Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 351
1.
Prev Vet Med ; 223: 106096, 2024 Feb.
Article En | MEDLINE | ID: mdl-38150796

Equine viral arteritis (EVA) can induce a persistent carrier state in stallions which then shed the virus via semen. About 30 years ago, obligatory EVA testing of stallions used for artificial insemination (AI) was implemented in the European Union. Information on the efficacy of these regulations on the prevalence of EVA in stallions are not yet available. Therefore, we retrospectively analyzed results of serological and virus antigen testing for EVA in sires of different age and breed referred to Vetmeduni Vienna for semen preservation or veterinary diagnostic procedures between 2001 and 2021. For analysis, stallions were grouped by age (1-5, 6-8, 9-12, >12 years) and breed. The EVA antibody titer was determined by serum neutralization test and semen was analyzed for EVA virus by PCR and/or virus isolation test. Of 308 stallions tested, 14.9% (n = 46) were EVA seropositive and in 12 stallions EVA virus was detected in semen (26% of seropositive stallions). The incidence of seropositive stallions decreased over time (P < 0.05, χ2 test). Differences in the seroprevalence of EVA antibodies existed among stallion age groups (P < 0.01, Fisher's test) with the highest percentage of seropositive stallions being > 12 years old (43.5%). The EVA antibody titer increased with age (P < 0.01, Kruskal-Wallis test), potentially reflecting repeated virus challenge. In conclusion, analysis of monitoring results revealed a decrease of EVA seroprevalence and virus shedding in a European sire population. As monitoring for EVA was the only measure implemented Europe-wide, testing might be a major contributor to this development.


Arteritis , Arterivirus Infections , Horse Diseases , Animals , Horses , Male , Retrospective Studies , Seroepidemiologic Studies , Carrier State , Insemination, Artificial/veterinary , Arteritis/veterinary , Horse Diseases/diagnosis , Horse Diseases/epidemiology , Arterivirus Infections/diagnosis , Arterivirus Infections/epidemiology , Arterivirus Infections/veterinary
2.
J Virol Methods ; 319: 114756, 2023 09.
Article En | MEDLINE | ID: mdl-37268046

Equine arteritis virus (EAV) is an Alphaarterivirus (family Arteriviridae, order Nidovirales) that frequently causes an influenza-like illness in adult horses, but can also cause the abortions in mares and death of newborn foals. Once primary infection has been established, EAV can persist in the reproductive tract of some stallions. However, the mechanisms enabling this persistence, which depends on testosterone, remain largely unknown. We aimed to establish an in vitro model of non-cytopathic EAV infection to study viral persistence. In this work, we infected several cell lines originating from the male reproductive tract of different species. EAV infection was fully cytopathic for 92BR (donkey cells) and DDT1 MF-2 (hamster cells) cells, and less cytopathic for PC-3 cells (human cells); ST cells (porcine cells) seemed to eliminate the virus; LNCaP (human cells) and GC-1 spg (murine cells) cells were not permissive to EAV infection; finally, TM3 cells (murine cells) were permissive to EAV infection without any overt cytopathic effects. Infected TM3 cells can be maintained at least 7 days in culture without any subculture. They can also be subcultured over 39 days (subculturing them at 1:2 the first time at 5 dpi and then every 2-3 days), but in this case, the percentage of infected cells remains low. Infected TM3 cells may therefore provide a new model to study the host-pathogen interactions and to help determine the mechanisms involved in EAV persistence in stallion reproductive tract.


Arterivirus Infections , Equartevirus , Horse Diseases , Cricetinae , Pregnancy , Male , Horses , Animals , Humans , Female , Mice , Swine , Host-Pathogen Interactions , Genitalia , Cell Line , Arterivirus Infections/veterinary
3.
Viruses ; 13(11)2021 10 24.
Article En | MEDLINE | ID: mdl-34834949

(1) Background: Equine arteritis virus (EAV) infection causes reproductive losses and systemic vasculitis in susceptible equidae. The intact male becomes the virus' reservoir upon EAV infection, as it causes a chronic-persistent infection of the accessory sex glands. Infected semen is the main source of virus transmission. (2) Here, we describe acute EAV infection and spread in a stallion population after introduction of new members to the group. (3) Conclusions: acute clinical signs, acute phase detection of antigen via (PCR) nasal swabs or (EDTA) blood, and seroconversion support the idea of transmission via seminal fluids into the respiratory tract(s) of others. This outbreak highlights EAV's horizontal transmission via the respiratory tract. This route should be considered in a chronic-persistently infected herd, when seronegative animals are added to the group.


Arterivirus Infections/epidemiology , Arterivirus Infections/veterinary , Disease Outbreaks , Equartevirus , Horse Diseases/epidemiology , Animals , Arterivirus Infections/transmission , Arterivirus Infections/virology , Disease Transmission, Infectious , Horse Diseases/virology , Horses , Male , Masturbation , Persistent Infection , Respiratory System/virology , Semen/virology
4.
Int J Mol Sci ; 22(16)2021 Aug 21.
Article En | MEDLINE | ID: mdl-34445732

Infection with viruses, such as the lactate dehydrogenase-elevating virus (LDV), is known to trigger the onset of autoimmune anemia through the enhancement of the phagocytosis of autoantibody-opsonized erythrocytes by activated macrophages. Type I interferon receptor-deficient mice show enhanced anemia, which suggests a protective effect of these cytokines, partly through the control of type II interferon production. The development of anemia requires the expression of Fcγ receptors (FcγR) I, III, and IV. Whereas LDV infection decreases FcγR III expression, it enhances FcγR I and IV expression in wild-type animals. The LDV-associated increase in the expression of FcγR I and IV is largely reduced in type I interferon receptor-deficient mice, through both type II interferon-dependent and -independent mechanisms. Thus, the regulation of the expression of FcγR I and IV, but not III, by interferons may partly explain the exacerbating effect of LDV infection on anemia that results from the enhanced phagocytosis of IgG autoantibody-opsonized erythrocytes.


Anemia, Hemolytic, Autoimmune/immunology , Arterivirus Infections/immunology , Interferons/metabolism , Lactate dehydrogenase-elevating virus/immunology , Receptors, IgG/metabolism , Anemia, Hemolytic, Autoimmune/virology , Animals , Arterivirus Infections/virology , Host-Pathogen Interactions , Mice, Inbred C57BL , Mice, Knockout , Phagocytosis
5.
PLoS One ; 15(8): e0237091, 2020.
Article En | MEDLINE | ID: mdl-32750064

Wobbly possum disease virus (WPDV) is an arterivirus that was originally identified in common brushtail possums (Trichosurus vulpecula) in New Zealand, where it causes severe neurological disease. In this study, serum samples (n = 188) from Australian common brushtail, mountain brushtail (Trichosurus cunninghami) and common ringtail (Pseudocheirus peregrinus) possums were tested for antibodies to WPDV using ELISA. Antibodies to WPDV were detected in possums from all three species that were sampled in the states of Victoria and South Australia. Overall, 16% (30/188; 95% CI 11.0-22.0) of possums were seropositive for WPDV and 11.7% (22/188; 95% CI 7.5-17.2) were equivocal. The frequency of WPDV antibody detection was the highest in possums from the two brushtail species. This is the first reported serological evidence of infection with WPDV, or an antigenically similar virus, in Australian possums, and the first study to find antibodies in species other than common brushtail possums. Attempts to detect viral RNA in spleens by PCR were unsuccessful. Further research is needed to characterise the virus in Australian possums and to determine its impact on the ecology of Australian marsupials.


Arterivirus Infections/epidemiology , Arterivirus/pathogenicity , Trichosurus/virology , Animals , Antibodies, Viral/blood , Arterivirus/immunology , Arterivirus Infections/blood , Arterivirus Infections/virology , Australia , Serologic Tests , Trichosurus/immunology
6.
Infect Genet Evol ; 85: 104455, 2020 11.
Article En | MEDLINE | ID: mdl-32668365

Susceptibility to long-term persistent infection with Equine Arteritis Virus (EAV) in stallions is related with EqCXCL16 gene alleles of the host. In our study EqCXCL16 gene alleles were determined for 63 EAV shedders and 126 non-shedders of various horse breeds. In total, 60 (31.7%) out of 189 tested stallions were identified as carriers of susceptible variants of EqCXCL16 by real time PCR and Sanger sequencing. The presence of susceptible genotype was related to horse breed with the highest percentage in Wielkopolska breed, Polish coldblood and Silesian breed horses. Strong correlation between EqCXCL16 susceptible genotypes and EAV shedding in semen (p < .0001) was observed.


Arterivirus Infections/veterinary , Arterivirus Infections/virology , Chemokine CXCL16/genetics , Equartevirus/genetics , Horse Diseases/virology , Horses/virology , Alleles , Amino Acid Sequence , Animals , Genotype , Phylogeny , Poland/epidemiology , RNA, Viral , Semen/virology , Sequence Analysis
7.
Sci Rep ; 10(1): 10100, 2020 06 22.
Article En | MEDLINE | ID: mdl-32572069

RNA viruses are responsible for a large variety of animal infections. Equine Arteritis Virus (EAV) is a positive single-stranded RNA virus member of the family Arteriviridae from the order Nidovirales like the Coronaviridae. EAV causes respiratory and reproductive diseases in equids. Although two vaccines are available, the vaccination coverage of the equine population is largely insufficient to prevent new EAV outbreaks around the world. In this study, we present a high-throughput in vitro assay suitable for testing candidate antiviral molecules on equine dermal cells infected by EAV. Using this assay, we identified three molecules that impair EAV infection in equine cells: the broad-spectrum antiviral and nucleoside analog ribavirin, and two compounds previously described as inhibitors of dihydroorotate dehydrogenase (DHODH), the fourth enzyme of the pyrimidine biosynthesis pathway. These molecules effectively suppressed cytopathic effects associated to EAV infection, and strongly inhibited viral replication and production of infectious particles. Since ribavirin is already approved in human and small animal, and that several DHODH inhibitors are in advanced clinical trials, our results open new perspectives for the management of EAV outbreaks.


Arterivirus Infections/drug therapy , Equartevirus/metabolism , Ribavirin/pharmacology , Animals , Antiviral Agents/pharmacology , Arterivirus Infections/veterinary , Cell Line , Cytopathogenic Effect, Viral/drug effects , Dihydroorotate Dehydrogenase , Horse Diseases/virology , Horses/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Purines/antagonists & inhibitors , Purines/biosynthesis , Purines/pharmacology , Pyrimidines/antagonists & inhibitors , Pyrimidines/biosynthesis , Pyrimidines/pharmacology , RNA/pharmacology , Virus Replication/drug effects , Virus Replication/physiology
8.
Sci Rep ; 10(1): 2909, 2020 02 19.
Article En | MEDLINE | ID: mdl-32076048

Equine arteritis virus (EAV) is maintained in the horse populations through persistently infected stallions. The aims of the study were to monitor the spread of EAV among Polish Hucul horses, to analyse the variability of circulating EAVs both between- and within-horses, and to identify allelic variants of the serving stallions EqCXCL16 gene that had been previously shown to strongly correlate with long-term EAV persistence in stallions. Serum samples (n = 221) from 62 horses including 46 mares and 16 stallions were collected on routine basis between December 2010 and May 2013 and tested for EAV antibodies. In addition, semen from 11 stallions was tested for EAV RNA. A full genomic sequence of EAV from selected breeding stallions was determined using next generation sequencing. The proportion of seropositive mares among the tested population increased from 7% to 92% during the study period, while the proportion of seropositive stallions remained similar (64 to 71%). The EAV genomes from different stallions were 94.7% to 99.6% identical to each other. A number (41 to 310) of single nucleotide variants were identified within EAV sequences from infected stallions. Four stallions possessed EqCXCL16S genotype correlated with development of long-term carrier status, three of which were persistent shedders and the shedder status of the remaining one was undetermined. None of the remaining 12 stallions with EqCXCL16R genotype was identified as a persistent shedder.


Chemokine CXCL16/genetics , Equartevirus/physiology , Horses/genetics , Horses/virology , Quasispecies/genetics , Semen/virology , Alleles , Animals , Arterivirus Infections/blood , Arterivirus Infections/genetics , Arterivirus Infections/veterinary , Female , Genome, Viral , Genotype , Horse Diseases/genetics , Horse Diseases/virology , Horses/blood , Male , Phylogeny , Polymorphism, Single Nucleotide/genetics
9.
J Am Assoc Lab Anim Sci ; 59(3): 328-333, 2020 05 01.
Article En | MEDLINE | ID: mdl-32079556

Lactate dehydrogenase elevating virus (LDV) continues to be one of the most common contaminants of cells and cell byproducts. As such, many institutions require that tumor cell lines, blood products, and products derived or passaged in rodent tissues are free of LDV as well as other pathogens that are on institutional exclusion lists prior to their use in rodents. LDV is difficult to detect by using a live-animal sentinel health monitoring program because the virus does not reliably pass to sentinel animals. After switching to an exhaust air dust health monitoring system, our animal resources center was able to detect a presumably long-standing LDV infection in a mouse colony. This health monitoring system uses IVC rack exhaust air dust collection media in conjunction with PCR analysis. Ultimately, the source of the contamination was identified as multiple LDV-positive patient-derived xenografts and multiple LDV-positive breeding animals. This case study is the first to demonstrate the use of environmental PCR testing as a method for detecting LDV infection in a mouse vivarium.


Arterivirus Infections/veterinary , Environmental Microbiology , Housing, Animal , Lactate dehydrogenase-elevating virus/isolation & purification , Mice , Rodent Diseases/virology , Animals , Arterivirus Infections/virology , Cell Line, Tumor/virology , Dust , Heterografts , Humans , Polymerase Chain Reaction , Tumor Cells, Cultured/virology
10.
Viruses ; 11(8)2019 08 09.
Article En | MEDLINE | ID: mdl-31404947

Equine arteritis virus (EAV) is a prototype member of the Arterivirus family, comprising important pathogens of domestic animals. Minor glycoproteins of Arteriviruses are responsible for virus entry and cellular tropism. The experimental methods for studying minor Arterivirus proteins are limited because of the lack of antibodies and nested open reading frames (ORFs). In this study, we generated recombinant EAV with separated ORFs 3 and 4, and Gp3 carrying HA-tag (Gp3-HA). The recombinant viruses were stable on passaging and replicated in titers similar to the wild-type EAV. Gp3-HA was incorporated into the virion particles as monomers and as a Gp2/Gp3-HA/Gp4 trimer. Gp3-HA localized in ER and, to a lesser extent, in the Golgi, it also co-localized with the E protein but not with the N protein. The co-localization of Gp3-HA and the E protein with ERGIC was reduced. Moreover, EAV with Gp3-HA could become a valuable research tool for identifying host cell factors during infection and the role of Gp3 in virus attachment and entry.


Arterivirus Infections/veterinary , Equartevirus/genetics , Equartevirus/metabolism , Horse Diseases/virology , Host-Pathogen Interactions , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Animals , Cell Line , Genetic Engineering , Genome, Viral , Golgi Apparatus/metabolism , Horses , Intracellular Space , Mutation , Open Reading Frames , Protein Transport , Virus Replication
12.
PLoS Pathog ; 15(7): e1007950, 2019 07.
Article En | MEDLINE | ID: mdl-31356622

Equine arteritis virus (EAV) has the unique ability to establish long-term persistent infection in the reproductive tract of stallions and be sexually transmitted. Previous studies showed that long-term persistent infection is associated with a specific allele of the CXCL16 gene (CXCL16S) and that persistence is maintained despite the presence of local inflammatory and humoral and mucosal antibody responses. Here, we performed transcriptomic analysis of the ampullae, the primary site of EAV persistence in long-term EAV carrier stallions, to understand the molecular signatures of viral persistence. We demonstrated that the local CD8+ T lymphocyte response is predominantly orchestrated by the transcription factors eomesodermin (EOMES) and nuclear factor of activated T-cells cytoplasmic 2 (NFATC2), which is likely modulated by the upregulation of inhibitory receptors. Most importantly, EAV persistence is associated with an enhanced expression of CXCL16 and CXCR6 by infiltrating lymphocytes, providing evidence of the implication of this chemokine axis in the pathogenesis of persistent EAV infection in the stallion reproductive tract. Furthermore, we have established a link between the CXCL16 genotype and the gene expression profile in the ampullae of the stallion reproductive tract. Specifically, CXCL16 acts as a "hub" gene likely driving a specific transcriptional network. The findings herein are novel and strongly suggest that RNA viruses such as EAV could exploit the CXCL16/CXCR6 axis in order to modulate local inflammatory and immune responses in the male reproductive tract by inducing a dysfunctional CD8+ T lymphocyte response and unique lymphocyte homing in the reproductive tract.


CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Equartevirus/immunology , Equartevirus/pathogenicity , Animals , Arterivirus Infections/genetics , Arterivirus Infections/immunology , Arterivirus Infections/veterinary , Carrier State/immunology , Carrier State/veterinary , Carrier State/virology , Chemokine CXCL16/genetics , Chemokine CXCL16/immunology , Gene Expression Profiling , Genitalia, Male/immunology , Genitalia, Male/pathology , Genitalia, Male/virology , Horse Diseases/genetics , Horse Diseases/immunology , Horse Diseases/virology , Horses , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Male , Receptors, CXCR6/genetics , Receptors, CXCR6/immunology , Receptors, Virus/immunology , Transcription Factors/immunology , Virus Shedding/genetics , Virus Shedding/immunology
13.
Arch Virol ; 164(10): 2593-2597, 2019 Oct.
Article En | MEDLINE | ID: mdl-31270606

Trionyx sinensis hemorrhagic syndrome virus (TSHSV) is a newly discovered lethal arterivirus that causes serious disease in Trionyx sinensis in China. In this study, the complete genome sequence of TSHSV was determined by RACE cloning, and the functions of the predicted proteins were predicted. The complete genome of TSHSV was found to be 17,875 bp in length, and a 3'-end poly(A) tail was detected. Eight TSHSV hypothetical proteins (TSHSV-HPs) were predicted by gene model identification. TSHSV-HP2, 3 and 4 were associated with replicase activity, since papain-like protease (PLPs), serine-type endopeptidase, P-loop-containing nucleoside triphosphate hydrolase, and EndoU-like endoribonuclease motifs were detected. Phylogenetic analysis showed that TSHSV clusters with an arterivirus from a Chinese broad-headed pond turtle.


Arterivirus Infections/veterinary , Arterivirus/classification , Arterivirus/isolation & purification , Phylogeny , Turtles/virology , Animals , Arterivirus/genetics , Arterivirus Infections/virology , China , Genome, Viral , RNA, Messenger , Sequence Analysis, DNA , Viral Proteins/genetics
14.
J Virol ; 93(12)2019 06 15.
Article En | MEDLINE | ID: mdl-30918077

Equine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a reproductive and respiratory disease of horses. Following natural infection, 10 to 70% of infected stallions can become carriers of EAV and continue to shed virus in the semen. In this study, sequential viruses isolated from nasal secretions, buffy coat cells, and semen of seven experimentally infected and two naturally infected EAV carrier stallions were deep sequenced to elucidate the intrahost microevolutionary process after a single transmission event. Analysis of variants from nasal secretions and buffy coat cells lacked extensive positive selection; however, characteristics of the mutant spectra were different in the two sample types. In contrast, the initial semen virus populations during acute infection have undergone a selective bottleneck, as reflected by the reduction in population size and diversifying selection at multiple sites in the viral genome. Furthermore, during persistent infection, extensive genome-wide purifying selection shaped variant diversity in the stallion reproductive tract. Overall, the nonstochastic nature of EAV evolution during persistent infection was driven by active intrahost selection pressure. Among the open reading frames within the viral genome, ORF3, ORF5, and the nsp2-coding region of ORF1a accumulated the majority of nucleotide substitutions during persistence, with ORF3 and ORF5 having the highest intrahost evolutionary rates. The findings presented here provide a novel insight into the evolutionary mechanisms of EAV and identified critical regions of the viral genome likely associated with the establishment and maintenance of persistent infection in the stallion reproductive tract.IMPORTANCE EAV can persist in the reproductive tract of infected stallions, and consequently, long-term carrier stallions constitute its sole natural reservoir. Previous studies demonstrated that the ampullae of the vas deferens are the primary site of viral persistence in the stallion reproductive tract and the persistence is associated with a significant inflammatory response that is unable to clear the infection. This is the first study that describes EAV full-length genomic evolution during acute and long-term persistent infection in the stallion reproductive tract using next-generation sequencing and contemporary sequence analysis techniques. The data provide novel insight into the intrahost evolution of EAV during acute and persistent infection and demonstrate that persistent infection is characterized by extensive genome-wide purifying selection and a nonstochastic evolutionary pattern mediated by intrahost selective pressure, with important nucleotide substitutions occurring in ORF1a (region encoding nsp2), ORF3, and ORF5.


Arterivirus Infections/genetics , Equartevirus/genetics , Host-Pathogen Interactions/genetics , Amino Acid Sequence/genetics , Animals , Arterivirus Infections/virology , Base Sequence/genetics , Carrier State/virology , Equartevirus/metabolism , Equartevirus/pathogenicity , Evolution, Molecular , Genome, Viral/genetics , Horse Diseases/virology , Horses/genetics , Male , Open Reading Frames/genetics , Phylogeny , Semen/virology , Sequence Analysis/methods
15.
Viruses ; 11(1)2019 01 15.
Article En | MEDLINE | ID: mdl-30650570

Simian hemorrhagic fever virus (SHFV) causes a fulminant and typically lethal viral hemorrhagic fever (VHF) in macaques (Cercopithecinae: Macaca spp.) but causes subclinical infections in patas monkeys (Cercopithecinae: Erythrocebus patas). This difference in disease course offers a unique opportunity to compare host responses to infection by a VHF-causing virus in biologically similar susceptible and refractory animals. Patas and rhesus monkeys were inoculated side-by-side with SHFV. Unlike the severe disease observed in rhesus monkeys, patas monkeys developed a limited clinical disease characterized by changes in complete blood counts, serum chemistries, and development of lymphadenopathy. Viral RNA was measurable in circulating blood 2 days after exposure, and its duration varied by species. Infectious virus was detected in terminal tissues of both patas and rhesus monkeys. Varying degrees of overlap in changes in serum concentrations of interferon (IFN)-γ, monocyte chemoattractant protein (MCP)-1, and interleukin (IL)-6 were observed between patas and rhesus monkeys, suggesting the presence of common and species-specific cytokine responses to infection. Similarly, quantitative immunohistochemistry of livers from terminal monkeys and whole blood flow cytometry revealed varying degrees of overlap in changes in macrophages, natural killer cells, and T-cells. The unexpected degree of overlap in host response suggests that relatively small subsets of a host's response to infection may be responsible for driving hemorrhagic fever pathogenesis. Furthermore, comparative SHFV infection in patas and rhesus monkeys offers an experimental model to characterize host⁻response mechanisms associated with viral hemorrhagic fever and evaluate pan-viral hemorrhagic fever countermeasures.


Arterivirus Infections/veterinary , Arterivirus/pathogenicity , Hemorrhagic Fevers, Viral/veterinary , Host-Pathogen Interactions , Monkey Diseases/immunology , Animals , Antibodies, Viral/blood , Arterivirus/immunology , Arterivirus Infections/immunology , Cytokines/blood , Erythrocebus , Female , Hemorrhagic Fevers, Viral/immunology , Macaca , Macrophages/virology , Male , Monkey Diseases/virology , RNA, Viral , Virus Replication
16.
Virol Sin ; 33(4): 335-344, 2018 Aug.
Article En | MEDLINE | ID: mdl-30069823

Porcine reproductive and respiratory syndrome virus (PRRSV) causes substantial economic losses to the global pig industry. Alternative polyadenylation (APA) is a mechanism that diversifies gene expression, which is important for tumorigenesis, development, and cell differentiation. However, it is unclear whether APA plays a role in the course of PRRSV infection. To address this issue, in this study we carried out a whole-genome transcriptome analysis of PRRSV-infected Marc-145 African green monkey kidney cells and identified 185 APA switching genes and 393 differentially expressed genes (DEGs). Most of these genes were involved in cellular process, metabolism, and biological regulation, and there was some overlap between the two gene sets. DEGs were found to be more directly involved in the antiviral response than APA genes. These findings provide insight into the dynamics of host gene regulation during PRRSV infection and a basis for elucidating the pathogenesis of PRRSV.


3' Untranslated Regions/genetics , Arterivirus Infections/genetics , Porcine respiratory and reproductive syndrome virus/physiology , Transcriptome/genetics , Animals , Arterivirus Infections/virology , Cell Line , Chlorocebus aethiops , Gene Expression Profiling , Gene Expression Regulation , Host-Pathogen Interactions , Porcine respiratory and reproductive syndrome virus/genetics , Reproducibility of Results , Virus Replication
17.
Arch Virol ; 163(6): 1469-1478, 2018 Jun.
Article En | MEDLINE | ID: mdl-29435711

Quantitation of virions is one of the important indexes in virological studies. To establish a sensitive and rapid quantitative detection method for equine arteritis virus (EAV), an antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) was developed by using two EAV nucleoprotein monoclonal antibodies (mAbs), 2B9 and 2B3, prepared in this study. After condition optimization, mAb 2B9 was used as the capture antibody, and HRP-labeled 2B3 was chosen as the detecting antibody. The AC-ELISA had a good standard curve when viral particles of the Bucyrus EAV strain were used as a reference standard. The detection limit for the Bucyrus EAV strain was 36 PFU, and the method had a good linear relationship between 72-2297 PFU. The AC-ELISA could specifically detect the Bucyrus EAV strain and had no cross-reaction with other equine viruses. The sensitivity of the AC-ELISA was much higher than that of a western blotting assay but lower than that of a real-time PCR method. However, as a quantitative antigen detection method, the sensitivity of the AC-ELISA was approximately 300 times than the western blotting assay. Furthermore, the AC-ELISA assay could be successfully used in quantification of viral content in an in vitro infection assay, such as a one-step growth curve of EAV, as well as in a transfection assay, such as virus rescue from an infectious cDNA clone of EAV. These results show that the AC-ELISA established in this study is a good alternative for antigen detection of EAV, being a simple, convenient and quantitative detection method for EAV antigens.


Antibodies, Monoclonal/chemistry , Antibodies, Viral/chemistry , Antigens, Viral/analysis , Arterivirus Infections/veterinary , Enzyme-Linked Immunosorbent Assay/methods , Equartevirus/isolation & purification , Horse Diseases/diagnosis , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/isolation & purification , Antibodies, Viral/biosynthesis , Antibodies, Viral/isolation & purification , Antigens, Viral/genetics , Antigens, Viral/immunology , Arterivirus Infections/diagnosis , Arterivirus Infections/virology , Blotting, Western , Cell Line , Enzyme-Linked Immunosorbent Assay/standards , Enzyme-Linked Immunosorbent Assay/veterinary , Epithelial Cells , Equartevirus/genetics , Equartevirus/immunology , Female , HEK293 Cells , Horse Diseases/virology , Horseradish Peroxidase/chemistry , Horses , Humans , Immunization , Limit of Detection , Mice , Mice, Inbred BALB C , Virion/genetics , Virion/immunology
18.
J Virol ; 92(9)2018 05 01.
Article En | MEDLINE | ID: mdl-29444949

Equine arteritis virus (EAV) can establish long-term persistent infection in the reproductive tract of stallions and is shed in the semen. Previous studies showed that long-term persistence is associated with a specific allele of the CXCL16 gene (CXCL16S) and that persistent infection is maintained despite the presence of a local inflammatory and humoral and mucosal antibody responses. In this study, we demonstrated that equine seminal exosomes (SEs) are enriched in a small subset of microRNAs (miRNAs). Most importantly, we demonstrated that long-term EAV persistence is associated with the downregulation of an SE-associated miRNA (eca-mir-128) and with an enhanced expression of CXCL16 in the reproductive tract, a putative target of eca-mir-128. The findings presented here suggest that SE eca-mir-128 is implicated in the regulation of the CXCL16/CXCR6 axis in the reproductive tract of persistently infected stallions, a chemokine axis strongly implicated in EAV persistence. This is a novel finding and warrants further investigation to identify its specific mechanism in modulating the CXCL16/CXCR6 axis in the reproductive tract of the EAV long-term carrier stallion.IMPORTANCE Equine arteritis virus (EAV) has the ability to establish long-term persistent infection in the stallion reproductive tract and to be shed in semen, which jeopardizes its worldwide control. Currently, the molecular mechanisms of viral persistence are being unraveled, and these are essential for the development of effective therapeutics to eliminate persistent infection. Recently, it has been determined that long-term persistence is associated with a specific allele of the CXCL16 gene (CXCL16S) and is maintained despite induction of local inflammatory, humoral, and mucosal antibody responses. This study demonstrated that long-term persistence is associated with the downregulation of seminal exosome miRNA eca-mir-128 and enhanced expression of its putative target, CXCL16, in the reproductive tract. For the first time, this study suggests complex interactions between eca-mir-128 and cellular elements at the site of EAV persistence and implicates this miRNA in the regulation of the CXCL16/CXCR6 axis in the reproductive tract during long-term persistence.


Arterivirus Infections/veterinary , Chemokine CXCL16/biosynthesis , Equartevirus/physiology , Exosomes/genetics , Horse Diseases/virology , MicroRNAs/biosynthesis , Receptors, CXCR6/biosynthesis , Semen/cytology , Animals , Arterivirus Infections/virology , Down-Regulation/genetics , Genitalia, Male/metabolism , Genitalia, Male/virology , Horses , Male , MicroRNAs/genetics
19.
Curr Opin Virol ; 27: 57-70, 2017 12.
Article En | MEDLINE | ID: mdl-29172072

Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) are the most economically important members of the family Arteriviridae. EAV and PRRSV cause reproductive and respiratory disease in equids and swine, respectively and constitute a significant economic burden to equine and swine industries around the world. Furthermore, they both cause abortion in pregnant animals and establish persistent infection in their natural hosts, which fosters viral shedding in semen leading to sexual transmission. The primary focus of this article is to provide an update on the effects of these two viruses on the reproductive tract of their natural hosts and provide a comparative analysis of clinical signs, virus-host interactions, mechanisms of viral pathogenesis and viral persistence.


Arterivirus Infections/veterinary , Equartevirus/pathogenicity , Host-Pathogen Interactions , Porcine Reproductive and Respiratory Syndrome/transmission , Porcine respiratory and reproductive syndrome virus/pathogenicity , Pregnancy Complications, Infectious/veterinary , Animals , Arterivirus Infections/transmission , Arterivirus Infections/virology , Equartevirus/physiology , Female , Horse Diseases/economics , Horse Diseases/transmission , Horse Diseases/virology , Horses , Male , Porcine Reproductive and Respiratory Syndrome/virology , Pregnancy , Pregnancy Complications, Infectious/virology , Swine , Swine Diseases/economics , Swine Diseases/transmission , Swine Diseases/virology
20.
BMC Vet Res ; 13(1): 316, 2017 Nov 07.
Article En | MEDLINE | ID: mdl-29115996

BACKGROUND: Equine arteritis virus (EAV) is responsible for infections in equids. It can spread easily within the horse population and has a major impact on the horse breeding industry. No EAV outbreak has ever been reported in Serbia. To determine whether EAV is nonetheless circulating there, especially in the Vojvodina region, 340 horse serum samples were subjected to serology testing to detect EAV antibodies. In parallel, semen samples from three seropositive stallions were collected to evaluate their EAV status, using RT-qPCR and virus isolation on cell culture. RESULTS: Horse sera with EAV antibodies represented 15.88% (54/340) of the tested samples, 83.23% (283/340) being negative, and just three samples (0.89%) being uninterpretable due to cytotoxicity. Only 7.2% (10/138) of horses kept by private owners on their own property were seropositive for EAV, whereas 21.8% (44/202) of horses kept on stud farms had EAV antibodies. Phylogenetic analysis showed that the Serbian EAV isolate was most closely related to isolates from the neighbouring Hungary. CONCLUSIONS: EAV is circulating in the Serbian horse population, especially among the breeding population certainly due to the use of EAV shedder stallions since there is no surveillance programme in Serbia and only limited checks on racehorses. Moreover, phylogenetic analysis indicates that the EAV isolated from a Lipizzaner stallion in Serbia is closely related to isolates from Hungary, and together form a new cluster.


Arterivirus Infections/veterinary , Equartevirus/isolation & purification , Horse Diseases/epidemiology , Horse Diseases/virology , Animal Husbandry , Animals , Antibodies, Viral , Arterivirus Infections/epidemiology , Equartevirus/genetics , Female , Horses , Male , Phylogeny , Semen/virology , Serbia/epidemiology , Seroepidemiologic Studies
...