Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.711
Filtrar
1.
Arch Microbiol ; 206(7): 305, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878211

RESUMEN

Aspergillus fumigatus is a ubiquitous filamentous fungus commonly found in the environment. It is also an opportunistic human pathogen known to cause a range of respiratory infections, such as invasive aspergillosis, particularly in immunocompromised individuals. Azole antifungal agents are widely used for the treatment and prophylaxis of Aspergillus infections due to their efficacy and tolerability. However, the emergence of azole resistance in A. fumigatus has become a major concern in recent years due to their association with increased treatment failures and mortality rates. The development of azole resistance in A. fumigatus can occur through both acquired and intrinsic mechanisms. Acquired resistance typically arises from mutations in the target enzyme, lanosterol 14-α-demethylase (Cyp51A), reduces the affinity of azole antifungal agents for the enzyme, rendering them less effective, while intrinsic resistance refers to a natural resistance of certain A. fumigatus isolates to azole antifungals due to inherent genetic characteristics. The current review aims to provide a comprehensive overview of azole antifungal resistance in A. fumigatus, discusses underlying resistance mechanisms, including alterations in the target enzyme, Cyp51A, and the involvement of efflux pumps in drug efflux. Impact of azole fungicide uses in the environment and the spread of resistant strains is also explored.


Asunto(s)
Antifúngicos , Aspergilosis , Aspergillus fumigatus , Azoles , Farmacorresistencia Fúngica , Proteínas Fúngicas , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Azoles/farmacología , Farmacorresistencia Fúngica/genética , Antifúngicos/farmacología , Humanos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Aspergilosis/microbiología , Aspergilosis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Mutación
2.
Mycopathologia ; 189(4): 49, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864956

RESUMEN

Aspergillosis encompasses a wide range of clinical conditions based on the interaction between Aspergillus and the host. It ranges from colonization to invasive aspergillosis. The human lung provides an entry door for Aspergillus. Aspergillus has virulence characteristics such as conidia, rapid growth at body temperature, and the production of specific proteins, carbohydrates, and secondary metabolites that allow A. fumigatus to infiltrate the lung's alveoli and cause invasive aspergillosis. Alveolar epithelial cells play an important role in both fungus clearance and immune cell recruitment via cytokine release. Although the innate immune system quickly clears conidia in immunocompetent hosts, A. fumigatus has evolved multiple virulence factors in order to escape immune response such as ROS detoxifying enzymes, the rodlet layer, DHN-melanin and toxins. Bacterial co-infections or interactions can alter the immune response, impact Aspergillus growth and virulence, enhance biofilm formation, confound diagnosis, and reduce treatment efficacy. The gut microbiome's makeup influences pulmonary immune responses generated by A. fumigatus infection and vice versa. The real-time PCR for Aspergillus DNA detection might be a particularly useful tool to diagnose pulmonary aspergillosis. Metagenomics analyses allow quick and easy detection and identification of a great variety of fungi in different clinical samples, although optimization is still required particularly for the use of NGS techniques. This review will analyze the current state of aspergillosis in light of recent discoveries in the microbiota and mycobiota.


Asunto(s)
Aspergilosis , Micobioma , Humanos , Aspergilosis/microbiología , Aspergilosis/diagnóstico , Aspergilosis/inmunología , Aspergillus fumigatus/patogenicidad , Aspergillus fumigatus/genética , Aspergillus fumigatus/inmunología , Aspergillus/genética , Aspergillus/patogenicidad , Factores de Virulencia/genética , Microbiota , Virulencia , Metagenómica , Interacciones Huésped-Patógeno/inmunología
3.
Mycopathologia ; 189(4): 50, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864903

RESUMEN

Aspergillus fumigatus is a saprophytic fungal pathogen that causes opportunistic infections in animals and humans. Azole resistance has been reported globally in human A. fumigatus isolates, but the prevalence of resistance in isolates from animals is largely unknown. A retrospective resistance surveillance study was performed using a collection of clinical A. fumigatus isolates from various animal species collected between 2015 and 2020. Agar-based azole resistance screening of all isolates was followed by in vitro antifungal susceptibility testing and cyp51A gene sequencing of the azole-resistant isolates. Over the 5 year period 16 (11.3%) of 142 A. fumigatus culture-positive animals harbored an azole-resistant isolate. Resistant isolates were found in birds (15%; 2/13), cats (21%; 6/28), dogs (8%; 6/75) and free-ranging harbor porpoise (33%; 2/6). Azole-resistance was cyp51A mediated in all isolates: 81.3% (T-67G/)TR34/L98H, 12.5% TR46/Y121F/T289A. In one azole-resistant A. fumigatus isolate a combination of C(-70)T/F46Y/C(intron7)T/C(intron66)T/M172V/E427K single-nucleotide polymorphisms in the cyp51A gene was found. Of the animals with an azole-resistant isolate and known azole exposure status 71.4% (10/14) were azole naive. Azole resistance in A. fumigatus isolates from animals in the Netherlands is present and predominantly cyp51A TR-mediated, supporting an environmental route of resistance selection. Our data supports the need to include veterinary isolates in resistance surveillance programs. Veterinarians should consider azole resistance as a reason for therapy failure when treating aspergillosis and consider resistance testing of relevant isolates.


Asunto(s)
Antifúngicos , Aspergilosis , Aspergillus fumigatus , Azoles , Farmacorresistencia Fúngica , Pruebas de Sensibilidad Microbiana , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/aislamiento & purificación , Animales , Azoles/farmacología , Farmacorresistencia Fúngica/genética , Aspergilosis/microbiología , Aspergilosis/veterinaria , Antifúngicos/farmacología , Países Bajos/epidemiología , Estudios Retrospectivos , Proteínas Fúngicas/genética , Aves/microbiología , Gatos , Perros , Sistema Enzimático del Citocromo P-450
4.
Commun Biol ; 7(1): 704, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851817

RESUMEN

Aspergillus fumigatus represents a public health problem due to the high mortality rate in immunosuppressed patients and the emergence of antifungal-resistant isolates. Protein acetylation is a crucial post-translational modification that controls gene expression and biological processes. The strategic manipulation of enzymes involved in protein acetylation has emerged as a promising therapeutic approach for addressing fungal infections. Sirtuins, NAD+-dependent lysine deacetylases, regulate protein acetylation and gene expression in eukaryotes. However, their role in the human pathogenic fungus A. fumigatus remains unclear. This study constructs six single knockout strains of A. fumigatus and a strain lacking all predicted sirtuins (SIRTKO). The mutant strains are viable under laboratory conditions, indicating that sirtuins are not essential genes. Phenotypic assays suggest sirtuins' involvement in cell wall integrity, secondary metabolite production, thermotolerance, and virulence. Deletion of sirE attenuates virulence in murine and Galleria mellonella infection models. The absence of SirE alters the acetylation status of proteins, including histones and non-histones, and triggers significant changes in the expression of genes associated with secondary metabolism, cell wall biosynthesis, and virulence factors. These findings encourage testing sirtuin inhibitors as potential therapeutic strategies to combat A. fumigatus infections or in combination therapy with available antifungals.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Sirtuinas , Aspergillus fumigatus/patogenicidad , Aspergillus fumigatus/genética , Aspergillus fumigatus/enzimología , Sirtuinas/genética , Sirtuinas/metabolismo , Virulencia , Animales , Ratones , Aspergilosis/microbiología , Aspergilosis/tratamiento farmacológico , Acetilación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Mariposas Nocturnas/microbiología
5.
Protein Sci ; 33(7): e5071, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38895984

RESUMEN

Tuberculosis necrotizing toxin (TNT) is a protein domain discovered on the outer membrane of Mycobacterium tuberculosis (Mtb), and the fungal pathogen Aspergillus fumigatus. TNT domains have pure NAD(P) hydrolytic activity, setting them apart from other NAD-cleaving domains such as ADP-ribosyl cyclase and Toll/interleukin-1 receptor homology (TIR) domains which form a wider set of products. Importantly, the Mtb TNT domain has been shown to be involved in immune evasion via depletion of the intracellular NAD pool of macrophages. Therefore, an intriguing hypothesis is that TNT domains act as "NAD killers" in host cells facilitating pathogenesis. Here, we explore the phylogenetic distribution of TNT domains and detect their presence solely in bacteria and fungi. Within fungi, we discerned six TNT clades. In addition, X-ray crystallography and AlphaFold2 modeling unveiled clade-specific strategies to promote homodimer stabilization of the fungal enzymes, namely, Ca2+ binding, disulfide bonds, or hydrogen bonds. We show that dimer stabilization is a requirement for NADase activity and that the group-specific strategies affect the active site conformation, thereby modulating enzyme activity. Together, these findings reveal the evolutionary lineage of fungal TNT enzymes, corroborating the hypothesis of them being pure extracellular NAD (eNAD) cleavers, with possible involvement in microbial warfare and host immune evasion.


Asunto(s)
Mycobacterium tuberculosis , NAD , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/química , NAD/metabolismo , Dominios Proteicos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Cristalografía por Rayos X , Aspergillus fumigatus/enzimología , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/química , Evolución Molecular , Modelos Moleculares , Filogenia , NAD+ Nucleosidasa/metabolismo , NAD+ Nucleosidasa/química , NAD+ Nucleosidasa/genética
7.
Nat Commun ; 15(1): 4984, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862481

RESUMEN

More than 10 million people suffer from lung diseases caused by the pathogenic fungus Aspergillus fumigatus. Azole antifungals represent first-line therapeutics for most of these infections but resistance is rising, therefore the identification of antifungal targets whose inhibition synergises with the azoles could improve therapeutic outcomes. Here, we generate a library of 111 genetically barcoded null mutants of Aspergillus fumigatus in genes encoding protein kinases, and show that loss of function of kinase YakA results in hypersensitivity to the azoles and reduced pathogenicity. YakA is an orthologue of Candida albicans Yak1, a TOR signalling pathway kinase involved in modulation of stress responsive transcriptional regulators. We show that YakA has been repurposed in A. fumigatus to regulate blocking of the septal pore upon exposure to stress. Loss of YakA function reduces the ability of A. fumigatus to penetrate solid media and to grow in mouse lung tissue. We also show that 1-ethoxycarbonyl-beta-carboline (1-ECBC), a compound previously shown to inhibit C. albicans Yak1, prevents stress-mediated septal spore blocking and synergises with the azoles to inhibit A. fumigatus growth.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Quinasas DyrK , Proteínas Fúngicas , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Aspergillus fumigatus/genética , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/enzimología , Animales , Antifúngicos/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/antagonistas & inhibidores , Ratones , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Azoles/farmacología , Aspergilosis/microbiología , Aspergilosis/tratamiento farmacológico , Pulmón/microbiología , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/genética , Femenino
8.
Open Biol ; 14(6): 240033, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38919062

RESUMEN

Aspergillus fumigatus is the predominant mould pathogen for humans. Adaption to host-imposed iron limitation has previously been demonstrated to be essential for its virulence. [2Fe-2S] clusters are crucial as cofactors of several metabolic pathways and mediate cytosolic/nuclear iron sensing in fungi including A. fumigatus. [2Fe-2S] cluster trafficking has been shown to involve BolA family proteins in both mitochondria and the cytosol/nucleus. Interestingly, both A. fumigatus homologues, termed Bol1 and Bol3, possess mitochondrial targeting sequences, suggesting the lack of cytosolic/nuclear versions. Here, we show by the combination of mutational, proteomic and fluorescence microscopic analyses that expression of the Bol3 encoding gene leads to dual localization of gene products to mitochondria and the cytosol/nucleus via alternative translation initiation downstream of the mitochondrial targeting sequence, which appears to be highly conserved in various Aspergillus species. Lack of either mitochondrial Bol1 or Bol3 was phenotypically inconspicuous while lack of cytosolic/nuclear Bol3 impaired growth during iron limitation but not iron sensing which indicates a particular importance of [2Fe-2S] cluster trafficking during iron limitation. Remarkably, cytosolic/nuclear Bol3 differs from the mitochondrial version only by N-terminal acetylation, a finding that was only possible by mutational hypothesis testing.


Asunto(s)
Aspergillus fumigatus , Citosol , Proteínas Fúngicas , Hierro , Mitocondrias , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Citosol/metabolismo , Mitocondrias/metabolismo , Hierro/metabolismo , Adaptación Fisiológica , Núcleo Celular/metabolismo , Transporte de Proteínas , Proteómica/métodos , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/genética , Regulación Fúngica de la Expresión Génica , Acetilación
9.
Front Cell Infect Microbiol ; 14: 1393242, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912204

RESUMEN

Background: Invasive mold diseases of the central nervous (CNS IMD) system are exceedingly rare disorders, characterized by nonspecific clinical symptoms. This results in significant diagnostic challenges, often leading to delayed diagnosis and the risk of misdiagnosis for patients. Metagenomic Next-Generation Sequencing (mNGS) holds significant importance for the diagnosis of infectious diseases, especially in the rapid and accurate identification of rare and difficult-to-culture pathogens. Therefore, this study aims to explore the clinical characteristics of invasive mold disease of CNS IMD in children and assess the effectiveness of mNGS technology in diagnosing CNS IMD. Methods: Three pediatric patients diagnosed with Invasive mold disease brain abscess and treated in the Pediatric Intensive Care Unit (PICU) of the First Affiliated Hospital of Zhengzhou University from January 2020 to December 2023 were selected for this study. Results: Case 1, a 6-year-old girl, was admitted to the hospital with "acute liver failure." During her hospital stay, she developed fever, irritability, and seizures. CSF mNGS testing resulted in a negative outcome. Multiple brain abscesses were drained, and Aspergillus fumigatus was detected in pus culture and mNGS. The condition gradually improved after treatment with voriconazole combined with caspofungin. Case 2, a 3-year-old girl, was admitted with "acute B-lymphoblastic leukemia." During induction chemotherapy, she developed fever and seizures. Aspergillus fumigatus was detected in the intracranial abscess fluid by mNGS, and the condition gradually improved after treatment with voriconazole combined with caspofungin, followed by "right-sided brain abscess drainage surgery." Case 3, a 7-year-old girl, showed lethargy, fever, and right-sided limb weakness during the pending chemotherapy period for acute B-lymphoblastic leukemia. Rhizomucor miehei and Rhizomucor pusillus was detected in the cerebrospinal fluid by mNGS. The condition gradually improved after treatment with amphotericin B combined with posaconazole. After a six-month follow-up post-discharge, the three patients improved without residual neurological sequelae, and the primary diseases were in complete remission. Conclusion: The clinical manifestations of CNS IMD lack specificity. Early mNGS can assist in identifying the pathogen, providing a basis for definitive diagnosis. Combined surgical treatment when necessary can help improve prognosis.


Asunto(s)
Antifúngicos , Absceso Encefálico , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Humanos , Femenino , Niño , Metagenómica/métodos , Absceso Encefálico/microbiología , Absceso Encefálico/diagnóstico , Absceso Encefálico/tratamiento farmacológico , Antifúngicos/uso terapéutico , Antifúngicos/farmacología , Infecciones Fúngicas Invasoras/diagnóstico , Infecciones Fúngicas Invasoras/microbiología , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Masculino , Infecciones Fúngicas del Sistema Nervioso Central/diagnóstico , Infecciones Fúngicas del Sistema Nervioso Central/microbiología , Infecciones Fúngicas del Sistema Nervioso Central/tratamiento farmacológico , Preescolar , Aspergillus fumigatus/genética , Aspergillus fumigatus/aislamiento & purificación , Caspofungina/uso terapéutico
10.
mSphere ; 9(6): e0025324, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38814077

RESUMEN

Aspergillus fumigatus is the leading cause of severe mold infections in immunocompromised patients. This common fungus possesses innate attributes that allow it to evade the immune system, including its ability to survive the high copper (Cu) levels in phagosomes. Our previous work has revealed that under high Cu levels, the A. fumigatus transcription factor AceA is activated, inducing the expression of the copper exporter CrpA to expel excess Cu. To identify additional elements in Cu resistance, we evolved A. fumigatus wild-type and mutant ΔaceA or ΔcrpA strains under increasing Cu concentrations. Sequencing of the resultant resistant strains identified both shared and unique evolutionary pathways to resistance. Reintroduction of three of the most common mutations in genes encoding Pma1 (plasma membrane H+-ATPase), Gcs1 (glutamate cysteine-ligase), and Cpa1 (carbamoyl-phosphate synthetase), alone and in combination, into wild-type A. fumigatus confirmed their additive role in conferring Cu resistance. Detailed analysis indicated that the pma1 mutation L424I preserves Pma1 H+-ATPase activity under high Cu concentrations and that the cpa1 mutation A37V confers a survival advantage to conidia in the presence of Cu. Interestingly, simultaneous mutations of all three genes did not alter virulence in infected mice. Our work has identified novel Cu-resistance pathways and provides an evolutionary approach for dissecting the molecular basis of A. fumigatus adaptation to diverse environmental challenges.IMPORTANCEAspergillus fumigatus is the most common mold infecting patients with weakened immunity. Infection is caused by the inhalation of mold spores into the lungs and is often fatal. In healthy individuals, spores are engulfed by lung immune cells and destroyed by a combination of enzymes, oxidants, and high levels of copper. However, the mold can protect itself by pumping out excess copper with specific transporters. Here, we evolved A. fumigatus under high copper levels and identified new genetic mutations that help it resist the toxic effects of copper. We studied how these mutations affect the mold's ability to resist copper and how they impact its ability to cause disease. This is the first such study in a pathogenic mold, and it gives us a better understanding of how it manages to bypass our body's defenses during an infection.


Asunto(s)
Aspergillus fumigatus , Cobre , Proteínas Fúngicas , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidad , Cobre/metabolismo , Animales , Ratones , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Aspergilosis/microbiología , Aspergilosis/inmunología , Mutación , Farmacorresistencia Fúngica/genética , Virulencia , Evolución Molecular , Glutamato-Cisteína Ligasa/genética , Femenino , ATPasas de Translocación de Protón/genética
11.
G3 (Bethesda) ; 14(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38696662

RESUMEN

Aspergillus fumigatus is a deadly fungal pathogen, responsible for >400,000 infections/year and high mortality rates. A. fumigatus strains exhibit variation in infection-relevant traits, including in their virulence. However, most A. fumigatus protein-coding genes, including those that modulate its virulence, are shared between A. fumigatus strains and closely related nonpathogenic relatives. We hypothesized that A. fumigatus genes exhibit substantial genetic variation in the noncoding regions immediately upstream to the start codons of genes, which could reflect differences in gene regulation between strains. To begin testing this hypothesis, we identified 5,812 single-copy orthologs across the genomes of 263 A. fumigatus strains. In general, A. fumigatus noncoding regions showed higher levels of sequence variation compared with their corresponding protein-coding regions. Focusing on 2,482 genes whose protein-coding sequence identity scores ranged between 75 and 99%, we identified 478 total genes with signatures of positive selection only in their noncoding regions and 65 total genes with signatures only in their protein-coding regions. Twenty-eight of the 478 noncoding regions and 5 of the 65 protein-coding regions under selection are associated with genes known to modulate A. fumigatus virulence. Noncoding region variation between A. fumigatus strains included single-nucleotide polymorphisms and insertions or deletions of at least a few nucleotides. These results show that noncoding regions of A. fumigatus genes harbor greater sequence variation than protein-coding regions, raising the hypothesis that this variation may contribute to A. fumigatus phenotypic heterogeneity.


Asunto(s)
Aspergillus fumigatus , Proteínas Fúngicas , Variación Genética , Genoma Fúngico , Sistemas de Lectura Abierta , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidad , Proteínas Fúngicas/genética , Polimorfismo de Nucleótido Simple , Regiones no Traducidas , Virulencia/genética
12.
Med Mycol ; 62(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38769604

RESUMEN

Azole resistance in Aspergillus fumigatus (ARAf) is becoming a worldwide health threat due to increasing occurrence in the environment. However, environmental surveillance programs are not commonly in place and are lacking in Belgium. Since no data on the occurrence of ARAf and the presence of hotspots for the selection of azole resistance is available in Belgium, a first study on the prevalence of ARAf in the environment was conducted. A total of 232 air and compost or soil samples were taken from two composting facilities, and from horticultural and agricultural crops. The azole susceptibility pattern was determined using the EUCAST method (E. Def. 9.4), and the cyp51A gene and its promotor region were sequenced in A. fumigatus isolates with phenotypic azole resistance. Six pan-azole-resistant A. fumigatus isolates were identified, originating from compost and horticultural crops. Four isolates carried the TR34/L98H mutation, and one isolate carried the TR46/Y121F/T289A mutation. However, we did not observe any ARAf isolates from agricultural crops. In conclusion, this study reported the first TR34/L98H and TR46/Y121F/T289A mutation isolated from a composting facility and horticulture in Belgium. The implementation of standardization in environmental surveillance of A. fumigatus on a European level would be beneficial in order to identify hotspots.


The ubiquitous fungus Aspergillus fumigatus can cause serious invasive diseases in humans. Due to the extensive use of environmental azoles, an increase of clinical infections with azole-resistant A. fumigatus is seen. This pilot study aimed to estimate the prevalence of azole-resistant A. fumigatus in environmental reservoirs in Belgium.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Azoles , Compostaje , Farmacorresistencia Fúngica , Proteínas Fúngicas , Bélgica , Aspergillus fumigatus/genética , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/aislamiento & purificación , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Azoles/farmacología , Antifúngicos/farmacología , Pruebas de Sensibilidad Microbiana , Microbiología del Suelo , Mutación , Sistema Enzimático del Citocromo P-450/genética
13.
Org Lett ; 26(21): 4469-4474, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38767929

RESUMEN

Using CRISPR-Cas9 technology and a microhomology-mediated end-joining repair system, we substituted genes of the gliotoxin pathway in Aspergillus fumigatus with genes responsible for chetomin biosynthesis from Chaetomium cochliodes, leading to the production of three new epipolythiodioxopiperazines (ETPs). This work represents the first successful endeavor to produce ETPs in a non-native host. Additionally, the simultaneous disruption of five genes in a single transformation marks the most extensive gene knockout event in filamentous fungi to date.


Asunto(s)
Aspergillus fumigatus , Gliotoxina , Piperazinas , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/genética , Piperazinas/química , Piperazinas/metabolismo , Gliotoxina/biosíntesis , Gliotoxina/química , Estructura Molecular , Chaetomium/metabolismo , Chaetomium/química , Sistemas CRISPR-Cas
14.
Nat Commun ; 15(1): 4261, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769341

RESUMEN

Triazoles, the most widely used class of antifungal drugs, inhibit the biosynthesis of ergosterol, a crucial component of the fungal plasma membrane. Inhibition of a separate ergosterol biosynthetic step, catalyzed by the sterol C-24 methyltransferase Erg6, reduces the virulence of pathogenic yeasts, but its effects on filamentous fungal pathogens like Aspergillus fumigatus remain unexplored. Here, we show that the lipid droplet-associated enzyme Erg6 is essential for the viability of A. fumigatus and other Aspergillus species, including A. lentulus, A. terreus, and A. nidulans. Downregulation of erg6 causes loss of sterol-rich membrane domains required for apical extension of hyphae, as well as altered sterol profiles consistent with the Erg6 enzyme functioning upstream of the triazole drug target, Cyp51A/Cyp51B. Unexpectedly, erg6-repressed strains display wild-type susceptibility against the ergosterol-active triazole and polyene antifungals. Finally, we show that erg6 repression results in significant reduction in mortality in a murine model of invasive aspergillosis. Taken together with recent studies, our work supports Erg6 as a potentially pan-fungal drug target.


Asunto(s)
Antifúngicos , Aspergilosis , Aspergillus , Ergosterol , Proteínas Fúngicas , Metiltransferasas , Triazoles , Animales , Metiltransferasas/metabolismo , Metiltransferasas/genética , Antifúngicos/farmacología , Aspergillus/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ratones , Aspergilosis/microbiología , Aspergilosis/tratamiento farmacológico , Ergosterol/metabolismo , Ergosterol/biosíntesis , Triazoles/farmacología , Regulación Fúngica de la Expresión Génica , Aspergillus fumigatus/genética , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/enzimología , Aspergillus fumigatus/metabolismo , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Hifa/genética , Hifa/metabolismo , Femenino , Pruebas de Sensibilidad Microbiana , Virulencia/genética
15.
Mycoses ; 67(5): e13732, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712846

RESUMEN

BACKGROUND: Triazole-resistant Aspergillus fumigatus (TRAF) isolates are a growing public health problem with worldwide distribution. Epidemiological data on TRAF is limited in Africa, particularly in West Africa. OBJECTIVES: This study aimed to screen for the environmental presence of TRAF isolates in the indoor air of two hospitals in Burkina Faso. MATERIALS AND METHODS: Air samples were collected in wards housing patients at risk for invasive aspergillosis, namely infectious diseases ward, internal medicine ward, nephrology ward, pulmonology ward, medical emergency ward and paediatric ward. Sabouraud Dextrose Agar supplemented with triazoles was used to screen the suspected TRAF isolates and EUCAST method to confirm the resistance of suspected isolates. Sequencing of cyp51A gene was used to identify the resistance mechanism of confirmed TRAF isolates. RESULTS: Of the 198 samples collected and analysed, 67 showed growth of A. fumigatus isolates. The prevalence of TRAF isolates was 3.23% (4/124). One TRAF isolate exhibited a pan-triazole resistance. Sequencing of cyp51A gene identified the TR34/L98H mutation for this pan-triazole resistant isolate. This study showed for the first time the circulation of the pan-azole resistant isolate harbouring the TR34/L98H mutation in Burkina Faso. CONCLUSIONS: These findings emphasise the need to map these TRAF isolates in all parts of Burkina Faso and to establish local and national continuous surveillance of environmental and clinical TRAF isolates in this country.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Sistema Enzimático del Citocromo P-450 , Farmacorresistencia Fúngica , Proteínas Fúngicas , Mutación , Triazoles , Aspergillus fumigatus/genética , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/aislamiento & purificación , Farmacorresistencia Fúngica/genética , Triazoles/farmacología , Humanos , Burkina Faso/epidemiología , Proteínas Fúngicas/genética , Antifúngicos/farmacología , Sistema Enzimático del Citocromo P-450/genética , Pruebas de Sensibilidad Microbiana , Aspergilosis/microbiología , Aspergilosis/epidemiología , Microbiología del Aire
16.
mSphere ; 9(5): e0010024, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38651868

RESUMEN

The cellular surface of the pathogenic filamentous fungus Aspergillus fumigatus is enveloped in a mannose layer, featuring well-established fungal-type galactomannan and O-mannose-type galactomannan. This study reports the discovery of cell wall component in A. fumigatus mycelium, which resembles N-glycan outer chains found in yeast. The glycosyltransferases involved in its biosynthesis in A. fumigatus were identified, with a focus on two key α-(1→2)-mannosyltransferases, Mnn2 and Mnn5, and two α-(1→6)-mannosyltransferases, Mnn9 and Van1. In vitro examination revealed the roles of recombinant Mnn2 and Mnn5 in transferring α-(1→2)-mannosyl residues. Proton nuclear magnetic resonance (1H-NMR) analysis of cell wall extracts from the ∆mnn2∆mnn5 strain indicated the existence of an α-(1→6)-linked mannan backbone in the A. fumigatus mycelium, with Mnn2 and Mnn5 adding α-(1→2)-mannosyl residues to this backbone. The α-(1→6)-linked mannan backbone was absent in strains where mnn9 or van1 was disrupted in the parental ∆mnn2∆mnn5 strain in A. fumigatus. Mnn9 and Van1 functioned as α-(1→6)-linked mannan polymerases in heterodimers when co-expressed in Escherichia coli, indicating their crucial role in biosynthesizing the α-(1→6)-linked mannan backbone. Disruptions of these mannosyltransferases did not affect fungal-type galactomannan biosynthesis. This study provides insights into the complexity of fungal cell wall architecture and a better understanding of mannan biosynthesis in A. fumigatus. IMPORTANCE: This study unravels the complexities of mannan biosynthesis in A. fumigatus, a key area for antifungal drug discovery. It reveals the presence of α-(1→6)-linked mannan structures resembling yeast N-glycan outer chains in A. fumigatus mycelium, offering fresh insights into the fungal cell wall's design. Key enzymes, Mnn2, Mnn5, Mnn9, and Van1, are instrumental in this process, with Mnn2 and Mnn5 adding specific mannose residues and Mnn9 and Van1 assembling the α-(1→6)-linked mannan structures. Although fungal-type galactomannan's presence in the cell wall is known, the existence of an α-(1→6)-linked mannan adds a new dimension to our understanding. This intricate web of mannan biosynthesis opens avenues for further exploration and enhances our understanding of fungal cell wall dynamics, paving the way for targeted drug development.


Asunto(s)
Aspergillus fumigatus , Pared Celular , Mananos , Micelio , Polisacáridos , Aspergillus fumigatus/genética , Aspergillus fumigatus/química , Aspergillus fumigatus/metabolismo , Mananos/metabolismo , Mananos/química , Pared Celular/química , Pared Celular/metabolismo , Micelio/química , Micelio/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Manosiltransferasas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Galactosa/análogos & derivados
17.
Nat Commun ; 15(1): 3642, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684680

RESUMEN

Triazole antifungals function as ergosterol biosynthesis inhibitors and are frontline therapy for invasive fungal infections, such as invasive aspergillosis. The primary mechanism of action of triazoles is through the specific inhibition of a cytochrome P450 14-α-sterol demethylase enzyme, Cyp51A/B, resulting in depletion of cellular ergosterol. Here, we uncover a clinically relevant secondary mechanism of action for triazoles within the ergosterol biosynthesis pathway. We provide evidence that triazole-mediated inhibition of Cyp51A/B activity generates sterol intermediate perturbations that are likely decoded by the sterol sensing functions of HMG-CoA reductase and Insulin-Induced Gene orthologs as increased pathway activity. This, in turn, results in negative feedback regulation of HMG-CoA reductase, the rate-limiting step of sterol biosynthesis. We also provide evidence that HMG-CoA reductase sterol sensing domain mutations previously identified as generating resistance in clinical isolates of Aspergillus fumigatus partially disrupt this triazole-induced feedback. Therefore, our data point to a secondary mechanism of action for the triazoles: induction of HMG-CoA reductase negative feedback for downregulation of ergosterol biosynthesis pathway activity. Abrogation of this feedback through acquired mutations in the HMG-CoA reductase sterol sensing domain diminishes triazole antifungal activity against fungal pathogens and underpins HMG-CoA reductase-mediated resistance.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Ergosterol , Proteínas Fúngicas , Hidroximetilglutaril-CoA Reductasas , Triazoles , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/genética , Antifúngicos/farmacología , Triazoles/farmacología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ergosterol/metabolismo , Ergosterol/biosíntesis , Hidroximetilglutaril-CoA Reductasas/metabolismo , Hidroximetilglutaril-CoA Reductasas/genética , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Farmacorresistencia Fúngica/genética , Farmacorresistencia Fúngica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Pruebas de Sensibilidad Microbiana , Esterol 14-Desmetilasa/metabolismo , Esterol 14-Desmetilasa/genética , Humanos , Mutación
18.
mSphere ; 9(5): e0005724, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38687129

RESUMEN

Endocytosis has been extensively studied in yeasts, where it plays crucial roles in growth, signaling regulation, and cell-surface receptor internalization. However, the biological functions of endocytosis in pathogenic filamentous fungi remain largely unexplored. In this study, we aimed to functionally characterize the roles of EdeA, an ortholog of the Saccharomyces cerevisiae endocytic protein Ede1, in Aspergillus fumigatus. EdeA was observed to be distributed as patches on the plasma membrane and concentrated in the subapical collar of hyphae, a localization characteristic of endocytic proteins. Loss of edeA caused defective hyphal polarity, reduced conidial production, and fewer sites of endocytosis initiations than that of the parental wild type. Notably, the edeA null mutant exhibited increased sensitivity to cell wall-disrupting agents, indicating a role for EdeA in maintaining cell wall integrity in A. fumigatus. This observation was further supported by the evidence showing that the thickness of the cell wall in the ΔedeA mutant increased, accompanied by abnormal activation of MpkA, a key component in the cell wall integrity pathway. Additionally, the ΔedeA mutant displayed increased pathogenicity in the Galleria mellonella wax moth infection model, possibly due to alterations in cell wall morphology. Site-directed mutagenesis identified the conserved residue E348 within the third EH (Eps15 homology) domain of EdeA as crucial for its subcellular localization and functions. In conclusion, our results highlight the involvement of EdeA in endocytosis, hyphal polarity, cell wall integrity, and pathogenicity in A. fumigatus. IMPORTANCE: Aspergillus fumigatus is a significant human pathogenic fungus known to cause invasive aspergillosis, a disease with a high mortality rate. Understanding the basic principles of A. fumigatus pathogenicity is crucial for developing effective strategies against this pathogen. Previous research has underscored the importance of endocytosis in the infection capacity of pathogenic yeasts; however, its biological function in pathogenic mold remains largely unexplored. Our characterization of EdeA in A. fumigatus sheds light on the role of endocytosis in the development, stress response, and pathogenicity of pathogenic molds. These findings suggest that the components of the endocytosis process may serve as potential targets for antifungal therapy.


Asunto(s)
Aspergillus fumigatus , Pared Celular , Endocitosis , Proteínas Fúngicas , Hifa , Aspergillus fumigatus/patogenicidad , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Pared Celular/metabolismo , Pared Celular/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifa/genética , Hifa/crecimiento & desarrollo , Virulencia , Animales , Mariposas Nocturnas/microbiología , Esporas Fúngicas/genética , Esporas Fúngicas/patogenicidad , Aspergilosis/microbiología
19.
Braz J Microbiol ; 55(2): 1521-1528, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38649623

RESUMEN

Aspergillus fumigatus is a common opportunistic pathogen in different animals, including birds such as penguins. For the first time, a fungal strain identified as A. fumigatus was isolated from soil in the nests of gentoo penguins, Pygoscelis papua, on Livingston Island, South Shetland Islands (maritime Antarctica). This isolate (A. fumigatus UFMGCB 11829) displayed a series of potentially pathogenic characteristics in vitro. We evaluated its detailed molecular taxonomy and submitted the A. fumigatus UFMGCB 11829 Antarctic strain to in vivo pathogenic modelling. The isolate was confirmed to represent A. fumigatus morphological and phylogenetic analysis showed that it was closely related to A. fumigatus sequences reported from animals, immunosuppressed humans, storage grains, plants and soils. The strain displayed the best mycelial growth and conidia production at 37 ºC; however, it was also able to grow and produce conidia at 15º, demonstrating its capability to survive and colonize penguin nest at least in the summer season in maritime Antarctica. In pathogenicity tests, healthy mice did not showed symptoms of infection; however, 50% lethality was observed in immunosuppressed mice that were inoculated with 106 and 107 spores. Lethality increased to 100% when inoculated with 108 spores. Our data highlight the potential pathogenicity of opportunistic A. fumigatus that may be present in the Antarctic, and the risks of both their further transfer within Antarctica and outwards to other continents, risks which may be exacerbated due global climatic changes.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Filogenia , Microbiología del Suelo , Spheniscidae , Animales , Spheniscidae/microbiología , Regiones Antárticas , Aspergillus fumigatus/genética , Aspergillus fumigatus/aislamiento & purificación , Aspergillus fumigatus/clasificación , Aspergillus fumigatus/patogenicidad , Ratones , Aspergilosis/microbiología , Aspergilosis/veterinaria , Enfermedades de las Aves/microbiología , Virulencia
20.
Mol Biol Evol ; 41(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38652808

RESUMEN

In fungi, fusion between individuals leads to localized cell death, a phenomenon termed heterokaryon incompatibility. Generally, the genes responsible for this incompatibility are observed to be under balancing selection resulting from negative frequency-dependent selection. Here, we assess this phenomenon in Aspergillus fumigatus, a human pathogenic fungus with a very low level of linkage disequilibrium as well as an extremely high crossover rate. Using complementation of auxotrophic mutations as an assay for hyphal compatibility, we screened sexual progeny for compatibility to identify genes involved in this process, called het genes. In total, 5/148 (3.4%) offspring were compatible with a parent and 166/2,142 (7.7%) sibling pairs were compatible, consistent with several segregating incompatibility loci. Genetic mapping identified five loci, four of which could be fine mapped to individual genes, of which we tested three through heterologous expression, confirming their causal relationship. Consistent with long-term balancing selection, trans-species polymorphisms were apparent across several sister species, as well as equal allele frequencies within A. fumigatus. Surprisingly, a sliding window genome-wide population-level analysis of an independent dataset did not show increased Tajima's D near these loci, in contrast to what is often found surrounding loci under balancing selection. Using available de novo assemblies, we show that these balanced polymorphisms are restricted to several hundred base pairs flanking the coding sequence. In addition to identifying the first het genes in an Aspergillus species, this work highlights the interaction of long-term balancing selection with rapid linkage disequilibrium decay.


Asunto(s)
Aspergillus fumigatus , Desequilibrio de Ligamiento , Selección Genética , Aspergillus fumigatus/genética , Genes Fúngicos , Frecuencia de los Genes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...