles/chemistry , Drugs, Chinese Herbal/analysis , Metal Nanoparticles/chemistry
8.
Article En | MEDLINE | ID: mdl-37216764

Asarum and Aristolochia are two large genera of Aristolochiaceae plants containing typical toxicant aristolochic acid analogs(AAAs), AAAs can be deemed as toxicity markers of Aristolochiaceae plants. Based on the least AAAs in dry roots and rhizomes of Asarum heterotropoides, Asarum sieboldii Miq and Asarum sieboldii var, all of which are enrolled in the Chinese pharmacopeia up to now. AAAs distribution in Aristolochiaceae plants, especially Asarum L. plants, is still obscure and controversial due to few AAAs measured, unverified species of Asarum, and complicated pretreatment in analytical samples making the results more challenging to reproduce. In the present study, a simple ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method in dynamic multiple reaction monitoring mode for simultaneous determination of thirteen AAAs was developed for evaluating the distribution of toxicity phytochemicals in Aristolochiaceae plants. The sample was prepared by extracting Asarum and Aristolochia powder with methanol, and the supernatant was analyzed using the Agilent 6410 system on an ACQUITY UPLC HSS PFP column with gradient elution of water and acetonitrile, containing 1% v/v formic acid (FA) each, at a flow rate of 0.3 mL/min. The chromatographic condition provided good peak shape and resolution. The method was linear over the specific ranges with the coefficient of determination (R2) > 0.990. Satisfactory intra- and inter-day precisions were achieved with RSD less than 9.79%, and the average recovery factors obtained were in the range of 88.50%~105.49%%. The proposed method was successfully applied for simultaneous quantification of the 13 AAAs in 19 samples from 5 Aristolochiaceae species, especially three Asarum L. species enrolled in the Chinese Pharmacopoeia. Except Asarum heterotropoides, the results supported that the Chinese Pharmacopoeia (2020 Edition) adopting the root with rhizome as medicinal parts of Herba Asari instead of the whole herb for drug safety by providing scientific data.


Aristolochia , Aristolochiaceae , Aristolochic Acids , Asarum , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Aristolochic Acids/analysis , Asarum/chemistry , Aristolochia/chemistry
9.
World J Urol ; 41(4): 899-907, 2023 Apr.
Article En | MEDLINE | ID: mdl-35867141

PURPOSE: The high incidence of upper urinary tract urothelial carcinoma (UTUC) in Taiwan is largely due to exposure to aristolochic acid (AA), a principal component of Aristolochia-based herbal medicines. Here we systematically review the molecular epidemiology, clinical presentation and biomarkers associated with AA-induced UTUC. METHODS: This is a narrative review. Medline, Embase, and Web of Science were searched from inception to December 31, 2021. Studies evaluating the association, detection, and clinical characteristics of AA and UTUC were included. RESULTS: A nationwide database revealed 39% of the Taiwanese population had been exposed to AA-containing herbs between 1997 and 2003. Epidemiological reports revealed AA posed a significantly higher hazard for renal failure and UTUC in herbalists and the general population who ingested AA-containing herbs. The presence of aristolactam-DNA adducts and a distinctive signature mutation, A:T to T:A transversions, located predominantly on the non-transcribed DNA strand, with a strong preference for deoxyadenosine in a consensus sequence (CAG), was observed in many UTUC patients. Clinically, AA-related UTUC patients were characterized by a younger age, female gender, impaired renal function and recurrence of contralateral UTUC. To date, there are no preventive measures, except prophylactic nephrectomy, for subjects at risk of AA nephropathy or AA-related UTUC. CONCLUSION: AA exposure via Aristolochia-based herbal medicines is a problem throughout Taiwan, resulting in a high incidence of UTUC. Aristolactam-DNA adducts and a distinctive signature mutation, A:T to T:A transversions, can be used as biomarkers to identify AA-related UTUC. AA-related UTUC is associated with a high recurrence rate of contralateral UTUC.


Aristolochic Acids , Carcinoma, Transitional Cell , Drugs, Chinese Herbal , Kidney Neoplasms , Ureteral Neoplasms , Urinary Bladder Neoplasms , Urinary Tract , Humans , Female , Carcinoma, Transitional Cell/chemically induced , Carcinoma, Transitional Cell/epidemiology , Carcinoma, Transitional Cell/genetics , DNA Adducts/adverse effects , Drugs, Chinese Herbal/adverse effects , Taiwan/epidemiology , Carcinogens , Kidney Neoplasms/chemically induced , Kidney Neoplasms/epidemiology , Kidney Neoplasms/genetics , Aristolochic Acids/adverse effects , Aristolochic Acids/analysis , Ureteral Neoplasms/chemically induced , Ureteral Neoplasms/epidemiology
10.
Sci Total Environ ; 859(Pt 1): 159941, 2023 Feb 10.
Article En | MEDLINE | ID: mdl-36347294

Long-term dietary exposure of aristolochic acids (AAs)-contaminated food proved to be one of the main culprits of Endemic Nephropathy, renal failure; and urothelial cancer. The antibodies utilized in immunoassays for AAs suffer from low affinity and failure of recognition to the family of AAs. This study, we prepared a broad-specificity monoclonal antibody (mAb) 5H5 with highly and uniform affinity for AAs by help of computational chemistry fully exposing the AAs common structures of methoxy and hydroxyl groups. The mAb 5H5 exhibited half inhibitory concentrations of AAA, AAB, AAC, AAD were 0.03, 0.06, 0.05, 0.03 ng/mL. To explain the broad-specificity profile of mAb 5H5, molecular docking was performed. Results shown that multiple conformations of AAs can be flexibly oriented in the spacious cavity of single-chain variable fragment antibody (scFv) 5H5 and the specific hydron bonds were formed by ASN62 and GLY64 of scFV 5H5 to the nitro group of AAs which gave an explanation of the high cross-reactivity of mAb 5H5. The ELISA based on the broad-specificity mAb 5H5with detection limits of 0.04-0.11 µg/kg and 0.02-0.06 µg/kg for four AAs in flour and soil samples, respectively. The study provided a promising method for the family of AAs in environmental and food samples.


Aristolochic Acids , Balkan Nephropathy , Humans , Aristolochic Acids/analysis , Molecular Docking Simulation , Haptens , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Monoclonal/chemistry , Computers
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121880, 2023 Jan 15.
Article En | MEDLINE | ID: mdl-36130467

The use of Chinese herbs containing aristolochic acid can induce the exchange of adenine and thymine in gene mutations and even cause liver cancer. To eliminate the harm of aristolochic acids (AAs) to humans, a rapid and robust method of AAs screening is a prerequisite. In this work, a facile and robust Surface-enhanced Raman spectroscopy (SERS) method was used for the qualitative and quantitative detection of AAs in Chinese medicinal herbal preparations based on the mandelic acid modified Ag nanoparticles SERS substrate. Qualitative and quantitative SERS detection of Aristolochic acid I (AAI) was achieved with a good linear relationship ranging from 0.2 - 120.0 µM and a limit of detection (LOD) of 0.06 µM. The proposed method demonstrates a refined strategy for sensitivity analysis of AAs with the advantages of easy operation, time-saving, high sensitivity, and molecular specificity, making it a preferred platform for the screening of AAI in regular inspections of herbal products and regulatory supervision of the supply chain.


Aristolochic Acids , Drugs, Chinese Herbal , Metal Nanoparticles , Humans , Aristolochic Acids/analysis , Plant Preparations/analysis , Spectrum Analysis, Raman , Drugs, Chinese Herbal/analysis , Silver/analysis , China
12.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3693-3700, 2022 Jul.
Article Zh | MEDLINE | ID: mdl-35850825

The safety problem of traditional Chinese medicine containing aristolochic acid is of great concern in China and abraod, which poses a challenge in clinical application and supervision. There are many types of aristolochic acid analogues(AAAs) and 178 have been reported. According to the structure, they are classified into aristolochic acids(AAs) and aristololactams(ALs). The toxi-city is remarkably different among AAAs of different types. For example, AA-Ⅰ has strong nephrotoxicity and carcinogenicity, and the toxicity of AA-Ⅱ is lower than that of AA-Ⅰ. Besides, AA-Ⅳa and AA-Ⅰa are considered to have no obvious nephrotoxicity and carcinogenicity. The types and content of AAAs are significantly different among traditional Chinese medicines derived from different Aristolochiaceae species. For example, Asari Radix et Rhizoma and Aristolochiae Herba mainly consist of AAAs without obvious toxicity(such as AA-Ⅳa). The content of AAAs in compound preparations is related to the proportions of the medicinals and the processing method. The content of AA-Ⅰ in some compound preparations is very low or below the detection limit. Therefore, the author concludes that AAAs of different types have different toxicity, but not all AAAs has nephrotoxicity and carcinogenicity. Moreover, the toxicity of traditional Chinese medicines containing AAAs should not be generalized and AA-Ⅰ and AA-Ⅱ should be emphasized. In this paper, it is suggested that traditional Chinese medicine containing AAAs should be used rationally and research, analysis, and toxicological study of AAAs species and content should be strengthened. In addition, limit standards of AA-Ⅰ and AA-Ⅱ should be formulated and science-based supervision should be performed.


Aristolochia , Aristolochic Acids , Drug-Related Side Effects and Adverse Reactions , Drugs, Chinese Herbal , Aristolochia/chemistry , Aristolochic Acids/analysis , Aristolochic Acids/toxicity , Drugs, Chinese Herbal/chemistry , Humans , Medicine, Chinese Traditional , Risk Assessment
13.
Environ Sci Technol ; 55(13): 9024-9032, 2021 07 06.
Article En | MEDLINE | ID: mdl-34125507

Balkan endemic nephropathy (BEN) is a chronic tubulointerstitial nephropathy affecting residents of rural farming areas in many Balkan countries. Although it is generally believed that BEN is an environmental disease caused by multiple geochemical factors with much attention on aristolochic acids (AAs), its etiology remains controversial. In this study, we tested the hypothesis that environmental contamination and subsequent food contamination by polycyclic aromatic hydrocarbons (PAHs) and phthalate esters are AA toxicity factors and important to BEN development. We identified significantly higher concentrations of phenanthrene, anthracene, diethyl phthalate (DEP), dibutyl phthalate (DBP), and benzyl butyl phthalate (BBP) in both maize and wheat grain samples collected from endemic villages than from nonendemic villages. Other PAHs and phthalate esters were also detected at higher concentrations in the soil samples from endemic villages. Subsequent genotoxicity testing of cultured human kidney cells showed an alarming phenomenon that phenanthrene, DEP, BBP, and DBP can interact synergistically with AAs to form elevated levels of AA-DNA adducts, which are associated with both the nephrotoxicity and carcinogenicity of AAs, further increasing their disease risks. This study provides direct evidence that prolonged coexposure to these environmental contaminants via dietary intake may lead to greater toxicity and accelerated development of BEN.


Aristolochic Acids , Balkan Nephropathy , Polycyclic Aromatic Hydrocarbons , Aristolochic Acids/analysis , Aristolochic Acids/toxicity , Balkan Nephropathy/chemically induced , Balkan Nephropathy/epidemiology , Balkan Peninsula , DNA Adducts , Esters , Humans , Phthalic Acids , Polycyclic Aromatic Hydrocarbons/toxicity , Soil
14.
J Chromatogr A ; 1647: 462155, 2021 Jun 21.
Article En | MEDLINE | ID: mdl-33957350

Aristolochic acid Ⅰ is a nephrotoxic compound and exist in some traditional Chinese medicines at trace level. Up to now, specific enrichment of aristolochic acid Ⅰ remains important procedure and key problem in its analysis. In this study, melamine was proposed as the recognition unit and grafted on the surface of metal-organic framework to fabricate a specific material for aristolochic acid Ⅰ. This material was prepared by using a two-step strategy and the preparation process was optimized. The physical and chemical properties were investigated using scanning electron microscopy, Fourier-transfer infrared spectroscopy, X-ray diffraction and nitrogen adsorption-desorption techniques. Adsorption properties were evaluated by binding experiments. The melamine modified material exhibited a uniform morphology, high specific surface area (460.20 m2 g-1), high adsorption capacity (25.57 mg g-1), fast mass transfer rate and excellent selectivity. Further, a specific and sensitive method was established by using this material as adsorbent of mini-solid phase extraction. The limit of detection was as low as 0.02 µg mL-1. Therefore, melamine modified metal-organic framework is an ideal adsorbent for the recognition and enrichment of aristolochic acid Ⅰ.


Aristolochic Acids , Metal-Organic Frameworks/chemistry , Solid Phase Extraction/methods , Triazines/chemistry , Aristolochic Acids/analysis , Aristolochic Acids/chemistry , Aristolochic Acids/isolation & purification , Drugs, Chinese Herbal/chemistry , Limit of Detection , Medicine, Chinese Traditional
15.
Chem Res Toxicol ; 34(1): 144-153, 2021 01 18.
Article En | MEDLINE | ID: mdl-33410325

Emerging evidence suggests that chronic exposure to aristolochic acids (AAs) is one of the etiological pathways leading to chronic kidney disease (CKD). Due to the traditional practice of herbal medicine and AA-containing plants being used extensively as medicinal herbs, over 100 million East Asians are estimated to be at risk of AA poisoning. Given that the chronic nephrotoxicity of AAs only manifests itself after decades of exposure, early diagnosis of AA exposure could allow for timely intervention and disease risk reduction. However, an early detection method is not yet available, and diagnosis can only be established at the end stage of CKD. The goal of this study was to develop a highly sensitive and selective method to quantitate protein adducts of aristolochic acid I (AAI) as a biomarker of AA exposure. The method entails the release of protein-bound aristolactam I (ALI) by heat-assisted alkaline hydrolysis, extraction of ALI, addition of internal standard, and quantitation by liquid chromatography-tandem mass spectrometric analysis. Accuracy and precision of the method were critically evaluated using a synthetic ALI-containing glutathione adduct. The validated method was subsequently used to detect dose-dependent formation of ALI-protein adducts in human serum albumin exposed to AAI and in proteins isolated from the tissues and sera of AAI-exposed rats. Our time-dependent study showed that ALI-protein adducts remained detectable in rats even at 28 days postdosing. It is anticipated that the developed method will fill the technical gap in diagnosing AA intoxication and facilitate the biomonitoring of human exposures to AAs.


Aristolochic Acids/analysis , Biological Monitoring/methods , Chromatography, Liquid/methods , Glutathione/analysis , Serum Albumin, Human/chemistry , Tandem Mass Spectrometry/methods , Administration, Oral , Animals , Aristolochic Acids/administration & dosage , Biomarkers/analysis , Humans , Male , Molecular Structure , Rats , Rats, Sprague-Dawley
16.
Article En | MEDLINE | ID: mdl-32905990

In this study, modified UiO-66-NH2 and N-methylolacrylamide (NMA) were used as common monomers to prepare a metal organic framework (MOF)-based composite monolith through in-situ polymerization, which was used as a new adsorbent to purify and enrich aristolochic acid-I (AA-I) in medicinal plants. The MOF-based composite monolithic column was characterized by nitrogen adsorption-desorption isotherm, mercury intrusion porosimetry and scanning electron microscopy (SEM). The adsorption ability of MOF-based composite monolith for AA-I was compared with that of the polymer monolith without MOF added. The results proved that the addition of UiO-66-NH2 can increase both the specific surface area and the permeability of the monolith. Moreover, the adsorption amount of AA-I on the monolith improved. This proposed on-line solid phase extraction (SPE) method showed good linear relationship in the range 0.044 ~ 400 µg/mL with r = 0.9994; the limit of detection (LOD) was 13.08 ng/mL and the limit of quantification (LOQ) was 44.00 ng/mL; the intra-day and inter-day accuracies were less than 0.97%; the inter-column accuracies was less than 6.11%; the recovery was in the range of 91.11%~106.48%. The method was found to be easy, accurate and convenient for on-line enrichment and purification of AA-I in medicinal plants.


Aristolochic Acids/analysis , Metal-Organic Frameworks/chemistry , Plants, Medicinal/chemistry , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid/methods , Limit of Detection , Linear Models , Reproducibility of Results
17.
Chem Res Toxicol ; 33(9): 2446-2454, 2020 09 21.
Article En | MEDLINE | ID: mdl-32786545

Balkan endemic nephropathy (BEN) is a slowly progressive interstitial fibrotic disease affecting numerous people living along the Danube River in the Balkan Peninsula, of which aristolochic acids (AAs) produced naturally in Aristolochia plants are key etiological agents. However, the exposure biology of the disease remains poorly understood. Initially, the high incidence of BEN in the Balkan Peninsula was thought to occur through ingestion of bread prepared from flour made with wheat grains comingled with the seeds of Aristolochia clematitis L., an AA-containing weed that grows abundantly in the wheat fields of the affected areas. In this study, by a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, we show for the first time that vegetables, in particular root vegetables of endemic areas, are extensively contaminated with AAs taken up through root absorption from the AA-tainted soil. Furthermore, we found a pH dependence of the n-octanol/water partition coefficient (Kow) of AAs, which resulted in a dramatically higher hydrophobicity-driven plant uptake efficiency of AAs into food crops in endemic areas, characterized by higher acidity levels, compared to non-endemic areas. We believe the results of this study have significantly unraveled the mystery surrounding the uneven distribution of BEN incidence.


Aristolochic Acids/adverse effects , Aristolochic Acids/analysis , Balkan Nephropathy/chemically induced , Environmental Pollutants/adverse effects , Environmental Pollutants/analysis , Food Contamination/analysis , Aristolochia/chemistry , Chromatography, High Pressure Liquid , Food Supply , Humans , Hydrogen-Ion Concentration , Molecular Structure , Seeds/chemistry , Tandem Mass Spectrometry , Vegetables/chemistry
18.
J Chromatogr A ; 1609: 460455, 2020 Jan 04.
Article En | MEDLINE | ID: mdl-31443967

In this paper, a novel core-shell structure magnetic microsphere Fe3O4@SiO2-TPM@StVp(Fe3O4@SiO2-3-(trimethoxysilyl)propyl methacrylate@styrene and n-vinylpyrrolidone) was successfully synthesized and used as a magnetic solid-phase extraction adsorbent for extraction of aristolochic acid I (AAI) in traditional Chinese medicine soup. The prepared Fe3O4@SiO2-TPM@StVp was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and Fourier-transform infrared spectroscopy (FT-IR). The microspheres have various advantages of excellent hydrophilicity and π-electron system, which is very suitable for determining target analytes followed by high performance liquid chromatography (HPLC). The main factors, including the pH of samples, amount of adsorbent, adsorption time, elution solvent and desorption time, were optimized. Under optimal conditions, the proposed method showed a wide linear range of 0.4-10 µg/mL and a good correlation coefficient (R2 = 0.9918). The pretreatment procedure was achieved within 10 min. The recoveries of aristolochic acid I in real samples range from 80.9% to 89.6% with relative standard deviations less than 4.9%, highlighting the accuracy of this method.


Aristolochic Acids/analysis , Chromatography, High Pressure Liquid/methods , Magnetic Phenomena , Medicine, Chinese Traditional , Solid Phase Extraction/methods , Adsorption , Ferric Compounds/chemistry , Hydrogen-Ion Concentration , Methacrylates/chemistry , Microspheres , Reference Standards , Reproducibility of Results , Silicon Dioxide/chemistry , Solvents , Spectroscopy, Fourier Transform Infrared , Time Factors
19.
Rapid Commun Mass Spectrom ; 34 Suppl 1: e8547, 2020 Apr.
Article En | MEDLINE | ID: mdl-31392776

RATIONALE: Over the past six decades, residents of farming villages in multiple countries of the Balkan peninsula have been suffering from a unique type of chronic renal disease, Balkan endemic nephropathy (BEN). It was speculated that environmental pollution by aristolochic acids (AAs) produced naturally by Aristolochia clematitis L., a weed that grows in the area, was causing the disease. However, the human exposure pathway to this class of phytotoxin remains obscure. Knowledge of the sink and stability of AAs in the environment would assist in the formulation of policy reducing exposure risk. METHODS: Using our newly developed liquid chromatography/tandem mass spectrometry method of high sensitivity and selectivity, we analysed over 130 soil samples collected from cultivation fields in southern Serbia for the presence of AAs. The environmental stability of AAs was also investigated by incubating soil samples spiked with AAs at various temperatures. RESULTS: The analysis detected AA-I in over two-fifths of the tested samples at sub-µg/kg to µg/kg levels, with higher concentrations observed in more acidic farmland soil. Furthermore, analysis of soil samples incubated at various temperatures revealed half-lives of over 2 months, indicating that AAs are relatively resistant to degradation. CONCLUSIONS: Cultivation soil in southern Serbia is being extensively contaminated with AAs released from the decomposition of A. clematitis weeds. Since AAs are resistant to degradation, it is possible that AAs could have been taken up by root absorption and transported to the edible part of food crops. Prolonged exposure to AA-contaminated food grown from polluted soil could be one of the main aetiological mechanisms of BEN observed in the area.


Aristolochia/chemistry , Aristolochic Acids/analysis , Balkan Nephropathy/epidemiology , Soil/chemistry , Balkan Nephropathy/chemically induced , Chromatography, Liquid , Crops, Agricultural/chemistry , Humans , Serbia/epidemiology , Tandem Mass Spectrometry
20.
J Hazard Mater ; 385: 121550, 2020 03 05.
Article En | MEDLINE | ID: mdl-31732338

In this study, ordered mesoporous carbon (OMC) was synthesized by applying a soft template method, and its mesoporous structure was characterized by scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption-desorption techniques. X-ray diffraction and Raman spectroscopic analyses were conducted to demonstrate the high graphitization and topological defects at the sample surface. An electrochemical sensor based on an OMC-modified glassy carbon electrode (OMC/GCE) was constructed to detect aristolochic acids (AAs) using cyclic voltammetry and linear sweep voltammetry. The dependence of the experimental parameters including solution pH, scan rate, and accumulation time were examined and optimized. Under the optimal conditions, the response of OMC/GCE was linear over wide concentration ranges of AAs (0.6-10 µM and 10-50 µM), with sensitivities of -1.77 and -0.31 µA/µM, respectively. The limit of detection was calculated to be 0.186 µM (at S/N = 3). Furthermore, the proposed OMC/GCE was applied to detect AAs in Asarum sieboldini and the content of AAs was calculated to be 8.9 µg/g with high accuracy and precision. In addition, the modified electrode also exhibited good selectivity, reproducibility, and stability. Therefore, the OMC/GCE can be used as a platform for the determination of AAs.


Aristolochic Acids/analysis , Carbon/chemistry , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Asarum/chemistry , Drugs, Chinese Herbal/analysis , Hydrogen-Ion Concentration , Limit of Detection , Porosity , Reproducibility of Results
...