Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Annu Rev Genet ; 57: 181-199, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37552892

RESUMEN

Germ cells are the only cell type that is capable of transmitting genetic information to the next generation, which has enabled the continuation of multicellular life for the last 1.5 billion years. Surprisingly little is known about the mechanisms supporting the germline's remarkable ability to continue in this eternal cycle, termed germline immortality. Even unicellular organisms age at a cellular level, demonstrating that cellular aging is inevitable. Extensive studies in yeast have established the framework of how asymmetric cell division and gametogenesis may contribute to the resetting of cellular age. This review examines the mechanisms of germline immortality-how germline cells reset the aging of cells-drawing a parallel between yeast and multicellular organisms.


Asunto(s)
División Celular Asimétrica , Saccharomyces cerevisiae , División Celular Asimétrica/genética , Saccharomyces cerevisiae/genética , Células Germinativas , Células Madre
2.
Dev Biol ; 483: 34-38, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34942195

RESUMEN

Proper function of the body is maintained by an intricate interaction and communication among cells. during the animal development how these cells are formed and maintained is an important yet elusive. Understanding of how cells such as muscle and nerve cells maintain their identities would enable us to control the diseases which include malfunctioning in cellular identities such as cancer. In this article, we describe how the concept of formation and maintenance of cell identities has changed over the last 100 years. We will also briefly describe our current experimental work which includes transcriptional dynamics, and protein-protein interaction and how they are bringing new molecular insights. We also describe liquid-liquid phase separation as a potential new mechanism for the stability of gene expression in the non dvididng specialised cells of Xenopus oocytes.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Oocitos/citología , Oocitos/metabolismo , Xenopus laevis/embriología , Xenopus laevis/genética , Animales , División Celular Asimétrica/genética , Diferenciación Celular/genética , Femenino , Células Musculares/metabolismo , Neuronas/metabolismo , Ovoviviparidad/genética , Mapas de Interacción de Proteínas/genética , Transcripción Genética/genética , Xenopus laevis/metabolismo
3.
Plant Cell ; 34(1): 455-476, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34718767

RESUMEN

Stomatal pores and the leaf cuticle regulate evaporation from the plant body and balance the tradeoff between photosynthesis and water loss. MYB16, encoding a transcription factor involved in cutin biosynthesis, is expressed in stomatal lineage ground cells, suggesting a link between cutin biosynthesis and stomatal development. Here, we show that the downregulation of MYB16 in meristemoids is directly mediated by the stomatal master transcription factor SPEECHLESS (SPCH) in Arabidopsis thaliana. The suppression of MYB16 before an asymmetric division is crucial for stomatal patterning, as its overexpression or ectopic expression in meristemoids increased stomatal density and resulted in the formation of stomatal clusters, as well as affecting the outer cell wall structure. Expressing a cutinase gene in plants ectopically expressing MYB16 reduced stomatal clustering, suggesting that cutin affects stomatal signaling or the polarity setup in asymmetrically dividing cells. The clustered stomatal phenotype was rescued by overexpressing EPIDERMAL PATTERNING FACTOR2, suggesting that stomatal signaling was still functional in these plants. Growing seedlings ectopically expressing MYB16 on high-percentage agar plates to modulate tensile strength rescued the polarity and stomatal cluster defects of these seedlings. Therefore, the inhibition of MYB16 expression by SPCH in the early stomatal lineage is required to correctly place the polarity protein needed for stomatal patterning during leaf morphogenesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , División Celular Asimétrica/genética , Polaridad Celular/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Estomas de Plantas/fisiología , Factores de Transcripción/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/metabolismo
4.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34768763

RESUMEN

A connection between compromised asymmetric cell division (ACD) and tumorigenesis was proven some years ago using Drosophila larval brain neural stem cells, called neuroblasts (NBs), as a model system. Since then, we have learned that compromised ACD does not always promote tumorigenesis, as ACD is an extremely well-regulated process in which redundancy substantially overcomes potential ACD failures. Considering this, we have performed a pilot RNAi screen in Drosophila larval brain NB lineages using RasV12 scribble (scrib) mutant clones as a sensitized genetic background, in which ACD is affected but does not cause tumoral growth. First, as a proof of concept, we have tested known ACD regulators in this sensitized background, such as lethal (2) giant larvae and warts. Although the downregulation of these ACD modulators in NB clones does not induce tumorigenesis, their downregulation along with RasV12 scrib does cause tumor-like overgrowth. Based on these results, we have randomly screened 79 RNAi lines detecting 15 potential novel ACD regulators/tumor suppressor genes. We conclude that RasV12 scrib is a good sensitized genetic background in which to identify tumor suppressor genes involved in NB ACD, whose function could otherwise be masked by the high redundancy of the ACD process.


Asunto(s)
División Celular Asimétrica/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genes Supresores de Tumor/fisiología , Células-Madre Neurales/metabolismo , Animales , Regulación hacia Abajo , Proteínas de Drosophila/genética , Larva/citología , Larva/genética , Larva/metabolismo , Proteínas de la Membrana/genética , Interferencia de ARN , Proteínas ras/genética , Proteínas ras/metabolismo
5.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34830224

RESUMEN

Cell polarity is essential for many functions of cells and tissues including the initial establishment and subsequent maintenance of epithelial tissues, asymmetric cell division, and morphogenetic movements. Cell polarity along the apical-basal axis is controlled by three protein complexes that interact with and co-regulate each other: The Par-, Crumbs-, and Scrib-complexes. The localization and activity of the components of these complexes is predominantly controlled by protein-protein interactions and protein phosphorylation status. Increasing evidence accumulates that, besides the regulation at the protein level, the precise expression control of polarity determinants contributes substantially to cell polarity regulation. Here we review how gene expression regulation influences processes that depend on the induction, maintenance, or abolishment of cell polarity with a special focus on epithelial to mesenchymal transition and asymmetric stem cell division. We conclude that gene expression control is an important and often neglected mechanism in the control of cell polarity.


Asunto(s)
División Celular Asimétrica/genética , Polaridad Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación de la Expresión Génica , Transcripción Genética/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas del Ojo/metabolismo , Expresión Génica , Humanos , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Mapas de Interacción de Proteínas/genética , Transducción de Señal/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína de Unión al GTP cdc42/metabolismo
6.
Front Immunol ; 12: 716240, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484219

RESUMEN

Memory B cells and antibody-secreting plasma cells are generated within germinal centers during affinity maturation in which B-cell proliferation, selection, differentiation, and self-renewal play important roles. The mechanisms behind memory B cell and plasma cell differentiation in germinal centers are not well understood. However, it has been suggested that cell fate is (partially) determined by asymmetric cell division, which involves the unequal distribution of cellular components to both daughter cells. To investigate what level and/or probability of asymmetric segregation of several fate determinant molecules, such as the antigen and transcription factors (BCL6, IRF4, and BLIMP1) recapitulates the temporal switch and DZ-to-LZ ratio in the germinal center, we implemented a multiscale model that combines a core gene regulatory network for plasma cell differentiation with a model describing the cellular interactions and dynamics in the germinal center. Our simulations show that BLIMP1 driven plasma cell differentiation together with coupled asymmetric division of antigen and BLIMP1 with a large segregation between the daughter cells results in a germinal center DZ-to-LZ ratio and a temporal switch from memory B cells to plasma cells that have been observed in experiments.


Asunto(s)
Antígenos/inmunología , División Celular Asimétrica/genética , Centro Germinal/inmunología , Centro Germinal/metabolismo , Células B de Memoria/inmunología , Células Plasmáticas/inmunología , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Biomarcadores , Diferenciación Celular , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Activación de Linfocitos , Células B de Memoria/metabolismo , Modelos Biológicos , Células Plasmáticas/metabolismo
7.
Nat Commun ; 12(1): 2715, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976157

RESUMEN

Efficient immune responses rely on heterogeneity, which in CD8+ T cells, amongst other mechanisms, is achieved by asymmetric cell division (ACD). Here we find that ageing, known to negatively impact immune responses, impairs ACD in murine CD8+ T cells, and that this phenotype can be rescued by transient mTOR inhibition. Increased ACD rates in mitotic cells from aged mice restore the expansion and memory potential of their cellular progenies. Further characterization of the composition of CD8+ T cells reveals that virtual memory cells (TVM cells), which accumulate during ageing, have a unique proliferation and metabolic profile, and retain their ability to divide asymmetrically, which correlates with increased memory potential. The opposite is observed for naive CD8+ T cells from aged mice. Our data provide evidence on how ACD modulation contributes to long-term survival and function of T cells during ageing, offering new insights into how the immune system adapts to ageing.


Asunto(s)
Envejecimiento/genética , División Celular Asimétrica/genética , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/genética , Serina-Treonina Quinasas TOR/genética , Envejecimiento/inmunología , Animales , División Celular Asimétrica/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica , Inmunidad Innata , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Subunidad beta del Receptor de Interleucina-2/genética , Subunidad beta del Receptor de Interleucina-2/inmunología , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Activación de Linfocitos , Ratones , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Receptores CXCR3/genética , Receptores CXCR3/inmunología , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Receptores de Interleucina-7/genética , Receptores de Interleucina-7/inmunología , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/inmunología
8.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753475

RESUMEN

Stem cells divide asymmetrically to generate a stem cell and a differentiating daughter cell. Yet, it remains poorly understood how a stem cell and a differentiating daughter cell can receive distinct levels of niche signal and thus acquire different cell fates (self-renewal versus differentiation), despite being adjacent to each other and thus seemingly exposed to similar levels of niche signaling. In the Drosophila ovary, germline stem cells (GSCs) are maintained by short range bone morphogenetic protein (BMP) signaling; the BMP ligands activate a receptor that phosphorylates the downstream molecule mothers against decapentaplegic (Mad). Phosphorylated Mad (pMad) accumulates in the GSC nucleus and activates the stem cell transcription program. Here, we demonstrate that pMad is highly concentrated in the nucleus of the GSC, while it quickly decreases in the nucleus of the differentiating daughter cell, the precystoblast (preCB), before the completion of cytokinesis. We show that a known Mad phosphatase, Dullard (Dd), is required for the asymmetric partitioning of pMad. Our mathematical modeling recapitulates the high sensitivity of the ratio of pMad levels to the Mad phosphatase activity and explains how the asymmetry arises in a shared cytoplasm. Together, these studies reveal a mechanism for breaking the symmetry of daughter cells during asymmetric stem cell division.


Asunto(s)
División Celular Asimétrica/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Poro Nuclear/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Células Madre/fisiología , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Núcleo Celular , Drosophila melanogaster , Femenino , Oocitos , Fosforilación/genética , Activación Transcripcional
9.
Curr Biol ; 31(2): 420-426.e6, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33176130

RESUMEN

In both animals and plants, development involves anatomical modifications. In the root of Arabidopsis thaliana, maturation of the ground tissue (GT)-a tissue comprising all cells between epidermal and vascular ones-is a paradigmatic example of these modifications, as it generates an additional tissue layer, the middle cortex (MC).1-4 In early post-embryonic phases, the Arabidopsis root GT is composed of one layer of endodermis and one of cortex. A second cortex layer, the MC, is generated by asymmetric cell divisions in about 80% of Arabidopsis primary roots, in a time window spanning from 7 to 14 days post-germination (dpg). The cell cycle regulator CYCLIN D6;1 (CYCD6;1) plays a central role in this process, as its accumulation in the endodermis triggers the formation of MC.5 The phytohormone gibberellin (GA) is a key regulator of the timing of MC formation, as alterations in its signaling and homeostasis result in precocious endodermal asymmetric cell divisions.3,6,7 However, little is known on how GAs are regulated during GT maturation. Here, we show that the HOMEODOMAIN LEUCINE ZIPPER III (HD-ZIPIII) transcription factor PHABULOSA (PHB) is a master regulator of MC formation, controlling the accumulation of CYCD6;1 in the endodermis in a cell non-autonomous manner. We show that PHB activates the GA catabolic gene GIBBERELLIN 2 OXIDASE 2 (GA2ox2) in the vascular tissue, thus regulating the stability of the DELLA protein GIBBERELLIN INSENSITIVE (GAI)-a GA signaling repressor-in the root and, hence, CYCD6;1 expression in the endodermis.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Ciclinas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/metabolismo , Arabidopsis/genética , División Celular Asimétrica/genética , Giberelinas/metabolismo , Proteínas de Homeodominio/genética , MicroARNs/metabolismo , Oxigenasas de Función Mixta/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente
10.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33153113

RESUMEN

Hematopoietic stem cells (HSCs) are responsible for life-long production of all mature blood cells. Under homeostasis, HSCs in their native bone marrow niches are believed to undergo asymmetric cell divisions (ACDs), with one daughter cell maintaining HSC identity and the other committing to differentiate into various mature blood cell types. Due to the lack of key niche signals, in vitro HSCs differentiate rapidly, making it challenging to capture and study ACD. To overcome this bottleneck, in this study, we used interferon alpha (IFNα) treatment to "pre-instruct" HSC fate directly in their native niche, and then systematically studied the fate of dividing HSCs in vitro at the single cell level via time-lapse analysis, as well as multigene and protein expression analysis. Triggering HSCs' exit from dormancy via IFNα was found to significantly increase the frequency of asynchronous divisions in paired daughter cells (PDCs). Using single-cell gene expression analyses, we identified 12 asymmetrically expressed genes in PDCs. Subsequent immunocytochemistry analysis showed that at least three of the candidates, i.e., Glut1, JAM3 and HK2, were asymmetrically distributed in PDCs. Functional validation of these observations by colony formation assays highlighted the implication of asymmetric distribution of these markers as hallmarks of HSCs, for example, to reliably discriminate committed and self-renewing daughter cells in dividing HSCs. Our data provided evidence for the importance of in vivo instructions in guiding HSC fate, especially ACD, and shed light on putative molecular players involved in this process. Understanding the mechanisms of cell fate decision making should enable the development of improved HSC expansion protocols for therapeutic applications.


Asunto(s)
División Celular Asimétrica/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/fisiología , Interferón-alfa/farmacología , Animales , División Celular Asimétrica/genética , División Celular Asimétrica/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Células Cultivadas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Interferón-alfa/metabolismo , Ratones , Ratones Endogámicos C57BL , Análisis de la Célula Individual
11.
Curr Opin Cell Biol ; 67: 27-36, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32871437

RESUMEN

Asymmetric cell division produces two cells that are genetically identical but each have distinctly different cell fates. During this process, epigenetic mechanisms play an important role in allowing the two daughter cells to have unique gene expression profiles that lead to their specific cell identities. Although the process of duplicating and segregating the genetic information during the cell cycle has been well studied, the question of how epigenetic information is duplicated and partitioned still remains. In this review, we discuss recent advances in understanding how epigenetic states are established and inherited, with emphasis on the asymmetric inheritance patterns of histones, DNA methylation, nonhistone proteins, RNAs, and organelles. We also discuss how misregulation of these processes may lead to diseases such as cancer and tissue degeneration.


Asunto(s)
División Celular Asimétrica/genética , Epigénesis Genética , Patrón de Herencia/genética , Células Madre/citología , Animales , Cromatina/metabolismo , Metilación de ADN , Humanos
12.
Nat Commun ; 11(1): 3317, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620775

RESUMEN

Oriented cell division is a fundamental mechanism to control asymmetric stem cell division, neural tube elongation and body axis extension, among other processes. During zebrafish gastrulation, when the body axis extends, dorsal epiblast cells display divisions that are robustly oriented along the animal-vegetal embryonic axis. Here, we use a combination of lipidomics, metabolic tracer analysis and quantitative image analysis to show that sphingolipids mediate spindle positioning during oriented division of epiblast cells. We identify the Wnt signaling as a regulator of sphingolipid synthesis that mediates the activity of serine palmitoyltransferase (SPT), the first and rate-limiting enzyme in sphingolipid production. Sphingolipids determine the palmitoylation state of the Anthrax receptor, which then positions the mitotic spindle of dividing epiblast cells. Our data show how Wnt signaling mediates sphingolipid-dependent oriented division and how sphingolipids determine Anthrax receptor palmitoylation, which ultimately controls the activation of Diaphanous to mediate spindle rotation and oriented mitosis.


Asunto(s)
Embrión no Mamífero/metabolismo , Mitosis , Receptores de Péptidos/metabolismo , Esfingolípidos/metabolismo , Vía de Señalización Wnt , Secuencia de Aminoácidos , Animales , División Celular Asimétrica/genética , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Estratos Germinativos/embriología , Estratos Germinativos/metabolismo , Lipoilación , Tubo Neural/citología , Tubo Neural/embriología , Tubo Neural/metabolismo , Receptores de Péptidos/genética , Homología de Secuencia de Aminoácido , Serina C-Palmitoiltransferasa/genética , Serina C-Palmitoiltransferasa/metabolismo , Huso Acromático/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
13.
Development ; 147(13)2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601056

RESUMEN

Asymmetric cell division (ACD) is an evolutionarily conserved mechanism used by prokaryotes and eukaryotes alike to control cell fate and generate cell diversity. A detailed mechanistic understanding of ACD is therefore necessary to understand cell fate decisions in health and disease. ACD can be manifested in the biased segregation of macromolecules, the differential partitioning of cell organelles, or differences in sibling cell size or shape. These events are usually preceded by and influenced by symmetry breaking events and cell polarization. In this Review, we focus predominantly on cell intrinsic mechanisms and their contribution to cell polarization, ACD and binary cell fate decisions. We discuss examples of polarized systems and detail how polarization is established and, whenever possible, how it contributes to ACD. Established and emerging model organisms will be considered alike, illuminating both well-documented and underexplored forms of polarization and ACD.


Asunto(s)
División Celular Asimétrica/fisiología , Polaridad Celular/fisiología , Animales , División Celular Asimétrica/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Membrana Celular/metabolismo , Polaridad Celular/genética , Humanos
14.
Curr Biol ; 30(14): 2860-2868.e3, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32470363

RESUMEN

Branching morphogenesis is a widely used mechanism for development [1, 2]. In plants, it is initiated by the emergence of a new growth axis, which is of particular importance for plants to explore space and access resources [1]. Branches can emerge either from a single cell or from a group of cells [3-5]. In both cases, the mother cells that initiate branching must undergo dynamic morphological changes and/or adopt oriented asymmetric cell divisions (ACDs) to establish the new growth direction. However, the underlying mechanisms are not fully understood. Here, using the bryophyte moss Physcomitrella patens as a model, we show that side-branch formation in P. patens protonemata requires coordinated polarized cell expansion, directional nuclear migration, and orientated ACD. By combining pharmacological experiments, long-term time-lapse imaging, and genetic analyses, we demonstrate that Rho of plants (ROP) GTPases and actin are essential for cell polarization and local cell expansion (bulging). The growing bulge acts as a prerequisite signal to guide long-distance microtubule (MT)-dependent nuclear migration, which determines the asymmetric positioning of the division plane. MTs play an essential role in nuclear migration but are less involved in bulge formation. Hence, cell polarity and cytoskeletal elements act cooperatively to modulate cell morphology and nuclear positioning during branch initiation. We propose that polarity-triggered nuclear positioning and ACD comprise a fundamental mechanism for increasing multicellularity and tissue complexity during plant morphogenesis.


Asunto(s)
Actinas/fisiología , División Celular Asimétrica/genética , División Celular Asimétrica/fisiología , Bryopsida/crecimiento & desarrollo , Bryopsida/genética , GTP Fosfohidrolasas/fisiología , Desarrollo de la Planta/genética , Desarrollo de la Planta/fisiología , Transporte Activo de Núcleo Celular , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Bryopsida/citología , Núcleo Celular/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/fisiología , Microtúbulos/metabolismo
15.
Int J Mol Sci ; 21(8)2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32325951

RESUMEN

The Scribble polarity module is composed by Scribble (Scrib), Discs large 1 (Dlg1) and Lethal (2) giant larvae (L(2)gl), a group of highly conserved neoplastic tumor suppressor genes (TSGs) from flies to humans. Even though the Scribble module has been profusely studied in epithelial cell polarity, the number of tissues and processes in which it is involved is increasingly growing. Here we discuss the role of the Scribble module in the asymmetric division of Drosophila neuroblasts (NBs), as well as the underlying mechanisms by which those TSGs act in this process. Finally, we also describe what we know about the consequences of mutating these genes in impairing the process of asymmetric NB division and promoting tumor-like overgrowth.


Asunto(s)
División Celular Asimétrica/genética , Polaridad Celular/genética , Transformación Celular Neoplásica/genética , Proteínas de la Membrana/genética , Modelos Biológicos , Células-Madre Neurales/metabolismo , Proteínas Supresoras de Tumor/genética , Animales , Diferenciación Celular/genética , Transformación Celular Neoplásica/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Humanos , Proteínas de la Membrana/metabolismo , Células-Madre Neurales/patología , Neurogénesis , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo
16.
Trends Cancer ; 6(9): 775-780, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32312682

RESUMEN

Tissue regeneration relies on adult stem cells (SCs) that possess the ability to self-renew and produce differentiating progeny. In an analogous manner, the development of certain cancers depends on a subset of tumor cells, called cancer stem cells (CSCs), with SC-like properties. In addition to being responsible for tumorigenesis, CSCs exhibit elevated resistance to therapy and thus drive tumor relapse post-treatment. The epithelial-mesenchymal transition (EMT) programs promote SC and CSC stemness in many epithelial tissues. Here, we provide an overview of the mechanisms underlying the relationship between stemness and EMT programs, which may represent therapeutic vulnerabilities for the treatment of cancers.


Asunto(s)
Células Madre Adultas/patología , Transición Epitelial-Mesenquimal/genética , Recurrencia Local de Neoplasia/patología , Neoplasias/patología , Células Madre Neoplásicas/patología , Células Madre Adultas/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , División Celular Asimétrica/efectos de los fármacos , División Celular Asimétrica/genética , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinogénesis/patología , Reprogramación Celular/efectos de los fármacos , Reprogramación Celular/genética , Resistencia a Antineoplásicos/genética , Epigénesis Genética/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Recurrencia Local de Neoplasia/prevención & control , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Células Madre Neoplásicas/efectos de los fármacos
17.
Development ; 147(7)2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32156756

RESUMEN

Wnt/ß-catenin signalling has been implicated in the terminal asymmetric divisions of neuronal progenitors in vertebrates and invertebrates. However, the role of Wnt ligands in this process remains poorly characterized. Here, we used the terminal divisions of the embryonic neuronal progenitors in C. elegans to characterize the role of Wnt ligands during this process, focusing on a lineage that produces the cholinergic interneuron AIY. We observed that, during interphase, the neuronal progenitor is elongated along the anteroposterior axis, then divides along its major axis, generating an anterior and a posterior daughter with different fates. Using time-controlled perturbations, we show that three Wnt ligands, which are transcribed at higher levels at the posterior of the embryo, regulate the orientation of the neuronal progenitor and its asymmetric division. We also identify a role for a Wnt receptor (MOM-5) and a cortical transducer APC (APR-1), which are, respectively, enriched at the posterior and anterior poles of the neuronal progenitor. Our study establishes a role for Wnt ligands in the regulation of the shape and terminal asymmetric divisions of neuronal progenitors, and identifies downstream components.


Asunto(s)
División Celular Asimétrica/genética , Caenorhabditis elegans/embriología , Células-Madre Neurales/citología , Proteínas Wnt/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , División Celular/genética , Polaridad Celular , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/fisiología , Ligandos , Células-Madre Neurales/fisiología , Neuronas/citología , Neuronas/fisiología , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo
18.
Trends Genet ; 36(1): 30-43, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31753528

RESUMEN

Epigenetic mechanisms play essential roles in determining distinct cell fates during the development of multicellular organisms. Histone proteins represent crucial epigenetic components that help specify cell identities. Previous work has demonstrated that during the asymmetric cell division of Drosophila male germline stem cells (GSCs), histones H3 and H4 are asymmetrically inherited, such that pre-existing (old) histones are segregated towards the self-renewing GSC whereas newly synthesized (new) histones are enriched towards the differentiating daughter cell. In order to further understand the molecular mechanisms underlying this striking phenomenon, two key questions must be answered: when and how old and new histones are differentially incorporated by sister chromatids, and how epigenetically distinct sister chromatids are specifically recognized and segregated. Here, we discuss recent advances in our understanding of the molecular mechanisms and cellular bases underlying these fundamental and important biological processes responsible for generating two distinct cells through one cell division.


Asunto(s)
División Celular Asimétrica/genética , Diferenciación Celular/genética , Histonas/genética , Células Madre/citología , Animales , Segregación Cromosómica/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Epigénesis Genética/genética , Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo
19.
Nat Commun ; 10(1): 5574, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31811116

RESUMEN

Stem cells are responsible for generating all of the differentiated cells, tissues, and organs in a multicellular organism and, thus, play a crucial role in cell renewal, regeneration, and organization. A number of stem cell type-specific genes have a known role in stem cell maintenance, identity, and/or division. Yet, how genes expressed across different stem cell types, referred to here as stem-cell-ubiquitous genes, contribute to stem cell regulation is less understood. Here, we find that, in the Arabidopsis root, a stem-cell-ubiquitous gene, TESMIN-LIKE CXC2 (TCX2), controls stem cell division by regulating stem cell-type specific networks. Development of a mathematical model of TCX2 expression allows us to show that TCX2 orchestrates the coordinated division of different stem cell types. Our results highlight that genes expressed across different stem cell types ensure cross-communication among cells, allowing them to divide and develop harmonically together.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , División Celular Asimétrica/genética , Redes Reguladoras de Genes/genética , Raíces de Plantas/genética , Células Madre , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , División Celular Asimétrica/fisiología , Diferenciación Celular , División Celular , Regulación de la Expresión Génica de las Plantas/genética , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Ubiquitinación/genética , Ubiquitinas/genética
20.
Elife ; 82019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31566561

RESUMEN

It is still unclear what drives progression of childhood tumors. During Drosophila larval development, asymmetrically-dividing neural stem cells, called neuroblasts, progress through an intrinsic temporal patterning program that ensures cessation of divisions before adulthood. We previously showed that temporal patterning also delineates an early developmental window during which neuroblasts are susceptible to tumor initiation (Narbonne-Reveau et al., 2016). Using single-cell transcriptomics, clonal analysis and numerical modeling, we now identify a network of twenty larval temporal patterning genes that are redeployed within neuroblast tumors to trigger a robust hierarchical division scheme that perpetuates growth while inducing predictable cell heterogeneity. Along the hierarchy, temporal patterning genes define a differentiation trajectory that regulates glucose metabolism genes to determine the proliferative properties of tumor cells. Thus, partial redeployment of the temporal patterning program encoded in the cell of origin may govern the hierarchy, heterogeneity and growth properties of neural tumors with a developmental origin.


Asunto(s)
División Celular Asimétrica/genética , Tipificación del Cuerpo/genética , Proliferación Celular/genética , Larva/genética , Animales , Diferenciación Celular/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Humanos , Larva/crecimiento & desarrollo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...