Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO Mol Med ; 16(6): 1379-1403, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38684863

RESUMEN

Polycystic kidney disease (PKD) is a genetic disorder characterized by bilateral cyst formation. We showed that PKD cells and kidneys display metabolic alterations, including the Warburg effect and glutaminolysis, sustained in vitro by the enzyme asparagine synthetase (ASNS). Here, we used antisense oligonucleotides (ASO) against Asns in orthologous and slowly progressive PKD murine models and show that treatment leads to a drastic reduction of total kidney volume (measured by MRI) and a prominent rescue of renal function in the mouse. Mechanistically, the upregulation of an ATF4-ASNS axis in PKD is driven by the amino acid response (AAR) branch of the integrated stress response (ISR). Metabolic profiling of PKD or control kidneys treated with Asns-ASO or Scr-ASO revealed major changes in the mutants, several of which are rescued by Asns silencing in vivo. Indeed, ASNS drives glutamine-dependent de novo pyrimidine synthesis and proliferation in cystic epithelia. Notably, while several metabolic pathways were completely corrected by Asns-ASO, glycolysis was only partially restored. Accordingly, combining the glycolytic inhibitor 2DG with Asns-ASO further improved efficacy. Our studies identify a new therapeutic target and novel metabolic vulnerabilities in PKD.


Asunto(s)
Aspartatoamoníaco Ligasa , Modelos Animales de Enfermedad , Enfermedades Renales Poliquísticas , Animales , Humanos , Ratones , Aspartatoamoníaco Ligasa/metabolismo , Aspartatoamoníaco Ligasa/genética , Aspartatoamoníaco Ligasa/antagonistas & inhibidores , Progresión de la Enfermedad , Riñón/patología , Riñón/metabolismo , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Enfermedades Renales Poliquísticas/metabolismo , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Enfermedades Renales Poliquísticas/patología , Enfermedades Renales Poliquísticas/genética
2.
Cancer Lett ; 522: 129-141, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34543685

RESUMEN

Mutations of KRAS gene are found in various types of cancer, including colorectal cancer (CRC). Despite intense efforts, no pharmacological approaches are expected to be effective against KRAS-mutant cancers. Macropinocytosis is an evolutionarily conserved actin-dependent endocytic process that internalizes extracellular fluids into large vesicles called macropinosomes. Recent studies have revealed macropinocytosis's important role in metabolic adaptation to nutrient stress in cancer cells harboring KRAS mutations. Here we showed that KRAS-mutant CRC cells enhanced macropinocytosis for tumor growth under nutrient-depleted conditions. We also demonstrated that activation of Rac1 and phosphoinositide 3-kinase were involved in macropinocytosis of KRAS-mutant CRC cells. Furthermore, we found that macropinocytosis was closely correlated with asparagine metabolism. In KRAS-mutant CRC cells engineered with knockdown of asparagine synthetase, macropinocytosis was accelerated under glutamine-depleted condition, and albumin addition could restore the glutamine depletion-induced growth suppression by recovering the intracellular asparagine level. Finally, we discovered that the combination of macropinocytosis inhibition and asparagine depletion dramatically suppressed the tumor growth of KRAS-mutant CRC cells in vivo. These results indicate that dual blockade of macropinocytosis and asparagine bioavailability could be a novel therapeutic strategy for KRAS-mutant cancers.


Asunto(s)
Aspartatoamoníaco Ligasa/genética , Neoplasias Colorrectales/terapia , Pinocitosis/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Asparagina/genética , Asparagina/metabolismo , Aspartatoamoníaco Ligasa/antagonistas & inhibidores , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Técnicas de Silenciamiento del Gen , Humanos , Mutación/genética , Fosfatidilinositol 3-Quinasas/genética , Proteína de Unión al GTP rac1/genética
3.
Cancer Lett ; 475: 22-33, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32014457

RESUMEN

Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related mortality. Artemisinin (ART) and SOMCL-14-221 (221), a spirobicyclic analogue of ART, have been reported to inhibit the proliferation of A549 cells with unclear underlying mechanism. In the present study, we validated that both ART and 221 inhibited the proliferation and migration of NSCLC cells and the growth of A549 xenograft tumors without appreciable toxicity. The proteomic data revealed proteins upregulated in ART and 221 groups were involved in "response to endoplasmic reticulum stress" and "amino acid metabolism". Asparagine synthetase (ASNS) was identified as a key node protein in these processes. Interestingly, knockdown of ASNS improved the antitumor potency of ART and 221 in vitro and in vivo, and treatments with ART and 221 disordered the amino acid metabolism of A549 cells. Moreover, ART and 221 activated ER stress, and inhibition of ER stress abolished the anti-proliferative effects of ART and 221. In conclusion, this study demonstrates that ART and 221 suppress tumor growth by triggering ER stress, and the inhibition of ASNS enhances the antitumor activity of ART and 221, which provides new strategy for drug combination therapy.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Artemisininas/química , Artemisininas/farmacología , Aspartatoamoníaco Ligasa/antagonistas & inhibidores , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Animales , Antiinfecciosos/farmacología , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Angew Chem Int Ed Engl ; 58(32): 10914-10918, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31165553

RESUMEN

New anticancer platinum(II) compounds with distinctive modes of action are appealing alternatives to combat the drug resistance and improve the efficacy of clinically used platinum chemotherapy. Herein, we describe a rare example of an antitumor PtII complex targeting a tumor-associated protein, rather than DNA, under cellular conditions. Complex [(bis-NHC)Pt(bt)]PF6 (1 a; Hbt=1-(3-hydroxybenzo[b]thiophen-2-yl)ethanone) overcomes cisplatin resistance in cancer cells and displays significant tumor growth inhibition in mice with higher tolerable doses compared to cisplatin. The cellular Pt species shows little association with DNA, and localizes in the cytoplasm as revealed by nanoscale secondary ion mass spectrometry. An unbiased thermal proteome profiling experiment identified asparagine synthetase (ASNS) as a molecular target of 1 a. Accordingly, 1 a treatment reduced the cellular asparagine levels and inhibited cancer cell proliferation, which could be reversed by asparagine supplementation. A bis-NHC-ligated Pt species generated from the hydrolysis of 1 a forms adducts with thiols and appears to target an active-site cysteine of ASNS.


Asunto(s)
Antineoplásicos/farmacología , Aspartatoamoníaco Ligasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Compuestos Organoplatinos/farmacología , Antineoplásicos/química , Aspartatoamoníaco Ligasa/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Cisplatino/química , Cisplatino/farmacología , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/química , Humanos , Ligandos , Estructura Molecular , Compuestos Organoplatinos/química , Relación Estructura-Actividad
5.
Mol Cancer Ther ; 18(9): 1587-1592, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31209181

RESUMEN

We and others have reported that the anticancer activity of L-asparaginase (ASNase) against asparagine synthetase (ASNS)-positive cell types requires ASNase glutaminase activity, whereas anticancer activity against ASNS-negative cell types does not. Here, we attempted to disentangle the relationship between asparagine metabolism, glutamine metabolism, and downstream pathways that modulate cell viability by testing the hypothesis that ASNase anticancer activity is based on asparagine depletion rather than glutamine depletion per se. We tested ASNase wild-type (ASNaseWT) and its glutaminase-deficient Q59L mutant (ASNaseQ59L) and found that ASNase glutaminase activity contributed to durable anticancer activity against xenografts of the ASNS-negative Sup-B15 leukemia cell line in NOD/SCID gamma mice, whereas asparaginase activity alone yielded a mere growth delay. Our findings suggest that ASNase glutaminase activity is necessary for durable, single-agent anticancer activity in vivo, even against ASNS-negative cancer types.


Asunto(s)
Asparaginasa/farmacología , Aspartatoamoníaco Ligasa/antagonistas & inhibidores , Glutaminasa/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Asparaginasa/administración & dosificación , Asparaginasa/farmacocinética , Asparagina/metabolismo , Aspartatoamoníaco Ligasa/metabolismo , Línea Celular Tumoral , Glutaminasa/administración & dosificación , Glutaminasa/farmacocinética , Glutamina/metabolismo , Humanos , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología
6.
Cancer Discov ; 4(11): OF19, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25367960

RESUMEN

Asparagine promotes the survival of cancer cells in response to glutamine withdrawal.


Asunto(s)
Asparagina/metabolismo , Aspartatoamoníaco Ligasa/antagonistas & inhibidores , Glutamina/deficiencia , Neoplasias/metabolismo , Muerte Celular , Humanos , Factor de Transcripción CHOP/metabolismo
7.
Mol Cell ; 56(2): 205-218, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25242145

RESUMEN

Many cancer cells consume large quantities of glutamine to maintain TCA cycle anaplerosis and support cell survival. It was therefore surprising when RNAi screening revealed that suppression of citrate synthase (CS), the first TCA cycle enzyme, prevented glutamine-withdrawal-induced apoptosis. CS suppression reduced TCA cycle activity and diverted oxaloacetate, the substrate of CS, into production of the nonessential amino acids aspartate and asparagine. We found that asparagine was necessary and sufficient to suppress glutamine-withdrawal-induced apoptosis without restoring the levels of other nonessential amino acids or TCA cycle intermediates. In complete medium, tumor cells exhibiting high rates of glutamine consumption underwent rapid apoptosis when glutamine-dependent asparagine synthesis was suppressed, and expression of asparagine synthetase was statistically correlated with poor prognosis in human tumors. Coupled with the success of L-asparaginase as a therapy for childhood leukemia, the data suggest that intracellular asparagine is a critical suppressor of apoptosis in many human tumors.


Asunto(s)
Apoptosis/genética , Asparagina/metabolismo , Aspartatoamoníaco Ligasa/antagonistas & inhibidores , Citrato (si)-Sintasa/genética , Glutamina/deficiencia , Factor de Transcripción Activador 4/metabolismo , Asparagina/biosíntesis , Asparagina/química , Aspartatoamoníaco Ligasa/biosíntesis , Ácido Aspártico/biosíntesis , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Ciclo del Ácido Cítrico , Humanos , Ácido Oxaloacético/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/genética
8.
PLoS Negl Trop Dis ; 7(12): e2578, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24340117

RESUMEN

Asparagine synthetase (AS) catalyzes the ATP-dependent conversion of aspartate into asparagine using ammonia or glutamine as nitrogen source. There are two distinct types of AS, asparagine synthetase A (AS-A), known as strictly ammonia-dependent, and asparagine synthetase B (AS-B), which can use either ammonia or glutamine. The absence of AS-A in humans, and its presence in trypanosomes, suggested AS-A as a potential drug target that deserved further investigation. We report the presence of functional AS-A in Trypanosoma cruzi (TcAS-A) and Trypanosoma brucei (TbAS-A): the purified enzymes convert L-aspartate into L-asparagine in the presence of ATP, ammonia and Mg(2+). TcAS-A and TbAS-A use preferentially ammonia as a nitrogen donor, but surprisingly, can also use glutamine, a characteristic so far never described for any AS-A. TbAS-A knockdown by RNAi didn't affect in vitro growth of bloodstream forms of the parasite. However, growth was significantly impaired when TbAS-A knockdown parasites were cultured in medium with reduced levels of asparagine. As expected, mice infections with induced and non-induced T. brucei RNAi clones were similar to those from wild-type parasites. However, when induced T. brucei RNAi clones were injected in mice undergoing asparaginase treatment, which depletes blood asparagine, the mice exhibited lower parasitemia and a prolonged survival in comparison to similarly-treated mice infected with control parasites. Our results show that TbAS-A can be important under in vivo conditions when asparagine is limiting, but is unlikely to be suitable as a drug target.


Asunto(s)
Asparagina/metabolismo , Aspartatoamoníaco Ligasa/antagonistas & inhibidores , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/genética , Adenosina Trifosfato/metabolismo , Amoníaco/metabolismo , Animales , Asparaginasa/administración & dosificación , Asparaginasa/metabolismo , Aspartatoamoníaco Ligasa/genética , Ácido Aspártico/metabolismo , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Magnesio/metabolismo , Ratones , Ratones Endogámicos BALB C , Parasitemia/parasitología , Análisis de Supervivencia , Trypanosoma brucei brucei/metabolismo , Trypanosoma cruzi/enzimología , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Tripanosomiasis Africana/parasitología
9.
Bioorg Med Chem ; 20(19): 5915-27, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22951255

RESUMEN

An adenylated sulfoximine transition-state analogue 1, which inhibits human asparagine synthetase (hASNS) with nanomolar potency, has been reported to suppress the proliferation of an l-asparagine amidohydrolase (ASNase)-resistant MOLT-4 leukemia cell line (MOLT-4R) when l-asparagine is depleted in the medium. We now report the synthesis and biological activity of two new sulfoximine analogues of 1 that have been studied as part of systematic efforts to identify compounds with improved cell permeability and/or metabolic stability. One of these new analogues, an amino sulfoximine 5 having no net charge at cellular pH, is a better hASNS inhibitor (K(I)(∗)=8 nM) than 1 and suppresses proliferation of MOLT-4R cells at 10-fold lower concentration (IC(50)=0.1mM). More importantly, and in contrast to the lead compound 1, the presence of sulfoximine 5 at concentrations above 0.25 mM causes the death of MOLT-4R cells even when ASNase is absent in the culture medium. The amino sulfoximine 5 exhibits different dose-response behavior when incubated with an ASNase-sensitive MOLT-4 cell line (MOLT-4S), supporting the hypothesis that sulfoximine 5 exerts its effect by inhibiting hASNS in the cell. Our work provides further evidence for the idea that hASNS represents a chemotherapeutic target for the treatment of leukemia, and perhaps other cancers, including those of the prostate.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Asparaginasa/metabolismo , Aspartatoamoníaco Ligasa/antagonistas & inhibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimología , Amidohidrolasas/metabolismo , Asparagina/metabolismo , Aspartatoamoníaco Ligasa/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Iminas/química , Iminas/farmacología , Modelos Moleculares , Compuestos de Azufre/química , Compuestos de Azufre/farmacología
10.
J Proteomics ; 75(18): 5822-47, 2012 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-22889595

RESUMEN

Drug resistance is a common cause of failure in cancer chemotherapy treatments. In this study, we used a pair of uterine sarcoma cancer lines, MES-SA, and the doxorubicin-resistant MES-SA/Dx5 as a model system to examine resistance-dependent cellular responses and to identify potential therapeutic targets. We used two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to examine the global protein expression changes induced by doxorubicin treatment and doxorubicin resistance. A proteomic study revealed that doxorubicin-exposure altered the expression of 87 proteins in MES-SA cells, while no significant response occurred in similarly treated MES-SA/Dx5 cells, associating these proteins with drug specific resistance. By contrast, 37 proteins showed differential expression between MES-SA and MES-SA/Dx5, indicating baseline resistance. Further studies have used RNA interference, cell viability analysis, and analysis of apoptosis against asparagine synthetase (ASNS) and membrane-associated progesterone receptor component 1 (mPR) proteins, to monitor and evaluate their potency on the formation of doxorubicin resistance. The proteomic approach allowed us to identify numerous proteins, including ASNS and mPR, involved in various drug-resistance-forming mechanisms. Our results provide useful diagnostic markers and therapeutic candidates for the treatment of doxorubicin-resistant uterine cancer.


Asunto(s)
Resistencia a Antineoplásicos/genética , Sarcoma/tratamiento farmacológico , Neoplasias Uterinas/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Aspartatoamoníaco Ligasa/antagonistas & inhibidores , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos/genética , Femenino , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteómica/métodos , Receptores de Progesterona/antagonistas & inhibidores , Electroforesis Bidimensional Diferencial en Gel , Neoplasias Uterinas/metabolismo
11.
Se Pu ; 27(4): 472-5, 2009 Jul.
Artículo en Chino | MEDLINE | ID: mdl-19938506

RESUMEN

A screening method for asparagine synthetase B (AS-B) inhibitors by reversed-phase high performance liquid chromatography (RP-HPLC) has been established. The contents of asparagines produced in the reaction system can be analyzed by HPLC after the derivatization with 1-fluoro-2,4-dinitrobenzene (DNFB) and used to calculate the total activity of AS-B. The sample was separated on an Agilent C18 column (250 mm x 4.6 mm, 5 microm) at the temperature of 30 degrees C with the elution of 50 mmol/L sodium acetate buffer (pH 6.2)-acetonitrile (15:85, v/v) as mobile phase at a flow rate of 1.0 mL/min. The detection wavelength was set at 365 nm. The enzyme reaction system consisted of 100 mmol/L Tris (tris(hydroxymethyl)aminomehane)-HCl buffer (pH 8.0), 100 mmol/L NaCl, 10 mmol/L MgCl2, 5 mmol/L adenosine triphosphate (ATP), 10 mmol/L L-aspartate, 10 mmol/L L-glutamine and 2 microg recombinant soybean AS-B (1 mL of the total volume), then mixed for 1 min and incubated for 15 min at 37 degrees C. After quenching with ethanol and centrifugation, the supernatant was derivatized by DNFB and then separated by HPLC. The amino acids in the reaction system were baseline separated within 6 min. The quantitative analysis of AS-B inhibition was performed by determining its dynamic parameters. The inhibitor L-glutamic acid gamma-methyl ester was used in the enzyme reaction system to test this method and its inhibition constant obtained was close to the literature value. The established method is fast, accurate, sensitive and suitable for high throughput screening AS-B inhibitors.


Asunto(s)
Aspartatoamoníaco Ligasa/antagonistas & inhibidores , Cromatografía Líquida de Alta Presión/métodos , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/aislamiento & purificación , Dinitrofluorobenceno/química
12.
Bioorg Med Chem ; 17(18): 6641-50, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19683931

RESUMEN

The first sulfoximine-based inhibitor of human asparagine synthetase (ASNS) with nanomolar potency has been shown to suppress proliferation of asparaginase-resistant MOLT-4 cells in the presence of L-asparaginase. This validates literature hypotheses concerning the viability of human ASNS as a target for new drugs against acute lymphoblastic leukemia and ovarian cancer. Developing structure-function relationships for this class of human ASNS inhibitors has proven difficult, however, primarily because of the absence of rapid synthetic procedures for constructing highly functionalized sulfoximines. We now report conditions for the efficient preparation of these compounds by coupling sulfoxides and sulfamides in the presence of a rhodium catalyst. Access to this methodology has permitted the construction of two new adenylated sulfoximines, which were expected to exhibit similar binding affinity and better bioavailability than the original human ASNS inhibitor. Steady-state kinetic characterization of these compounds, however, has revealed the importance of a localized negative charge on the inhibitor that mimics that of the phosphate group in a key acyl-adenylate reaction intermediate. These experiments place an important constraint on the design of sulfoximine libraries for screening experiments to obtain ASNS inhibitors with increased potency and bioavailability.


Asunto(s)
Aspartatoamoníaco Ligasa/antagonistas & inhibidores , Aspartatoamoníaco Ligasa/metabolismo , Metionina Sulfoximina/análogos & derivados , Metionina Sulfoximina/farmacología , Aspartatoamoníaco Ligasa/química , Catálisis , Humanos , Metionina Sulfoximina/síntesis química , Modelos Moleculares , Estructura Molecular , Conformación Proteica , Rodio/química , Sulfonamidas/química , Sulfóxidos/química
13.
Anticancer Res ; 29(4): 1303-8, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19414379

RESUMEN

During 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced differentiation of human promyelocytic leukemia HL-60 cells toward maturing monocytes/macrophages, asparagine synthetase (ASNS) mRNA expression declined time and dose-dependently. The effect of TPA was inhibited by inhibitors for PKC and MEK 1/2, but not by those for JNK and p38 MAPK. Combination treatment with TPA and asparaginase synergistically enhanced the growth retardation accompanied by apoptotic cell death characterized by internucleosomal DNA fragmentation. These data suggest the possible involvement of MEK1/2 MAPK in the inhibitory effect of TPA on ASNS mRNA expression and that the induction of the down-regulation of ASNS (via MEK1/2 activation) may be a new strategy for the treatment of leukemia blast cells.


Asunto(s)
Antineoplásicos/farmacología , Asparaginasa/farmacología , Aspartatoamoníaco Ligasa/genética , Diferenciación Celular , ARN Mensajero/genética , Apoptosis/efectos de los fármacos , Aspartatoamoníaco Ligasa/antagonistas & inhibidores , Aspartatoamoníaco Ligasa/metabolismo , Sinergismo Farmacológico , Quimioterapia Combinada , Células HL-60/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/metabolismo , Monocitos/citología , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Acetato de Tetradecanoilforbol/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Pediatr Blood Cancer ; 50(2): 274-9, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17514734

RESUMEN

BACKGROUND: Asparaginase (ASNase) is an essential component of most treatment protocols for childhood acute lymphoblastic leukemia (ALL). Although increased asparagine synthetase (ASNS) expression may contribute to ASNase resistance, there is conflicting data from patient samples with regard to correlation between ASNS mRNA content and ASNase sensitivity. PROCEDURE: Both T-cell and B-cell derived ALL cell lines were treated with ASNase and then monitored for cell proliferation, cell death, and ASNS mRNA and protein expression. RESULTS: Despite elevated ASNS mRNA following ASNase treatment, different ALL cell lines varied widely in translation to ASNS protein. Although ASNS mRNA levels did not consistently reflect ASNase sensitivity, there was an inverse correlation between ASNS protein and ASNase-induced cell death. Expression of ASNS in an ASNase-sensitive cell line resulted in enhanced ASNase resistance, and conversely, siRNA-mediated inhibition of ASNS expression promoted increased drug sensitivity. CONCLUSIONS: These observations provide an explanation for the ASNase sensitivity of ALL cells and demonstrate the importance of measuring ASNS protein rather than mRNA in predicting ASNase responsiveness.


Asunto(s)
Antineoplásicos/farmacología , Asparaginasa/farmacología , Aspartatoamoníaco Ligasa/biosíntesis , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimología , ARN Mensajero/biosíntesis , Aspartatoamoníaco Ligasa/antagonistas & inhibidores , Aspartatoamoníaco Ligasa/genética , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Lactante , Leucemia-Linfoma de Células T del Adulto/tratamiento farmacológico , Leucemia-Linfoma de Células T del Adulto/enzimología , Leucemia-Linfoma de Células T del Adulto/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , ARN Mensajero/genética
16.
Annu Rev Biochem ; 75: 629-54, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16756505

RESUMEN

Modern clinical treatments of childhood acute lymphoblastic leukemia (ALL) employ enzyme-based methods for depletion of blood asparagine in combination with standard chemotherapeutic agents. Significant side effects can arise in these protocols and, in many cases, patients develop drug-resistant forms of the disease that may be correlated with up-regulation of the enzyme glutamine-dependent asparagine synthetase (ASNS). Though the precise molecular mechanisms that result in the appearance of drug resistance are the subject of active study, potent ASNS inhibitors may have clinical utility in treating asparaginase-resistant forms of childhood ALL. This review provides an overview of recent developments in our understanding of (a) the structure and catalytic mechanism of ASNS, and (b) the role that ASNS may play in the onset of drug-resistant childhood ALL. In addition, the first successful, mechanism-based efforts to prepare and characterize nanomolar ASNS inhibitors are discussed, together with the implications of these studies for future efforts to develop useful drugs.


Asunto(s)
Antineoplásicos/uso terapéutico , Aspartatoamoníaco Ligasa , Inhibidores Enzimáticos/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antineoplásicos/metabolismo , Asparagina/biosíntesis , Aspartatoamoníaco Ligasa/antagonistas & inhibidores , Aspartatoamoníaco Ligasa/química , Aspartatoamoníaco Ligasa/genética , Aspartatoamoníaco Ligasa/metabolismo , Sitios de Unión , Ciclo Celular/fisiología , Resistencia a Antineoplásicos , Inhibidores Enzimáticos/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimología , Conformación Proteica , Sulfonamidas/química , Transcripción Genética , Células Tumorales Cultivadas
17.
Arch Biochem Biophys ; 440(1): 18-27, 2005 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16023613

RESUMEN

Several lines of evidence suggest that up-regulation of asparagine synthetase (AS) in human T-cells results in metabolic changes that underpin the appearance of asparaginase-resistant forms of acute lymphoblastic leukemia (ALL). Inhibitors of human AS therefore have potential as agents for treating leukemia and tools for investigating the cellular basis of AS expression and drug-resistance. A critical problem in developing and characterizing potent inhibitors has been a lack of routine access to sufficient quantities of purified, reproducibly active human AS. We now report an efficient protocol for preparing multi-milligram quantities of C-terminally tagged, wild type human AS in a baculovirus-based expression system. The recombinant enzyme is correctly processed and exhibits high catalytic activity. Not only do these studies offer the possibility for investigating the kinetic behavior of biochemically interesting mammalian AS mutants, but such ready access to large amounts of enzyme also represents a major step in the development and characterization of inhibitors that might have clinical utility in treating asparaginase-resistant ALL.


Asunto(s)
Aspartatoamoníaco Ligasa/metabolismo , Linfocitos T/metabolismo , Secuencia de Aminoácidos , Aspartatoamoníaco Ligasa/antagonistas & inhibidores , Aspartatoamoníaco Ligasa/genética , Aspartatoamoníaco Ligasa/aislamiento & purificación , Catálisis , Diseño de Fármacos , Electroforesis en Gel de Poliacrilamida , Inhibidores Enzimáticos/farmacología , Humanos , Cinética , Datos de Secuencia Molecular , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Linfocitos T/enzimología , Células Tumorales Cultivadas
18.
Bioorg Chem ; 32(2): 63-75, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14990305

RESUMEN

Asparagine synthetase B (AsnB) catalyzes the formation of asparagine in an ATP-dependent reaction using glutamine or ammonia as a nitrogen source. To obtain a better understanding of the catalytic mechanism of this enzyme, we report the cloning, expression, and kinetic analysis of the glutamine- and ammonia-dependent activities of AsnB from Vibrio cholerae. Initial velocity, product inhibition, and dead-end inhibition studies were utilized in the construction of a model for the kinetic mechanism of the ammonia- and glutamine-dependent activities. The reaction sequence begins with the ordered addition of ATP and aspartate. Pyrophosphate is released, followed by the addition of ammonia and the release of asparagine and AMP. Glutamine is simultaneously hydrolyzed at a second site and the ammonia intermediate diffuses through an interdomain protein tunnel from the site of production to the site of utilization. The data were also consistent with the dead-end binding of asparagine to the glutamine binding site and PP(i) with free enzyme. The rate of hydrolysis of glutamine is largely independent of the activation of aspartate and thus the reaction rates at the two active sites are essentially uncoupled from one another.


Asunto(s)
Aspartatoamoníaco Ligasa/metabolismo , Vibrio cholerae/enzimología , Aspartatoamoníaco Ligasa/antagonistas & inhibidores , Glutamina/metabolismo , Hidrólisis , Cinética , Estructura Molecular , Especificidad por Sustrato
19.
Org Lett ; 5(12): 2033-6, 2003 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-12790521

RESUMEN

[structure: see text] The synthesis of N-acylsulfonamide 6, which is an analogue of beta-aspartyl-AMP, is described. This compound appears to be the first and only potent inhibitor of human asparagine synthetase that has been described to date. The N-acylsulfonamide 6 exhibits slow-onset inhibition kinetics, with a K(i) of 728 nM. Preparation and characterization of two additional N-acylsulfonamide analogues has also demonstrated the importance of hydrogen-bonding interactions in the recognition of the AS inhibitor with the enzyme. These observations provide the basis for the discovery of new compounds with application in the treatment of drug-resistant leukemia.


Asunto(s)
Aspartatoamoníaco Ligasa/antagonistas & inhibidores , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Sulfonamidas/síntesis química , Sulfonamidas/farmacología , Aspartatoamoníaco Ligasa/metabolismo , Humanos , Cinética , Compuestos Organofosforados/análisis , Compuestos Organofosforados/metabolismo , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/metabolismo , Sulfonamidas/química
20.
Plant Physiol ; 123(2): 725-32, 2000 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10859202

RESUMEN

Asparagine (Asn) synthetase (AS) is the key enzyme in Asn biosynthesis and plays an important role in nitrogen mobilization. Despite its important physiological function, little research has been done documenting inhibitors of plant AS. Plant growth inhibition caused by the natural monoterpene 1,4-cineole and its structurally related herbicide cinmethylin was reversed 65% and 55%, respectively, by providing 100 microM Asn exogenously. Reversion of the phytotoxic effect was dependent on the concentration of Asn. The presence of either 1,4-cineole or cinmethylin stimulated root uptake of [(14)C]Asn by lettuce (Lactuca sativa) seedlings. Although the physiological responses suggested that both compounds affected Asn biosynthesis, biochemical analysis of AS activity showed that the natural monoterpene was a potent inhibitor (I(50) = approximately 0. 5 microM) of the enzyme, whereas the commercial product was not inhibitory up to levels of 10 mM. Analysis of the putative metabolite, 2-hydroxy-1,4-cineole, showed that the cis-enantiomer was much more active than the trans-enantiomer, suggesting that the hydroxyl group was involved in the specific ligand/active site interaction. This is the first report that AS is a suitable herbicide target site, and that cinmethylin is apparently a proherbicide that requires metabolic bioactivation via cleavage of the benzyl-ether side chain.


Asunto(s)
Aspartatoamoníaco Ligasa/antagonistas & inhibidores , Ciclohexanoles , Mentol/análogos & derivados , Monoterpenos , Plantas/enzimología , Terpenos , Cromatografía Líquida de Alta Presión , Eucaliptol , Mentol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...