Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Virol ; 93(12)2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30944180

RESUMEN

Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) represent two members of the family Arteriviridae and pose major threats for the horse- and swine-breeding industries worldwide. A previous study suggested that PRRSV nsp4, a 3C-like protease, antagonizes interferon beta (IFN-ß) production by cleaving the NF-κB essential modulator (NEMO) at a single site, glutamate 349 (E349). Here, we demonstrated that EAV nsp4 also inhibited virus-induced IFN-ß production by targeting NEMO for proteolytic cleavage and that the scission occurred at four sites: E166, E171, glutamine 205 (Q205), and E349. Additionally, we found that, besides the previously reported cleavage site E349 in NEMO, scission by PRRSV nsp4 took place at two additional sites, E166 and E171. These results imply that while cleaving NEMO is a common strategy utilized by EAV and PRRSV nsp4 to antagonize IFN induction, EAV nsp4 adopts a more complex substrate recognition mechanism to target NEMO. By analyzing the abilities of the eight different NEMO fragments resulting from EAV or PRRSV nsp4 scission to induce IFN-ß production, we serendipitously found that a NEMO fragment (residues 1 to 349) could activate IFN-ß transcription more robustly than full-length NEMO, whereas all other NEMO cleavage products were abrogated for the IFN-ß-inducing capacity. Thus, NEMO cleavage at E349 alone may not be sufficient to completely inactivate the IFN response via this signaling adaptor. Altogether, our findings suggest that EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is critical for disarming the innate immune response for viral survival.IMPORTANCE The arterivirus nsp4-encoded 3C-like protease (3CLpro) plays an important role in virus replication and immune evasion, making it an attractive target for antiviral therapeutics. Previous work suggested that PRRSV nsp4 suppresses type I IFN production by cleaving NEMO at a single site. In contrast, the present study demonstrates that both EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is essential for disruption of type I IFN production. Moreover, we reveal that EAV nsp4 also cleaves NEMO at glutamine 205 (Q205), which is not targeted by PRRSV nsp4. Notably, targeting a glutamine in NEMO for cleavage has been observed only with picornavirus 3C proteases (3Cpro) and coronavirus 3CLpro In aggregate, our work expands knowledge of the innate immune evasion mechanisms associated with NEMO cleavage by arterivirus nsp4 and describes a novel substrate recognition characteristic of EAV nsp4.


Asunto(s)
Equartevirus/metabolismo , Interferón beta/biosíntesis , Proteínas no Estructurales Virales/metabolismo , Animales , Arteriviridae/metabolismo , Arterivirus/metabolismo , Línea Celular , Equartevirus/fisiología , Células HEK293 , Caballos , Humanos , Quinasa I-kappa B/metabolismo , Quinasa I-kappa B/fisiología , Evasión Inmune , Inmunidad Innata , Interferón beta/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Proteolisis , Transducción de Señal , Porcinos , Replicación Viral
2.
Virology ; 458-459: 136-50, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24928046

RESUMEN

Type I interferons (IFNs-α/ß) play a key role for the antiviral state of host, and the porcine arterivirus; porcine reproductive and respiratory syndrome virus (PRRSV), has been shown to down-regulate the production of IFNs during infection. Non-structural protein (nsp) 1 of PRRSV has been identified as a viral IFN antagonist, and the nsp1α subunit of nsp1 has been shown to degrade the CREB-binding protein (CBP) and to inhibit the formation of enhanceosome thus resulting in the suppression of IFN production. The study was expanded to other member viruses in the family Arteriviridae: equine arteritis virus (EAV), murine lactate dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus (SHFV). While PRRSV-nsp1 and LDV-nsp1 were auto-cleaved to produce the nsp1α and nsp1ß subunits, EAV-nsp1 remained uncleaved. SHFV-nsp1 was initially predicted to be cleaved to generate three subunits (nsp1α, nsp1ß, and nsp1γ), but only two subunits were generated as SHFV-nsp1αß and SHFV-nsp1γ. The papain-like cysteine protease (PLP) 1α motif in nsp1α remained inactive for SHFV, and only the PLP1ß motif of nsp1ß was functional to generate SHFV-nsp1γ subunit. All subunits of arterivirus nsp1 were localized in the both nucleus and cytoplasm, but PRRSV-nsp1ß, LDV-nsp1ß, EAV-nsp1, and SHFV-nsp1γ were predominantly found in the nucleus. All subunits of arterivirus nsp1 contained the IFN suppressive activity and inhibited both interferon regulatory factor 3 (IRF3) and NF-κB mediated IFN promoter activities. Similar to PRRSV-nsp1α, CBP degradation was evident in cells expressing LDV-nsp1α and SHFV-nsp1γ, but no such degradation was observed for EAV-nsp1. Regardless of CBP degradation, all subunits of arterivirus nsp1 suppressed the IFN-sensitive response element (ISRE)-promoter activities. Our data show that the nsp1-mediated IFN modulation is a common strategy for all arteriviruses but their mechanism of action may differ from each other.


Asunto(s)
Arteriviridae/metabolismo , Regulación Viral de la Expresión Génica/fisiología , Interferón Tipo I/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Arteriviridae/genética , Línea Celular , Clonación Molecular , Humanos , Proteínas no Estructurales Virales/genética , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA