Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insect Biochem Mol Biol ; 163: 104040, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37995833

RESUMEN

ß-Glucosidases play an important role in the chemical defense of many insects by hydrolyzing and thereby activating glucosylated pro-toxins that are either synthesized de novo or sequestered from the insect's diet. The horseradish flea beetle, Phyllotreta armoraciae, sequesters pro-toxic glucosinolates from its brassicaceous host plants and possesses endogenous ß-thioglucosidase enzymes, known as myrosinases, for glucosinolate activation. Here, we identify three myrosinase genes in P. armoraciae (PaMyr) with distinct expression patterns during beetle ontogeny. By using RNA interference, we demonstrate that PaMyr1 is responsible for myrosinase activity in adults, whereas PaMyr2 is responsible for myrosinase activity in larvae. Compared to PaMyr1 and PaMyr2, PaMyr3 was only weakly expressed in our laboratory population, but may contribute to myrosinase activity in larvae. Silencing of PaMyr2 resulted in lower larval survival in a predation experiment and also reduced the breakdown of sequestered glucosinolates in uninjured larvae. This suggests that PaMyr2 is involved in both activated defense and the endogenous turnover of sequestered glucosinolates in P. armoraciae larvae. In activity assays with recombinant enzymes, PaMyr1 and PaMyr2 preferred different glucosinolates as substrates, which was consistent with the enzyme activities in crude protein extracts from adults and larvae, respectively. These differences were unexpected because larvae and adults sequester the same glucosinolates. Possible reasons for different myrosinase activities in Phyllotreta larvae and adults are discussed.


Asunto(s)
Escarabajos , Siphonaptera , Animales , Escarabajos/genética , Escarabajos/metabolismo , Larva/genética , Larva/metabolismo , Armoracia/metabolismo , Glucosinolatos/metabolismo , Siphonaptera/metabolismo , Glicósido Hidrolasas/genética
2.
Phytochemistry ; 216: 113886, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806466

RESUMEN

Armoracia rusticana P. G. Gaertner. belongs to the Brassicaceae family and has aroused scientific interest for its anti-inflammatory and anticancer activities. In a continuing investigation to discover bioactive constituents from A. rusticana, we isolated 19 phenolic glycosides including three undescribed flavonol glycosides and one undescribed neolignan glycoside from MeOH extract of this plant. Their structures were elucidated based on NMR spectroscopic analysis (1H, 13C, 1H-1H COSY, HSQC, and HMBC), HRESIMS, and chemical methods. The determination of their absolute configuration was accomplished by ECD and LC-MS analysis. All the compounds were assessed for their potential neurotrophic activity through induction of nerve growth factor in C6 glioma cell lines and for their anti-neuroinflammatory activity based on the measurement of inhibition levels of nitric oxide production and pro-inflammatory cytokines (i.e., IL-1ß, IL-6, and TNF-α) in lipopolysaccharide-activated microglia BV-2 cells.


Asunto(s)
Armoracia , Glicósidos , Glicósidos/farmacología , Glicósidos/análisis , Armoracia/química , Armoracia/metabolismo , Antiinflamatorios/farmacología , Línea Celular , Macrófagos/metabolismo , Raíces de Plantas/química , Óxido Nítrico
3.
Planta ; 257(2): 40, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653682

RESUMEN

MAIN CONCLUSION: We characterized an efficient chimeric sub-genomic transcript promoter from Horseradish Latent Virus, FHS4, active in both dicot and monocot plants, and it could be a potential tool for plant biotechnology. Plant pararetroviruses are a rich source of novel plant promoters widely used for biotechnological applications. Here, we comprehensively characterized a unique sub-genomic transcript (Sgt) promoter of Horseradish Latent Virus (HRLV) and identified a fragment (HS4; - 340 to + 10; 351 bp) that showed the highest expression of reporter genes in both transient and transgenic assays as evidenced by biochemical, histochemical GUS reporter assay and transcript analysis of uidA gene by qRT-PCR. Phylogenetic analysis showed that the HSgt promoter was closely related to the sub-genomic promoter of the Cauliflower Mosaic Virus (CaMV19S). We found that the as-1 element and W-box played an important role in the transcriptional activity of the HS4 promoter. Furthermore, the HS4 promoter was also induced by salicylic acid. Alongside, we enhanced the activity of the HS4 promoter by coupling the enhancer region from Figwort Mosaic Virus (FMV) promoter to the upstream region of it. This hybrid promoter FHS4 was around 1.1 times stronger than the most commonly used promoter, 35S (Cauliflower Mosaic Virus full-length transcript promoter), and was efficient in driving reporter genes in both dicot and monocot plants. Subsequently, transgenic tobacco plants expressing an anti-microbial peptide BrLTP2.1 (Brassica rapa lipid transport protein 2.1), under the control of the FHS4 promoter, were developed. The in vitro anti-fungal assay revealed that the plant-derived BrLTP2.1 protein driven by an FHS4 promoter manifested increased resistance against an important plant fungal pathogen, Alternaria alternata. Finally, we concluded that the FHS4 promoter can be used as an alternative to the 35S promoter and has a high potential to become an efficient tool in plant biotechnology.


Asunto(s)
Armoracia , Caulimovirus , Caulimovirus/genética , Armoracia/genética , Armoracia/metabolismo , Filogenia , Regiones Promotoras Genéticas/genética , Plantas Modificadas Genéticamente/genética , Genómica , Nicotiana/metabolismo , Glucuronidasa/genética , Glucuronidasa/metabolismo
4.
Biomolecules ; 10(2)2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098279

RESUMEN

Horseradish degradation products, mainly isothiocyanates (ITC) and nitriles, along with their precursors glucosinolates, were characterized by GC-MS and UHPLC-MS/MS, respectively. Volatiles from horseradish leaves and roots were isolated using microwave assisted-distillation (MAD), microwave hydrodiffusion and gravity (MHG) and hydrodistillation (HD). Allyl ITC was predominant in the leaves regardless of the isolation method while MAD, MHG, and HD of the roots resulted in different yields of allyl ITC, 2-phenylethyl ITC, and their nitriles. The antimicrobial potential of roots volatiles and their main compounds was assessed against sixteen emerging food spoilage and opportunistic pathogens. The MHG isolate was the most active, inhibiting bacteria at minimal inhibitory concentrations (MICs) from only 3.75 to 30 µg/mL, and fungi at MIC50 between <0.12 and 0.47 µg/mL. Cytotoxic activity of volatile isolates and their main compounds were tested against two human cancer cell lines using MTT assay after 72 h. The roots volatiles showed best cytotoxic activity (HD; IC50 = 2.62 µg/mL) against human lung A549 and human bladder T24 cancer cell lines (HD; IC50 = 0.57 µg/mL). Generally, 2-phenylethyl ITC, which was tested for its antimicrobial and cytotoxic activities along with two other major components allyl ITC and 3-phenylpropanenitrile, showed the best biological activities.


Asunto(s)
Armoracia/metabolismo , Glucosinolatos/metabolismo , Glucosinolatos/farmacología , Animales , Antiinfecciosos/farmacología , Hongos/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas/métodos , Glucosinolatos/aislamiento & purificación , Humanos , Isotiocianatos/química , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología , Hojas de la Planta/química , Raíces de Plantas/química , Espectrometría de Masas en Tándem/métodos
5.
Sci Rep ; 9(1): 14092, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575893

RESUMEN

Electron and proton transfer reactions in enzymes are enigmatic and have attracted a great deal of theoretical, experimental, and practical attention. The oxidoreductases provide model systems for testing theoretical predictions, applying experimental techniques to gain insight into catalytic mechanisms, and creating industrially important bio(electro)conversion processes. Most previous and ongoing research on enzymatic electron transfer has exploited a theoretically and practically sound but limited approach that uses a series of structurally similar ("homologous") substrates, measures reaction rate constants and Gibbs free energies of reactions, and analyses trends predicted by electron transfer theory. This approach, proposed half a century ago, is based on a hitherto unproved hypothesis that pre-exponential factors of rate constants are similar for homologous substrates. Here, we propose a novel approach to investigating electron and proton transfer catalysed by oxidoreductases. We demonstrate the validity of this new approach for elucidating the kinetics of oxidation of "non-homologous" substrates catalysed by compound II of Coprinopsis cinerea and Armoracia rusticana peroxidases. This study - using the Marcus theory - demonstrates that reactions are not only limited by electron transfer, but a proton is transferred after the electron transfer event and thus both events control the reaction rate of peroxidase-catalysed oxidation of substrates.


Asunto(s)
Hemo/metabolismo , Peroxidasas/metabolismo , Agaricales/enzimología , Agaricales/metabolismo , Armoracia/enzimología , Armoracia/metabolismo , Dominio Catalítico , Transporte de Electrón , Peroxidasa de Rábano Silvestre/metabolismo , Oxidación-Reducción
6.
Molecules ; 24(15)2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31382520

RESUMEN

Horseradish hairy root cultures are suitable plant tissue organs to study the glucosinolate-myrosinase-isothiocyanate system and also to produce the biologically active isothiocyanates and horseradish peroxidase, widely used in molecular biology. Fifty hairy root clones were isolated after Agrobacterium rhizogenes infection of surface sterilized Armoracia rusticana petioles and leaf blades, from which 21 were viable after antibiotic treatment. Biomass properties (e.g. dry weight %, daily growth index), glucosinolate content (analyzed by liquid chromatography-electronspray ionization-mass spectrometry (LC-ESI-MS/MS)), isothiocyanate and nitrile content (analyzed by gas chromatography-mass spectrometry (GC-MS)), myrosinase (on-gel detection) and horseradish peroxidase enzyme patterns (on-gel detection and spectrophotometry), and morphological features were examined with multi-variable statistical analysis. In addition to the several positive and negative correlations, the most outstanding phenomenon was many parameters of the hairy root clones showed dependence on the organ of origin. Among others, the daily growth index, sinigrin, glucobrassicin, 3-phenylpropionitrile, indole-3-acetonitrile and horseradish peroxidase values showed significantly higher levels in horseradish hairy root cultures initiated from leaf blades.


Asunto(s)
Armoracia/química , Armoracia/enzimología , Glucosinolatos/química , Isotiocianatos/química , Raíces de Plantas/química , Raíces de Plantas/enzimología , Armoracia/metabolismo , Glucosinolatos/metabolismo , Glucosinolatos/farmacología , Isotiocianatos/metabolismo , Isotiocianatos/farmacología , Redes y Vías Metabólicas , Estructura Molecular , Especificidad de Órganos , Raíces de Plantas/metabolismo
7.
Toxins (Basel) ; 11(5)2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121818

RESUMEN

The usage of insects as model organisms is becoming more and more common in toxicological, pharmacological, genetic and biomedical research. Insects, such as fruit flies (Drosophila melanogaster), locusts (Locusta migratoria), stick insects (Baculum extradentatum) or beetles (Tenebrio molitor) are used to assess the effect of different active compounds, as well as to analyse the background and course of certain diseases, including heart disorders. The goal of this study was to assess the influence of secondary metabolites extracted from Solanaceae and Brassicaceae plants: Potato (Solanum tuberosum), tomato (Solanum lycopersicum), black nightshade (Solanum nigrum) and horseradish (Armoracia rusticana), on T. molitor beetle heart contractility in comparison with pure alkaloids. During the in vivo bioassays, the plants glycoalkaloid extracts and pure substances were injected at the concentration 10-5 M into T. molitor pupa and evoked changes in heart activity. Pure glycoalkaloids caused mainly positive chronotropic effects, dependant on heart activity phase during a 24-h period of recording. Moreover, the substances affected the duration of the heart activity phases. Similarly, to the pure glycoalkaloids, the tested extracts also mainly accelerated the heart rhythm, however S. tuberosum and S. lycopersicum extracts slightly decreased the heart contractions frequency in the last 6 h of the recording. Cardioacceleratory activity of only S. lycopersicum extract was higher than single alkaloids whereas S. tubersoum and S. nigrum extracts were less active when compared to pure alkaloids. The most cardioactive substance was chaconine which strongly stimulated heart action during the whole recording after injection. A. rusticana extract which is composed mainly of glucosinolates did not significantly affect the heart contractions. Obtained results showed that glycoalkaloids were much more active than glucosinolates. However, the extracts depending on the plant species might be more or less active than pure substances.


Asunto(s)
Alcaloides/farmacología , Armoracia/metabolismo , Extractos Vegetales/farmacología , Solanum/metabolismo , Tenebrio/efectos de los fármacos , Alcaloides/metabolismo , Animales , Frutas/química , Frutas/metabolismo , Contracción Miocárdica/efectos de los fármacos , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Pupa/efectos de los fármacos , Pupa/fisiología , Metabolismo Secundario , Tenebrio/fisiología
8.
Ecotoxicol Environ Saf ; 174: 295-304, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30844669

RESUMEN

The potential contamination of the food chain is the most important aspect of arsenic (As) pollution, since it is highly toxic to all organisms. Thus, the search for As hyperaccumulators suitable to remove As from contaminated soils appears to be a vital task. Horseradish (Armoracia rusticana), a crop plant with a high potential to accumulate heavy metals, can also serve to study the physiological processes that accompany arsenic stress. The significant adverse effect caused by arsenic exposure is an oxidative stress. Plants have developed a highly organized system to quench free radicals, which includes the action of both enzymatic and non-enzymatic quenching. Saccharides are proposed to possess outstanding antioxidant activity in vitro, and thus, they are likely to effectively quench free radicals also in plant tissues. In this study, root cultures (hairy root type) of horseradish were grown in vitro on media with different concentrations of arsenic (5-60 µg l-1). Arsenic slowed down the growth, nevertheless up to three-fold biomass increase was achieved at the highest dose. Moreover, root tissues were able to remove as much as 75% of arsenic from the cultivation medium within 7 days. We also evaluated diverse oxidative-stress-related features: contents of reactive oxygen species, the activities of key antioxidant enzymes, and the contents of important antioxidant molecules, such as glutathione, proline, phenolic compounds and non-structural carbohydrates. At all arsenic treatments, we observed a significant proline content increase and enhanced antioxidant enzymes (peroxidase, catalase and glutathione-S-transpherase) activities peaking, however, at different doses. Soluble carbohydrates contents also significantly increased after 7-day treatment a then decreased nearly to the original levels. This study points to efficient antioxidant system of horseradish hairy roots enabling good growth and substantial As accumulation even under high As exposure. Providing that horseradish shares these important features with this model system, we could propose that horseradish is a promising candidate to exploit in arsenic phytoremediation.


Asunto(s)
Antioxidantes/metabolismo , Armoracia/crecimiento & desarrollo , Arsénico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Contaminantes del Suelo/metabolismo , Armoracia/metabolismo , Arsénico/toxicidad , Biodegradación Ambiental , Modelos Teóricos , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Contaminantes del Suelo/toxicidad
9.
BMC Plant Biol ; 18(1): 85, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29743024

RESUMEN

BACKGROUND: The health of plants is heavily influenced by the intensively researched plant microbiome. The microbiome has to cope with the plant's defensive secondary metabolites to survive and develop, but studies that describe this interaction are rare. In the current study, we describe interactions of endophytic fungi with a widely researched chemical defense system, the glucosinolate - myrosinase - isothiocyanate system. The antifungal isothiocyanates are also of special interest because of their beneficial effects on human consumers. RESULTS: Seven endophytic fungi were isolated from horseradish roots (Armoracia rusticana), from the genera Fusarium, Macrophomina, Setophoma, Paraphoma and Oidiodendron. LC-ESI-MS analysis of the horseradish extract incubated with these fungi showed that six of seven strains could decompose different classes of glucosinolates. Aliphatic, aromatic, thiomethylalkyl and indolic glucosinolates were decomposed by different strains at different rates. SPME-GC-MS measurements showed that two strains released significant amounts of allyl isothiocyanate into the surrounding air, but allyl nitrile was not detected. The LC-ESI-MS analysis of many strains' media showed the presence of allyl isothiocyanate - glutathione conjugate during the decomposition of sinigrin. Four endophytic strains also accepted sinigrin as the sole carbon source. Isothiocyanates inhibited the growth of fungi at various concentrations, phenylethyl isothiocyanate was more potent than allyl isothiocyanate (mean IC50 was 2.30-fold lower). As a control group, ten soil fungi from the same soil were used. They decomposed glucosinolates with lower overall efficiency: six of ten strains had insignificant or weak activities and only three could use sinigrin as a carbon source. The soil fungi also showed lower AITC tolerance in the growth inhibition assay: the median IC50 values were 0.1925 mM for endophytes and 0.0899 mM for soil fungi. CONCLUSIONS: The host's glucosinolates can be used by the tested endophytic fungi as nutrients or to gain competitive advantage over less tolerant species. These activities were much less apparent among the soil fungi. This suggests that the endophytes show adaptation to the host plant's secondary metabolites and that host metabolite specific activities are enriched in the root microbiome. The results present background mechanisms enabling an understanding of how plants shape their microbiome.


Asunto(s)
Armoracia/microbiología , Endófitos/metabolismo , Glucosinolatos/metabolismo , Glicósido Hidrolasas/metabolismo , Isotiocianatos/metabolismo , Raíces de Plantas/microbiología , Armoracia/metabolismo , Ascomicetos/metabolismo , Fusarium/metabolismo , Raíces de Plantas/metabolismo , Microbiología del Suelo
10.
Plant Mol Biol ; 96(1-2): 179-196, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29327227

RESUMEN

KEY MESSAGE: The promoter fragment described in this study can be employed for strong transgene expression under both biotic and abiotic stress conditions. Plant-infecting Caulimoviruses have evolved multiple regulatory mechanisms to address various environmental stimuli during the course of evolution. One such mechanism involves the retention of discrete stress responsive cis-elements which are required for their survival and host-specificity. Here we describe the characterization of a novel Caulimoviral promoter isolated from Horseradish Latent Virus (HRLV) and its regulation by multiple stress responsive Transcription factors (TFs) namely DREB1, AREB1 and TGA1a. The activity of full length transcript (Flt-) promoter from HRLV (- 677 to + 283) was investigated in both transient and transgenic assays where we identified H12 (- 427 to + 73) as the highest expressing fragment having ~ 2.5-fold stronger activity than the CaMV35S promoter. The H12 promoter was highly active and near-constitutive in the vegetative and reproductive parts of both Tobacco and Arabidopsis transgenic plants. Interestingly, H12 contains a distinct cluster of cis-elements like dehydration-responsive element (DRE-core; GCCGAC), an ABA-responsive element (ABRE; ACGTGTC) and as-1 element (TGACG) which are known to be induced by cold, drought and pathogen/SA respectively. The specific binding of DREB1, AREB1 and TGA1a to DRE, ABRE and as-1 elements respectively were confirmed by the gel-binding assays using H12 promoter-specific probes. Detailed mutational analysis of the H12 promoter suggested that the presence of DRE-core and as-1 element was indispensable for its activity which was further confirmed by the transactivation assays. Our studies imply that H12 could be a valuable genetic tool for regulated transgene expression under diverse environmental conditions.


Asunto(s)
Armoracia/metabolismo , Armoracia/virología , Caulimovirus/genética , Caulimovirus/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virología , Armoracia/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/virología , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virología
11.
J Hazard Mater ; 342: 85-95, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28823920

RESUMEN

Carbamazepine (CBZ) is a pharmaceutical frequently categorized as a recalcitrant pollutant in the aquatic environment. Endophytic bacteria previously isolated from reed plants have shown the ability to promote growth of their host and to contribute to CBZ metabolism. In this work, a horseradish (Armoracia rusticana) hairy root (HR) culture has been used as a plant model to study the interactions between roots and endophytic bacteria in response to CBZ exposure. HRs could remove up to 5% of the initial CBZ concentration when they were grown in spiked Murashige and Skoog (MS) medium. Higher removal rates were observed when HRs were inoculated with the endophytic bacteria Rhizobium radiobacter (21%) and Diaphorobacter nitroreducens (10%). Transformation products resulting from CBZ degradation were identified using liquid chromatography-ultra high-resolution quadrupole time of flight mass spectrometry (LC-UHR-QTOF-MS). CBZ metabolism could be divided in four pathways. Metabolites involving GSH conjugation and 2,3-dihydroxylation, as well as acridine related compounds are described in plants for the first time. This study presents strong evidence that xenobiotic metabolism and degradation pathways in plants can be modulated by the interaction with their endophytic community. Hence it points to plausible applications for the elimination of recalcitrant compounds such as CBZ from wastewater in CWs.


Asunto(s)
Armoracia/metabolismo , Bacterias/metabolismo , Carbamazepina/química , Raíces de Plantas/metabolismo , Armoracia/química , Cromatografía Liquida , Poaceae/química , Poaceae/metabolismo , Espectrometría de Masas en Tándem
12.
Prep Biochem Biotechnol ; 48(2): 136-143, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29215950

RESUMEN

Carbon nanomaterials have emerged as suitable supports for enzyme immobilization and stabilization due to their inherently large surface area, high electrical conductivity, chemical stability, and mechanical strength. In this paper, carbon nano-onions (CNOs) were used as supports to immobilize alkaline phosphatase, horseradish peroxidase, and glucose oxidase. CNOs were first functionalized by oxidation to generate carboxylic groups on the surface followed by the covalent linking of using a soluble carbodiimide as coupling agent. The CNO-enzyme conjugates were characterized by transmission electron microscopy and Raman spectroscopy. Thermogravimetric analysis revealed a specific enzyme load of ∼0.5 mg of protein per milligram of CNO. The immobilized enzymes showed enhanced storage stability without altering the optimum pH and temperatures. These properties make the prepared nanobiocatalyst of potential interest in biosensing and other biotechnological applications.


Asunto(s)
Fosfatasa Alcalina/química , Armoracia/enzimología , Aspergillus niger/enzimología , Enzimas Inmovilizadas/química , Glucosa Oxidasa/química , Peroxidasa de Rábano Silvestre/química , Nanoestructuras/química , Fosfatasa Alcalina/metabolismo , Animales , Armoracia/química , Armoracia/metabolismo , Aspergillus niger/química , Aspergillus niger/metabolismo , Carbono/química , Bovinos , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Glucosa Oxidasa/metabolismo , Peroxidasa de Rábano Silvestre/metabolismo , Oxidación-Reducción
13.
J Basic Microbiol ; 56(10): 1071-1079, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27272511

RESUMEN

Horseradish essential oil (HREO; a natural mixture of different isothiocyanates) had strong fungicide effect against Candida albicans both in volatile and liquid phase. In liquid phase this antifungal effect was more significant than those of its main components allyl, and 2-phenylethyl isothiocyanate. HREO, at sublethal concentration, induced oxidative stress which was characterized with elevated superoxide content and up-regulated specific glutathione reductase, glutathione peroxidase, catalase and superoxide dismutase activities. Induction of specific glutathione S-transferase activities as marker of glutathione (GSH) dependent detoxification was also observed. At higher concentration, HREO depleted the GSH pool, increased heavily the superoxide production and killed the cells rapidly. HREO and the GSH pool depleting agent, 1-chlore-2,4-dinitrobenzene showed strong synergism when they were applied together to kill C. albicans cells. Based on all these, we assume that GSH metabolism protects fungi against isothiocyanates.


Asunto(s)
Antifúngicos/farmacología , Armoracia/metabolismo , Candida albicans/efectos de los fármacos , Glutatión/metabolismo , Isotiocianatos/farmacología , Aceites Volátiles/farmacología , Catalasa/metabolismo , Dinitroclorobenceno/farmacología , Sinergismo Farmacológico , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Glutatión Transferasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo
14.
Chemosphere ; 154: 408-415, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27081794

RESUMEN

The wide application of rare earth elements (REEs) have led to their diffusion and accumulation in the environment. The activation of endocytosis is the primary response of plant cells to REEs. Calmodulin (CaM), as an important substance in calcium (Ca) signaling systems, regulating almost all of the physiological activities in plants, such as cellular metabolism, cell growth and division. However, the response of CaM to endocytosis activated by REEs remains unknown. By using immunofluorescence labeling and a confocal laser scanning microscope, we found that trivalent lanthanum [La(III)], an REE ion, affected the expression of CaM in endocytosis. Using circular dichroism, X-ray photoelectron spectroscopy and computer simulations, we demonstrated that a low concentration of La(III) could interact with extracellular CaM by electrostatic attraction and was then bound to two Ca-binding sites of CaM, making the molecular structure more compact and orderly, whereas a high concentration of La(III) could be coordinated with cytoplasmic CaM or bound to other Ca-binding sites, making the molecular structure more loose and disorderly. Our results provide a reference for revealing the action mechanisms of REEs in plant cells.


Asunto(s)
Arabidopsis/metabolismo , Armoracia/metabolismo , Calmodulina/metabolismo , Endocitosis/fisiología , Metales de Tierras Raras/farmacología , Hojas de la Planta/metabolismo , Fenómenos Fisiológicos de las Plantas/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Armoracia/efectos de los fármacos , Armoracia/crecimiento & desarrollo , Calmodulina/química , Dicroismo Circular , Simulación por Computador , Endocitosis/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Microscopía Confocal , Modelos Moleculares , Espectroscopía de Fotoelectrones , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Conformación Proteica
15.
J Hazard Mater ; 306: 230-236, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26736174

RESUMEN

Oxybenzone (OBZ), known as Benzophenone-3, is a commonly used UV filter in sun tans and skin protectants, entering aquatic systems either directly during recreational activities or indirectly through wastewater treatment plants discharge. To study the potential degradation capacity of plants for OBZ in phytotreatment, a well-established hairy root culture (Armoracia rusticana) was treated with OBZ. More than 20% of spiked OBZ (100µM) was eliminated from the medium by hairy roots after 3h of exposure. Two metabolites were identified as oxybenzone-glucoside (OBZ-Glu) and oxybenzone-(6-O-malonyl)-glucoside (OBZ-Mal-Glu) by LC-MS/MS and TOF-MS. Formation of these metabolites was confirmed by enzymatic synthesis, as well as enzymatic and alkaline hydrolysis. Incubation with O-glucosyltransferase (O-GT) extracted from roots formed OBZ-Glu; whereas ß-d-Glucosidase hydrolyzed OBZ-Glu. However, alkaline hydrolysis led to cleavage of OBZ-Mal-Glu and yielded OBZ-Glu. In the hairy root culture, an excretion of OBZ-Glu into the growth medium was observed while the corresponding OBZ-Mal-Glu remained stored in root cells over the incubation time. We propose that metabolism of oxybenzone in plants involves initial conjugation with glucose to form OBZ-Glu followed by malonylation to yield OBZ-Mal-Glu. To our best knowledge this first finding presenting the potential of plants to degrade benzophenone type UV filters by phytoremediation.


Asunto(s)
Armoracia/metabolismo , Benzofenonas/metabolismo , Raíces de Plantas/metabolismo , Protectores Solares/metabolismo , Biodegradación Ambiental , Glucósidos/metabolismo
16.
Biol Trace Elem Res ; 164(1): 122-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25534291

RESUMEN

Rare earth elements, especially terbium (Tb), are high-valence heavy metal elements that accumulate in the environment, and they show toxic effects on plants. Signaling molecules regulate many physiological and biochemical processes in plants. How rare earth elements affect signaling molecules remains largely unknown. In the present study, the effects of Tb(3+) on some extracellular and intracellular signaling molecules (gibberellic acid, abscisic acid, auxin, H2O2, and Ca(2+)) in horseradish leaves were investigated by using high-performance liquid chromatography, X-ray energy spectrometry, and transmission electron microscopy, and Tb(3+) was sprayed on the surface of leaves. Tb(3+) treatment decreased the auxin and gibberellic acid contents and increased the abscisic acid content. These changes in the contents of phytohormones (gibberellic acid, abscisic acid, and auxin) triggered excessive production of intracellular H2O2. Consequently, the increase in H2O2 content stimulated the influx of extracellular Ca(2+) and the release of Ca(2+) from Ca(2+) stores, leading to Ca(2+) overload and the resulting inhibition of physiological and biochemical processes. The effects outlined above were more evident with increasing the concentration of Tb(3+) sprayed on horseradish leaves. Our data provide a possible underlying mechanism of Tb(3+) action on plants.


Asunto(s)
Armoracia/efectos de los fármacos , Armoracia/metabolismo , Terbio/farmacología , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Peróxido de Hidrógeno/metabolismo , Ácidos Indolacéticos/metabolismo
17.
Proc Natl Acad Sci U S A ; 111(35): 12936-41, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25114214

RESUMEN

It has long been observed that rare earth elements (REEs) regulate multiple facets of plant growth and development. However, the underlying mechanisms remain largely unclear. Here, using electron microscopic autoradiography, we show the life cycle of a light REE (lanthanum) and a heavy REE (terbium) in horseradish leaf cells. Our data indicate that REEs were first anchored on the plasma membrane in the form of nanoscale particles, and then entered the cells by endocytosis. Consistently, REEs activated endocytosis in plant cells, which may be the cellular basis of REE actions in plants. Moreover, we discovered that a portion of REEs was successively released into the cytoplasm, self-assembled to form nanoscale clusters, and finally deposited in horseradish leaf cells. Taken together, our data reveal the life cycle of REEs and their cellular behaviors in plant cells, which shed light on the cellular mechanisms of REE actions in living organisms.


Asunto(s)
Armoracia/metabolismo , Endocitosis/fisiología , Metales de Tierras Raras/metabolismo , Desarrollo de la Planta/fisiología , Vesículas Transportadoras/metabolismo , Armoracia/crecimiento & desarrollo , Flores/metabolismo , Lantano/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Radioisótopos , Suelo , Terbio/metabolismo
18.
Biol Trace Elem Res ; 161(1): 130-5, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25055927

RESUMEN

The pollution of the environment by rare earth elements (REEs) causes deleterious effects on plants. Peroxidase plays important roles in plant response to various environmental stresses. Here, to further understand the overall roles of peroxidase in response to REE stress, the effects of the REE terbium ion (Tb(3+)) on the peroxidase activity and H2O2 and lignin contents in the leaves and roots of horseradish during different growth stages were simultaneously investigated. The results showed that after 24 and 48 h of Tb(3+) treatment, the peroxidase activity in horseradish leaves decreased, while the H2O2 and lignin contents increased. After a long-term (8 and 16 days) treatment with Tb(3+), these effects were also observed in the roots. The analysis of the changes in peroxidase activity and H2O2 and lignin contents revealed that peroxidase plays important roles in not only reactive oxygen species scavenging but also cell wall lignification in horseradish under Tb(3+) stress. These roles were closely related to the dose of Tb(3+), duration of stress, and growth stages of horseradish.


Asunto(s)
Armoracia/efectos de los fármacos , Peroxidasa de Rábano Silvestre/metabolismo , Proteínas de Plantas/metabolismo , Terbio/farmacología , Armoracia/enzimología , Armoracia/metabolismo , Relación Dosis-Respuesta a Droga , Peróxido de Hidrógeno/metabolismo , Lignina/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/metabolismo , Estrés Fisiológico , Factores de Tiempo
19.
J Agric Food Chem ; 62(5): 1001-9, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24456336

RESUMEN

Plants can extensively transform contaminants after uptake through phase I and phase II metabolism to a large diversity of products. UPLC-QToF-MS was used to detect and identify metabolites of the bacteriostatic agent triclosan in a horseradish hairy root culture. Thirty-three metabolites of triclosan were recognized by a stepwise approach of mass defect filtering, multivariate data analysis, and isotope pattern filtering from a data set of several thousands of signals in the exposed culture. Structure proposals were elaborated for 23 triclosan metabolites on the basis of their MS data. The majority were identified as conjugates (phase II metabolites) such as saccharides or sulfosaccharides. Additionally, a disulfosaccharide was identified as a plant metabolite for the first time. Besides that, also conjugates of a phase I metabolite, hydroxytriclosan, were determined in horseradish tissue extracts. Dehalogenation products of triclosan were not observed. The large number of metabolites detected and identified in this study emphasizes the importance of a comprehensive analytical approach in studies on the uptake and fate of organic contaminants in plants.


Asunto(s)
Armoracia/química , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo , Triclosán/química , Triclosán/metabolismo , Armoracia/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Halogenación , Espectrometría de Masas/métodos , Estructura Molecular
20.
Phytochemistry ; 99: 26-35, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24333031

RESUMEN

The pungent taste of horseradish is caused by isothiocyanates which are released from glucosinolates by myrosinases. These enzymes are encoded by genes belonging to one of two subfamilies, termed MYR I and MYR II, respectively. A MYR II-type myrosinase gene was identified for the first time in horseradish. The gene termed ArMY2 was only expressed in young roots. A full-length cDNA encoding a myrosinase termed ArMy2 was isolated and heterologously expressed in Pichia pastoris. The recombinant His-tagged enzyme was characterized biochemically. Substrate affinity was 5 times higher towards gluconasturtiin than towards sinigrin. Gluconasturtiin was found to be the most abundant glucosinolate in young horseradish roots while sinigrin dominated in storage roots and leaves. This indicates that a specialized glucosinolate-myrosinase defense system might be active in young roots.


Asunto(s)
Armoracia/genética , Glucosinolatos/metabolismo , Glicósido Hidrolasas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Armoracia/enzimología , Armoracia/metabolismo , Glicósido Hidrolasas/genética , Cinética , Raíces de Plantas/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...