Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.095
1.
Exp Neurol ; 377: 114805, 2024 Jul.
Article En | MEDLINE | ID: mdl-38729552

Staufen-1 (STAU1) is a double-stranded RNA-binding protein (RBP) involved in a variety of pathological conditions. In this study, we investigated the potential role of STAU1 in Alzheimer's disease (AD), in which two hallmarks are well-established as cerebral ß-amyloid protein (Aß) deposition and Tau-centered neurofibrillary tangles. We found that STAU1 protein level was significantly increased in cells that stably express full-length APP and the brain of APP/PS1 mice, an animal model of AD. STAU1 knockdown, as opposed to overexpression, significantly decreased the protein levels of ß-amyloid converting enzyme 1 (BACE1) and Aß. We further found that STAU1 extended the half-life of the BACE1 mRNA through binding to the 3' untranslated region (3'UTR). Transcriptome analysis revealed that STAU1 enhanced the expression of growth arrest and DNA damage 45 ß (GADD45B) upstream of P38 MAPK signaling, which contributed to STAU1-induced regulation of Tau phosphorylation at Ser396 and Thr181. Together, STAU1 promoted amyloidogenesis by inhibiting BACE1 mRNA decay, and augmented Tau phosphorylation through activating GADD45B in relation to P38 MAPK. Targeting STAU1 that acts on both amyloidogenesis and tauopathy may serve as an optimistic approach for AD treatment.


Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases , RNA-Binding Proteins , tau Proteins , Animals , tau Proteins/metabolism , tau Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Mice , Phosphorylation , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/genetics , Humans , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Cells, Cultured , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics
2.
Int J Mol Sci ; 25(10)2024 May 10.
Article En | MEDLINE | ID: mdl-38791263

Stroke and Alzheimer's disease (AD) are prevalent age-related diseases; however, the relationship between these two diseases remains unclear. In this study, we aimed to investigate the ability of melatonin, a hormone produced by the pineal gland, to alleviate the effects of ischemic stroke leading to AD by observing the pathogenesis of AD hallmarks. We utilized SH-SY5Y cells under the conditions of oxygen-glucose deprivation (OGD) and oxygen-glucose deprivation and reoxygenation (OGD/R) to establish ischemic stroke conditions. We detected that hypoxia-inducible factor-1α (HIF-1α), an indicator of ischemic stroke, was highly upregulated at both the protein and mRNA levels under OGD conditions. Melatonin significantly downregulated both HIF-1α mRNA and protein expression under OGD/R conditions. We detected the upregulation of ß-site APP-cleaving enzyme 1 (BACE1) mRNA and protein expression under both OGD and OGD/R conditions, while 10 µM of melatonin attenuated these effects and inhibited beta amyloid (Aß) production. Furthermore, we demonstrated that OGD/R conditions were able to activate the BACE1 promoter, while melatonin inhibited this effect. The present results indicate that melatonin has a significant impact on preventing the aberrant development of ischemic stroke, which can lead to the development of AD, providing new insight into the prevention of AD and potential stroke treatments.


Alzheimer Disease , Amyloid Precursor Protein Secretases , Melatonin , Neuroblastoma , Melatonin/pharmacology , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/etiology , Alzheimer Disease/pathology , Neuroblastoma/metabolism , Neuroblastoma/pathology , Cell Line, Tumor , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Glucose/metabolism , Amyloid beta-Peptides/metabolism , Oxygen/metabolism , Cell Hypoxia/drug effects , Hypoxia/metabolism
3.
Mol Biol Rep ; 51(1): 484, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38578353

BACKGROUND: Mitochondrial Ts translation elongation factor (TSFM) is an enzyme that catalyzes exchange of guanine nucleotides. By forming a complex with mitochondrial Tu translation elongation factor (TUFM), TSFM participates in mitochondrial protein translation. We have previously reported that TUFM regulates translation of beta-site APP cleaving enzyme 1 (BACE1) via ROS (reactive oxygen species)-dependent mechanism, suggesting a potential role in amyloid precursor protein (APP) processing associated with Alzheimer's disease (AD), which led to the speculation that TSFM may regulate APP processing in a similar way to TUFM. METHODS AND RESULTS: Here, we report that in cultured cells, knockdown or overexpression TSFM did not change protein levels in BACE1 and APP. Besides, the levels of cytoplasmic ROS and mitochondrial superoxide, in addition to ATP level, cell viability and mitochondrial membrane potential were not significantly altered by TSFM knockdown in the short term. Further transcriptome analysis revealed that expression of majority of mitochondrial genes were not remarkably changed by TSFM silencing. The possibility of TSFM involved in cardiomyopathy and cancer development was uncovered using bioinformatics analysis. CONCLUSIONS: Collectively, short-term regulation of TSFM level in cultured cells does not cause a significant change in proteins involved in APP processing, levels in ROS and ATP associated with mitochondrial function. Whereas our study could contribute to comprehend certain clinical features of TSFM mutations, the roles of TSFM in cardiomyopathy and cancer development might deserve further investigation.


Alzheimer Disease , Cardiomyopathies , Neoplasms , Humans , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Reactive Oxygen Species/metabolism , Aspartic Acid Endopeptidases/genetics , Alzheimer Disease/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Neoplasms/metabolism , Cardiomyopathies/metabolism , Peptide Elongation Factors/metabolism , Adenosine Triphosphate , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
4.
Stem Cell Res Ther ; 15(1): 118, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38659053

BACKGROUND: Cerebral organoids (COs) are the most advanced in vitro models that resemble the human brain. The use of COs as a model for Alzheimer's disease (AD), as well as other brain diseases, has recently gained attention. This study aimed to develop a human AD CO model using normal human pluripotent stem cells (hPSCs) that recapitulates the pathological phenotypes of AD and to determine the usefulness of this model for drug screening. METHODS: We established AD hPSC lines from normal hPSCs by introducing genes that harbor familial AD mutations, and the COs were generated using these hPSC lines. The pathological features of AD, including extensive amyloid-ß (Aß) accumulation, tauopathy, and neurodegeneration, were analyzed using enzyme-linked immunosorbent assay, Amylo-Glo staining, thioflavin-S staining, immunohistochemistry, Bielschowsky's staining, and western blot analysis. RESULTS: The AD COs exhibited extensive Aß accumulation. The levels of paired helical filament tau and neurofibrillary tangle-like silver deposits were highly increased in the AD COs. The number of cells immunoreactive for cleaved caspase-3 was significantly increased in the AD COs. In addition, treatment of AD COs with BACE1 inhibitor IV, a ß-secretase inhibitor, and compound E, a γ-secretase inhibitor, significantly attenuated the AD pathological features. CONCLUSION: Our model effectively recapitulates AD pathology. Hence, it is a valuable platform for understanding the mechanisms underlying AD pathogenesis and can be used to test the efficacy of anti-AD drugs.


Alzheimer Disease , Amyloid beta-Peptides , Organoids , Pluripotent Stem Cells , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Organoids/metabolism , Organoids/pathology , Pluripotent Stem Cells/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/antagonists & inhibitors , tau Proteins/metabolism , tau Proteins/genetics , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/genetics , Brain/metabolism , Brain/pathology , Models, Biological
5.
ACS Nano ; 18(18): 11753-11768, 2024 May 07.
Article En | MEDLINE | ID: mdl-38649866

The association between dysfunctional microglia and amyloid-ß (Aß) is a fundamental pathological event and increases the speed of Alzheimer's disease (AD). Additionally, the pathogenesis of AD is intricate and a single drug may not be enough to achieve a satisfactory therapeutic outcome. Herein, we reported a facile and effective gene therapy strategy for the modulation of microglia function and intervention of Aß anabolism by ROS-responsive biomimetic exosome-liposome hybrid nanovesicles (designated as TSEL). The biomimetic nanovesicles codelivery ß-site amyloid precursor protein cleaving enzyme-1 (BACE1) siRNA (siBACE1) and TREM2 plasmid (pTREM2) gene drug efficiently penetrate the blood-brain barrier and enhance the drug accumulation at AD lesions with the help of exosomes homing ability and angiopep-2 peptides. Specifically, an upregulation of TREM2 expression can reprogram microglia from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype while also restoring its capacity to phagocytose Aß and its nerve repair function. In addition, siRNA reduces the production of Aß plaques at the source by knocking out the BACE1 gene, which is expected to further enhance the therapeutic effect of AD. The in vivo study suggests that TSEL through the synergistic effect of two gene drugs can ameliorate APP/PS1 mice cognitive impairment by regulating the activated microglial phenotype, reducing the accumulation of Aß, and preventing the retriggering of neuroinflammation. This strategy employs biomimetic nanovesicles for the delivery of dual nucleic acids, achieving synergistic gene therapy for AD, thus offering more options for the treatment of AD.


Alzheimer Disease , Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases , Biomimetic Materials , Genetic Therapy , Alzheimer Disease/therapy , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Animals , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Mice , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Gene Transfer Techniques , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Humans , Liposomes/chemistry , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Biomimetics , Exosomes/metabolism , Exosomes/chemistry , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics
6.
Traffic ; 25(3): e12932, 2024 Mar.
Article En | MEDLINE | ID: mdl-38528836

Alzheimer's disease is associated with increased levels of amyloid beta (Aß) generated by sequential intracellular cleavage of amyloid precursor protein (APP) by membrane-bound secretases. However, the spatial and temporal APP cleavage events along the trafficking pathways are poorly defined. Here, we use the Retention Using Selective Hooks (RUSH) to compare in real time the anterograde trafficking and temporal cleavage events of wild-type APP (APPwt) with the pathogenic Swedish APP (APPswe) and the disease-protective Icelandic APP (APPice). The analyses revealed differences in the trafficking profiles and processing between APPwt and the APP familial mutations. While APPwt was predominantly processed by the ß-secretase, BACE1, following Golgi transport to the early endosomes, the transit of APPswe through the Golgi was prolonged and associated with enhanced amyloidogenic APP processing and Aß secretion. A 20°C block in cargo exit from the Golgi confirmed ß- and γ-secretase processing of APPswe in the Golgi. Inhibition of the ß-secretase, BACE1, restored APPswe anterograde trafficking profile to that of APPwt. APPice was transported rapidly through the Golgi to the early endosomes with low levels of Aß production. This study has revealed different intracellular locations for the preferential cleavage of APPwt and APPswe and Aß production, and the Golgi as the major processing site for APPswe, findings relevant to understand the molecular basis of Alzheimer's disease.


Alzheimer Disease , Amyloid beta-Protein Precursor , Humans , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Sweden , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Mutation
7.
CNS Neurosci Ther ; 30(2): e14613, 2024 02.
Article En | MEDLINE | ID: mdl-38379185

AIMS: Alzheimer's disease (AD) is a significant global health concern, and it is crucial that we find effective methods to prevent or slow down AD progression. Recent studies have highlighted the essential role of blood vessels in clearing Aß, a protein that contributes to AD. Scientists are exploring blood biomarkers as a potential tool for future AD diagnosis. One promising method that may help prevent AD is remote ischemic conditioning (RIC). RIC involves using sub-lethal ischemic-reperfusion cycles on limbs. However, a comprehensive understanding of how RIC can prevent AD and its long-term effectiveness is still lacking. Further research is essential to fully comprehend the potential benefits of RIC in preventing AD. METHODS: Female wild-type (WT) and APP/PS1 transgenic rats, aged 12 months, underwent ovariectomy and were subsequently assigned to WT, APP/PS1, and APP/PS1 + RIC groups. RIC was conducted five times a week for 4 weeks. The rats' depressive and cognitive behaviors were evaluated using force swimming, open-field tests, novel objective recognition, elevated plus maze, and Barnes maze tests. Evaluation of the neurovascular unit (NVU), synapses, vasculature, astrocytes, and microglia was conducted using immunofluorescence staining (IF), Western blot (WB), and transmission electron microscopy (TEM). Additionally, the cerebro-vasculature was examined using micro-CT, and cerebral blood flow (CBF) was measured using Speckle Doppler. Blood-brain barrier (BBB) permeability was determined by measuring the Evans blue leakage. Finally, Aß levels in the rat frontal cortex were measured using WB, ELISA, or IF staining. RESULTS: RIC enhanced memory-related protein expression and rescued depressive-like behavior and cognitive decline in APP/PS1 transgenic rats. Additionally, the intervention protected NVU in the rat frontal cortex, as evidenced by (1) increased expression of TJ (tight junction) proteins, pericyte marker PDGFRß, and glucose transporter 1 (GLUT1), as well as decreased VCAM1; (2) mitigation of ultrastructure impairment in neuron, cerebral vascular, and astrocyte; (3) upregulation of A2 astrocyte phenotype markers and downregulation of A1 phenotype markers, indicating a shift toward a healthier phenotype. Correspondingly, RIC intervention alleviated neuroinflammation, as evidenced by the decreased Iba1 level, a microglia marker. Meanwhile, RIC intervention elevated CBF in frontal cortex of the rats. Notably, RIC intervention effectively suppressed Aß toxicity, as demonstrated by the enhancement of α-secretase and attenuation of ß-secretase (BACE1) and γ- secretase and Aß1-42 and Aß1-40 levels as well. CONCLUSION: Chronic RIC intervention exerts vascular and neuroprotective roles, suggesting that RIC could be a promising therapeutic strategy targeting the BBB and NVU during AD development.


Alzheimer Disease , Cognitive Dysfunction , Mice , Rats , Female , Animals , Blood-Brain Barrier/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/genetics , Mice, Transgenic , Rats, Transgenic , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/therapeutic use , Alzheimer Disease/drug therapy , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/therapy , Disease Models, Animal , Presenilin-1/genetics , Presenilin-1/metabolism
8.
FEBS J ; 291(1): 25-44, 2024 01.
Article En | MEDLINE | ID: mdl-37625440

Signal peptide peptidase (SPP) and the four SPP-like proteases SPPL2a, SPPL2b, SPPL2c and SPPL3 constitute a family of aspartyl intramembrane proteases with homology to presenilins. The different members reside in distinct cellular localisations within the secretory pathway and the endo-lysosomal system. Despite individual cleavage characteristics, they all cleave single-span transmembrane proteins with a type II orientation exhibiting a cytosolic N-terminus. Though the identification of substrates is not complete, SPP/SPPL-mediated proteolysis appears to be rather selective. Therefore, according to our current understanding cleavage by SPP/SPPL proteases rather seems to serve a regulatory function than being a bulk proteolytic pathway. In the present review, we will summarise our state of knowledge on SPP/SPPL proteases and in particular highlight recently identified substrates and the functional and/or (patho)-physiological implications of these cleavage events. Based on this, we aim to provide an overview of the current open questions in the field. These are connected to the regulation of these proteases at the cellular level but also in context of disease and patho-physiological processes. Furthermore, the interplay with other proteostatic systems capable of degrading membrane proteins is beginning to emerge.


Membrane Proteins , Proteostasis , Membrane Proteins/genetics , Membrane Proteins/metabolism , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Proteolysis
9.
mBio ; 15(1): e0122323, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38078758

IMPORTANCE: In the manuscript, the authors investigate the role of the protease Plasmepsin V in the parasite-host interaction. Whereas processing by Plasmepsin V was previously thought to target a protein for export into the host cell, the authors now show that there are proteins cleaved by this protease that are not exported but instead function at the host-parasite interface. This changes the view of this protease, which turns out to have a much broader role than anticipated. The result shows that the protease may have a function much more similar to that of related organisms. The authors also investigate the requirements for protein export by analyzing exported and non-exported proteins and find commonalities between the proteins of each set that further our understanding of the requirements for protein export.


Malaria , Parasites , Animals , Plasmodium falciparum/metabolism , Parasites/metabolism , Protein Transport , Vacuoles/metabolism , Protozoan Proteins/metabolism , Aspartic Acid Endopeptidases/genetics , Malaria/metabolism , Erythrocytes/parasitology
10.
Brain Res ; 1823: 148681, 2024 01 15.
Article En | MEDLINE | ID: mdl-37992797

In the early stages of sporadic Alzheimer's disease (SAD), there is a strong correlation between memory impairment and cortical levels of soluble amyloid-ß peptide oligomers (Aß). It has become clear that Aß disrupt glutamatergic synaptic function, which can in turn lead to the characteristic cognitive deficits of SAD, but the actual pathways are still not well understood. This opinion article describes the pathogenic mechanisms underlying cerebral amyloidosis. These mechanisms are dependent on the amyloid precursor protein and concern the synthesis of Aß peptides with competition between the non-amyloidogenic pathway and the amyloidogenic pathway (i.e. a competition between the ADAM10 and BACE1 enzymes), on the one hand, and the various processes of Aß residue clearance, on the other hand. This clearance mobilizes both endopeptidases (NEP, and IDE) and removal transporters across the blood-brain barrier (LRP1, ABCB1, and RAGE). Lipidated ApoE also plays a major role in all processes. The disturbance of these pathways induces an accumulation of Aß. The description of the mechanisms reveals two key molecules in particular: (i) free estradiol, which has genomic and non-genomic action, and (ii) free DHA as a preferential ligand of PPARα-RXRα and PPARÉ£-RXRα heterodimers. DHA and free estradiol are also self-regulating, and act in synergy. When a certain level of chronic DHA and free estradiol deficiency is reached, a permanent imbalance is established in the central nervous system. The consequences of these deficits are revealed in particular by the presence of Aß peptide deposits, as well as other markers of the etiology of SAD.


Alzheimer Disease , Fatty Acids, Omega-3 , Humans , Animals , Mice , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Alzheimer Disease/metabolism , Fatty Acids, Omega-3/metabolism , Estradiol/metabolism , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Brain/metabolism , Mice, Transgenic
11.
CNS Neurosci Ther ; 30(3): e14140, 2024 03.
Article En | MEDLINE | ID: mdl-36892036

AIMS: FoxO1 is an important target in the treatment of Alzheimer's disease (AD). However, FoxO1-specific agonists and their effects on AD have not yet been reported. This study aimed to identify small molecules that upregulate the activity of FoxO1 to attenuate the symptoms of AD. METHODS: FoxO1 agonists were identified by in silico screening and molecular dynamics simulation. Western blotting and reverse transcription-quantitative polymerase chain reaction assays were used to assess protein and gene expression levels of P21, BIM, and PPARγ downstream of FoxO1 in SH-SY5Y cells, respectively. Western blotting and enzyme-linked immunoassays were performed to explore the effect of FoxO1 agonists on APP metabolism. RESULTS: N-(3-methylisothiazol-5-yl)-2-(2-oxobenzo[d]oxazol-3(2H)-yl) acetamide (compound D) had the highest affinity for FoxO1. Compound D activated FoxO1 and regulated the expression of its downstream target genes, P21, BIM, and PPARγ. In SH-SY5Y cells treated with compound D, BACE1 expression levels were downregulated, and the levels of Aß1-40 and Aß1-42 were also reduced. CONCLUSIONS: We present a novel small-molecule FoxO1 agonist with good anti-AD effects. This study highlights a promising strategy for new drug discovery for AD.


Alzheimer Disease , Neuroblastoma , Humans , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Amyloid Precursor Protein Secretases/genetics , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Down-Regulation , PPAR gamma/genetics
12.
Int J Pharm ; 650: 123727, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38142018

Cleavage of Amyloid precursor protein (APP) by the ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate-limiting step in the production of amyloid-ß (Aß) synaptotoxins. The siRNA-mediated silencing to attenuate the expression of BACE1 to ameliorate cognitive dysfunction in mice had been investigated. To improve therapeutic gene delivery to the central nervous system, cationic copolymer poly(ethylene glycol)-b-poly[N-(N'-{N''-[N'''-(2-aminoethyl)-2-aminoethyl]-2-aminoethyl}-2-aminoethyl)aspartamide]-cholesterol was synthesized, then RVG29 and Tet1 peptides were exploited as ligands to construct a dual-targeting brain gene delivery polyion complex (Tet1/RVG29-PIC). The cell uptake of a coculture cell model showed that the Tet1/RVG29-PIC exhibited notable transport characteristics and possessed affinity towards nerve cells. In vivo transfection, Tet1/RVG29-PIC possessed the highest expression of luciferase in brain compared with that of RVG29-PIC or Tet1-PIC, which were 1.25 and 1.22 times respectively. Silence BACE1 expression using siRNA-expressing plasmid loaded Tet1/RVG29-PIC that improved behavioral deficits in the APP/PS1 mouse model, demonstrating the favorable brain delivery properties of Tet1/RVG29-PIC by synergistical engagement of GT1B and nicotinic acetylcholine receptors. Our results suggested that the nanoformulation has the potential to be exploited as a multistage-targeting gene vector for the CNS disease therapy.


Alzheimer Disease , Amyloid beta-Protein Precursor , Animals , Mice , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Brain/metabolism , Mice, Transgenic , RNA, Small Interfering/metabolism
13.
Brain Behav Immun ; 115: 517-534, 2024 01.
Article En | MEDLINE | ID: mdl-37967665

BACKGROUND: Increasing evidence highlights the importance of novel players in Alzheimer's disease (AD) pathophysiology, including alterations of lipid metabolism and neuroinflammation. Indeed, a potential involvement of Proprotein convertase subtilisin/kexin type 9 (PCSK9) in AD has been recently postulated. Here, we first investigated the effects of PCSK9 on neuroinflammation in vitro. Then, we examined the impact of a genetic ablation of PCSK9 on cognitive performance in a severe mouse model of AD. Finally, in the same animals we evaluated the effect of PCSK9 loss on Aß pathology, neuroinflammation, and brain lipids. METHODS: For in vitro studies, U373 human astrocytoma cells were treated with Aß fibrils and human recombinant PCSK9. mRNA expression of the proinflammatory cytokines and inflammasome-related genes were evaluated by q-PCR, while MCP-1 secretion was measured by ELISA. For in vivo studies, the cognitive performance of a newly generated mouse line - obtained by crossing 5XFADHet with PCSK9KO mice - was tested by the Morris water maze test. After sacrifice, immunohistochemical analyses were performed to evaluate Aß plaque deposition, distribution and composition, BACE1 immunoreactivity, as well as microglia and astrocyte reactivity. Cholesterol and hydroxysterols levels in mouse brains were quantified by fluorometric and LC-MS/MS analyses, respectively. Statistical comparisons were performed according to one- or two-way ANOVA, two-way repeated measure ANOVA or Chi-square test. RESULTS: In vitro, PCSK9 significantly increased IL6, IL1B and TNFΑ mRNA levels in Aß fibrils-treated U373 cells, without influencing inflammasome gene expression, except for an increase in NLRC4 mRNA levels. In vivo, PCSK9 ablation in 5XFAD mice significantly improved the performance at the Morris water maze test; these changes were accompanied by a reduced corticohippocampal Aß burden without affecting plaque spatial/regional distribution and composition or global BACE1 expression. Furthermore, PCSK9 loss in 5XFAD mice induced decreased microgliosis and astrocyte reactivity in several brain regions. Conversely, knocking out PCSK9 had minimal impact on brain cholesterol and hydroxysterol levels. CONCLUSIONS: In vitro studies showed a pro-inflammatory effect of PCSK9. Consistently, in vivo data indicated a protective role of PCSK9 ablation against cognitive impairments, associated with improved Aß pathology and attenuated neuroinflammation in a severe mouse model of AD. PCSK9 may thus be considered a novel pharmacological target for the treatment of AD.


Alzheimer Disease , Cognitive Dysfunction , Mice , Humans , Animals , Mice, Transgenic , Proprotein Convertase 9/therapeutic use , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/therapeutic use , Neuroinflammatory Diseases , Chromatography, Liquid , Inflammasomes , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/therapeutic use , Tandem Mass Spectrometry , Alzheimer Disease/metabolism , RNA, Messenger , Cholesterol , Amyloid beta-Peptides/metabolism , Disease Models, Animal
14.
Int J Mol Sci ; 24(24)2023 Dec 18.
Article En | MEDLINE | ID: mdl-38139415

Although the long-standing Amyloid Cascade Hypothesis (ACH) has been largely discredited, its main attribute, the centrality of amyloid-beta (Aß) in Alzheimer's disease (AD), remains the cornerstone of any potential interpretation of the disease: All known AD-causing mutations, without a single exception, affect, in one way or another, Aß. The ACH2.0, a recently introduced theory of AD, preserves this attribute but otherwise differs fundamentally from the ACH. It posits that AD is a two-stage disorder where both stages are driven by intraneuronal (rather than extracellular) Aß (iAß) albeit of two distinctly different origins. The first asymptomatic stage is the decades-long accumulation of Aß protein precursor (AßPP)-derived iAß to the critical threshold. This triggers the activation of the self-sustaining AßPP-independent iAß production pathway and the commencement of the second, symptomatic AD stage. Importantly, Aß produced independently of AßPP is retained intraneuronally. It drives the AD pathology and perpetuates the operation of the pathway; continuous cycles of the iAß-stimulated propagation of its own AßPP-independent production constitute an engine that drives AD, the AD Engine. It appears that the dynamics of AßPP-derived iAß accumulation is the determining factor that either drives Aging-Associated Cognitive Decline (AACD) and triggers AD or confers the resistance to both. Within the ACH2.0 framework, the ACH-based drugs, designed to lower levels of extracellular Aß, could be applicable in the prevention of AD and treatment of AACD because they reduce the rate of accumulation of AßPP-derived iAß. The present study analyzes their utility and concludes that it is severely limited. Indeed, their short-term employment is ineffective, their long-term engagement is highly problematic, their implementation at the symptomatic stages of AD is futile, and their evaluation in conventional clinical trials for the prevention of AD is impractical at best, impossible at worst, and misleading in between. In contrast, the ACH2.0-guided Next Generation Therapeutic Strategy for the treatment and prevention of both AD and AACD, namely the depletion of iAß via its transient, short-duration, targeted degradation by the novel ACH2.0-based drugs, has none of the shortcomings of the ACH-based drugs. It is potentially highly effective, easily evaluable in clinical trials, and opens up the possibility of once-in-a-lifetime-only therapeutic intervention for prevention and treatment of both conditions. It also identifies two plausible ACH2.0-based drugs: activators of physiologically occurring intra-iAß-cleaving capabilities of BACE1 and/or BACE2.


Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Aging , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/prevention & control
15.
ACS Appl Mater Interfaces ; 15(46): 53177-53188, 2023 Nov 22.
Article En | MEDLINE | ID: mdl-37939350

Gene therapy has great potential in treating neurodegenerative diseases with complex pathologies. The combination of small interfering RNAs (siRNAs) targeting ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) and caspase-3 will provide an effective treatment option for Alzheimer's disease (AD). To overcome the multiple physiological barriers and improve the therapeutic efficacy of siRNAs, lesion-recognizing nanoparticles (NPs) are constructed in this study for the synergistic treatment of AD. The lesion-recognizing NPs contain rabies virus glycoprotein peptide-modified mesenchymal stem cell-derived exosomes as the shell and a reactive oxygen species (ROS)-responsive polymer loaded with siRNAs as the core. After intranasal administration, the lesion-recognizing NPs cross the nasal mucosa and migrate to the affected brain areas. Furthermore, the NPs recognize the target cells and fuse with the cell membranes of neurons. The cores of NPs directly enter into the cytoplasm and achieve the controlled release of siRNAs in a high-ROS environment to downregulate the level of BACE1 and caspase-3 to ameliorate neurologic injury. In addition, lesion-recognizing NPs can significantly reduce the number of reactive astrocytes. Lesion-recognizing NPs have a positive effect on regulating the phase of neurons and astrocytes, which results in better restoration of memory deficits in 3 × Tg-AD mice. Therefore, this work provides a promising platform for neurodegenerative disease treatment.


Alzheimer Disease , Nanoparticles , Neurodegenerative Diseases , Mice , Animals , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/therapeutic use , Caspase 3/genetics , Caspase 3/metabolism , RNA, Small Interfering/metabolism , Neurodegenerative Diseases/metabolism , Reactive Oxygen Species/metabolism , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/therapeutic use , Brain/metabolism , Amyloid beta-Peptides/metabolism
16.
J Exp Clin Cancer Res ; 42(1): 306, 2023 Nov 21.
Article En | MEDLINE | ID: mdl-37986103

BACKGROUND: Liver metastasis is one of the most important reasons for high mortality of colorectal cancer (CRC). Growing evidence illustrates that lncRNAs play a critical role in CRC liver metastasis. Here we described a novel function and mechanisms of BACE1-AS promoting CRC liver metastasis. METHODS: qRT-PCR and in situ hybridization were performed to examine the BACE1-AS level in CRC. IGF2BP2 binding to m6A motifs in BACE1-AS was determined by RIP assay and S1m-tagged immunoprecipitation. Transwell assay and liver metastasis mice model experiments were performed to examine the metastasis capabilities of BACE1-AS knockout cells. Stemness-like properties was examined by tumor sphere assay and the expression of stemness biomarkers. Microarray data were acquired to analyze the signaling pathways involved in BACE1-AS promoting CRC metastasis. RESULTS: BACE1-AS is the most up-regulated in metastatic CRC associated with unfavorable prognosis. Sequence blast revealed two m6A motifs in BACE1-AS. IGF2BP2 binding to these two m6A motifs is required for BACE1-AS boost in metastatic CRC. m6A modified BACE1-AS drives CRC cells migration and invasion and liver metastasis both in vitro and in vivo. Moreover, BACE1-AS maintains the stemness-like properties of CRC cells. Mechanically, BACE1-AS promoted TUFT1 expression by ceRNA network through miR-214-3p. CRC patients with such ceRNA network suffer poorer prognosis than ceRNA-negative patients. Depletion of TUFT1 mimics BACE1-AS loss. BACE1-AS activated Wnt signaling pathway in a TUFT1 dependent manner. BACE1-AS/miR-214-3p/TUFT1/Wnt signaling regulatory axis is essential for CRC liver metastasis. Pharmacologic inhibition of Wnt signaling pathway repressed liver metastasis and stemness-like features in BACE1-AS over-expressed CRC cells. CONCLUSION: Our study demonstrated BACE1-AS as a novel target of IGF2BP2 through m6A modification. m6A modified BACE1-AS promotes CRC liver metastasis through TUFT1 dependent activation of Wnt signaling pathway. Thus, targeting BACE1-AS and its downstream Wnt signaling pathways may provide a new opportunity for metastatic CRC intervention and treatment.


Amyloid Precursor Protein Secretases , Colorectal Neoplasms , Dental Enamel Proteins , Liver Neoplasms , RNA, Antisense , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Wnt Signaling Pathway , RNA, Antisense/metabolism , Aspartic Acid Endopeptidases/genetics , Amyloid Precursor Protein Secretases/genetics , Liver Neoplasms/secondary , Cell Line, Tumor , Adenosine/analogs & derivatives , Humans , RNA-Binding Proteins/metabolism , Dental Enamel Proteins/metabolism
17.
Front Cell Infect Microbiol ; 13: 1257897, 2023.
Article En | MEDLINE | ID: mdl-37780854

The surge of multidrug-resistant fungal pathogens, especially Candida auris, poses significant threats to global public health. Candida auris exhibits resistance to multiple antifungal drugs, leading to major outbreaks and a high mortality rate. With an urgent call for innovative therapeutic strategies, this study focused on the regulation and pathobiological significance of secreted aspartyl proteinases (SAPs) in C. auris, as these enzymes play pivotal roles in the virulence of some fungal species. We delved into the Ras/cAMP/PKA signaling pathway's influence on SAP activity in C. auris. Our findings underscored that the Ras/cAMP/PKA pathway significantly modulates SAP activity, with PKA catalytic subunits, Tpk1 and Tpk2, playing a key role. We identified a divergence in the SAPs of C. auris compared to Candida albicans, emphasizing the variation between Candida species. Among seven identified secreted aspartyl proteases in C. auris (Sapa1 to Sapa7), Sapa3 emerged as the primary SAP in the pathogen. Deletion of Sapa3 led to a significant decline in SAP activity. Furthermore, we have established the involvement of Sapa3 in the biofilm formation of C. auris. Notably, Sapa3 was primarily regulated by Tpk1 and Tpk2. Deletion of SAPA3 significantly reduced C. auris virulence, underscoring its pivotal role in C. auris pathogenicity. The outcomes of this study provide valuable insights into potential therapeutic targets, laying the groundwork for future interventions against C. auris infection.


Aspartic Acid Proteases , Candida auris , Virulence , Aspartic Acid Proteases/genetics , Aspartic Acid Proteases/metabolism , Candida/genetics , Candida albicans , Antifungal Agents/pharmacology , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism
18.
J Trace Elem Med Biol ; 80: 127309, 2023 Dec.
Article En | MEDLINE | ID: mdl-37801786

BACKGROUND: Studies have shown that aluminum (Al) is one of the environmental risk factors leading to Alzheimer's disease (AD), and Al exposure can cause elevated levels of BACE1mRNA, ß-secretase (BACE1), and amyloid beta (Aß) in vivo and in vitro. Previous studies by our research group have shown that this is partly caused by the negative regulation of BACE1 by miRNA29a/b1 (miR29a/b1). Despite the observed the role of nuclear factor kappa B (NF-κB) on many miRNAs, the upstream regulation of NF-κB protein on miR29 remains poorly understood. The purpose of this study was to better define the relationship between NF-κB and miR29a/b1 and the potentially relevant signaling pathways. METHODS: On the one hand, we constructed the animal model of Al exposure by the intraperitoneal injection of aluminum-maltolate (Al(mal)3) in rats. Conversely, NF- κB inhibitors were added to adrenal phaeochromocytoma (PC12) cells exposed to Al(mal)3. RESULTS: We verified that NF-κB shows an increasing trend with Al accumulation in the brain of rats, which is accompanied by a downward trend of miR29a/b1. Notably, the suppression of NF-κB significantly increased miR29a/b1 and affected the expression of BACE1mRNA and downstream proteins. CONCLUSION: Al-induced NF-κB can negatively regulate the expression of miR29a/b1, which then significantly enhances the expression of BACE1 and Aß plaques.


Amyloid beta-Peptides , NF-kappa B , Rats , Animals , NF-kappa B/metabolism , Amyloid beta-Peptides/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Aluminum/pharmacology , Aluminum/metabolism , Down-Regulation , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism
19.
Sci Rep ; 13(1): 15731, 2023 09 21.
Article En | MEDLINE | ID: mdl-37735227

Amyloid beta (Aß) aggregation and tau hyper phosphorylation (p-tau) are key molecular factors in Alzheimer's disease (AD). The abnormal formation and accumulation of Aß and p-tau lead to the formation of amyloid plaques and neurofibrillary tangles (NFTs) which ultimately leads to neuroinflammation and neurodegeneration. ß- and γ-secretases produce Aß peptides via the amyloidogenic pathway, and several kinases are involved in tau phosphorylation. Exosomes, a recently developed method of intercellular communication, derived from neuronal stem cells (NSC-exos), are intriguing therapeutic options for AD. Exosomes have ability to cross the BBB hence highly recommended for brain related diseases and disorders. In the current study, we examined how NSC-exos could protect human neuroblastoma cells SH-SY5Y (ATCC CRL-2266). NSC-exos were derived from Human neural stem cells (ATCC-BYS012) by ultracentrifugation and the therapeutic effects of the NSC-exos were then investigated in vitro. NSC-exos controlled the associated molecular processes to drastically lower Aß and p-tau. A dose dependent reduction in ß- and γ-secretase, acetylcholinesterase, GSK3ß, CDK5, and activated α-secretase activities was also seen. We further showed that BACE1, PSEN1, CDK5, and GSK-3ß mRNA expression was suppressed and downregulated, while ADAM10 mRNA was increased. NSC- Exos downregulate NF-B/ERK/JNK-related signaling pathways in activated glial cells HMC3 (ATCC-CRL-3304) and reduce inflammatory mediators such iNOS, IL-1ß, TNF-α, and IL-6, which are associated with neuronal inflammation. The NSC-exos therapy ameliorated the neurodegeneration of human neuroblastoma cells SH-SY5Y by enhancing viability. Overall, these findings support that exosomes produced from stem cells can be a neuro-protective therapy to alleviate AD pathology.


Alzheimer Disease , Exosomes , Neural Stem Cells , Neuroblastoma , Humans , Amyloid Precursor Protein Secretases/genetics , Glycogen Synthase Kinase 3 beta , Alzheimer Disease/therapy , Acetylcholinesterase , Amyloid beta-Peptides , Aspartic Acid Endopeptidases/genetics , Neuroblastoma/therapy
20.
J Neurosci ; 43(35): 6197-6211, 2023 08 30.
Article En | MEDLINE | ID: mdl-37536983

Alzheimer's disease (AD) increases the risk for seizures and sleep disorders. We show here that germline deletion of ß-site amyloid precursor protein (APP) cleaving enzyme-1 (BACE1) in neurons, but not in astrocytes, increased epileptiform activity. However, Bace1 deletion at adult ages did not alter the normal EEG waveform, indicating less concern for BACE1 inhibition in patients. Moreover, we showed that deletion of Bace1 in the adult was able to reverse epileptiform activity in 5xFAD mice. Intriguingly, treating 5xFAD and APPNL-G-F/NL-G-F (APP KI) mice of either sex with one BACE1 inhibitor Lanabecestat (AZD3293) dramatically increased epileptiform spiking, likely resulting from an off-target effect. We also monitored sleep-wake pathologies in these mice and showed increased wakefulness, decreased non-rapid eye movement sleep, and rapid eye movement sleep in both 5xFAD and APP KI mice; BACE1 inhibition in the adult 5xFAD mice reversed plaque load and sleep disturbances, but this was not seen in APP KI mice. Further studies with and without BACE1 inhibitor treatment showed different levels of plaque-associated microgliosis and activated microglial proteins in 5xFAD mice compared with APP KI mice. Together, BACE1 inhibition should be developed to avoid off-target effect for achieving benefits in reducing epileptic activity and sleep disturbance in Alzheimer's patients.SIGNIFICANCE STATEMENT BACE1 is widely recognized as a therapeutic target for treating Alzheimer's disease patients. However, BACE1 inhibitors failed in clinical trials because of inability to show cognitive improvement in patients. Here we show that BACE1 inhibition actually reduces sleep disturbances and epileptic seizures; both are seen in AD patients. We further showed that one of clinically tested BACE1 inhibitors does have off-target effects, and development of safer BACE1 inhibitors will be beneficial to AD patients. Results from this study will provide useful guidance for additional drug development.


Alzheimer Disease , Sleep Wake Disorders , Mice , Animals , Alzheimer Disease/complications , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Mice, Transgenic , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Plaque, Amyloid , Seizures , Sleep Wake Disorders/etiology , Sleep Wake Disorders/genetics , Sleep , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Peptides/metabolism , Disease Models, Animal
...