Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Elife ; 132024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078879

RESUMEN

Fertilization occurs before the completion of oocyte meiosis in the majority of animal species and sperm contents move long distances within the zygotes of mouse and C. elegans. If incorporated into the meiotic spindle, paternal chromosomes could be expelled into a polar body resulting in lethal monosomy. Through live imaging of fertilization in C. elegans, we found that the microtubule disassembling enzymes, katanin and kinesin-13 limit long-range movement of sperm contents and that maternal ataxin-2 maintains paternal DNA and paternal mitochondria as a cohesive unit that moves together. Depletion of katanin or double depletion of kinesin-13 and ataxin-2 resulted in the capture of the sperm contents by the meiotic spindle. Thus limiting movement of sperm contents and maintaining cohesion of sperm contents within the zygote both contribute to preventing premature interaction between maternal and paternal genomes.


Asunto(s)
Caenorhabditis elegans , Katanina , Cinesinas , Cigoto , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Katanina/metabolismo , Katanina/genética , Cigoto/metabolismo , Cinesinas/metabolismo , Cinesinas/genética , Masculino , Ataxina-2/genética , Ataxina-2/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Espermatozoides/metabolismo , Femenino , Fertilización
2.
Cell Death Dis ; 15(6): 415, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877004

RESUMEN

A CAG repeat sequence in the ATXN2 gene encodes a polyglutamine (polyQ) tract within the ataxin-2 (ATXN2) protein, showcasing a complex landscape of functions that have been progressively unveiled over recent decades. Despite significant progresses in the field, a comprehensive overview of the mechanisms governed by ATXN2 remains elusive. This multifaceted protein emerges as a key player in RNA metabolism, stress granules dynamics, endocytosis, calcium signaling, and the regulation of the circadian rhythm. The CAG overexpansion within the ATXN2 gene produces a protein with an extended poly(Q) tract, inducing consequential alterations in conformational dynamics which confer a toxic gain and/or partial loss of function. Although overexpanded ATXN2 is predominantly linked to spinocerebellar ataxia type 2 (SCA2), intermediate expansions are also implicated in amyotrophic lateral sclerosis (ALS) and parkinsonism. While the molecular intricacies await full elucidation, SCA2 presents ATXN2-associated pathological features, encompassing autophagy impairment, RNA-mediated toxicity, heightened oxidative stress, and disruption of calcium homeostasis. Presently, SCA2 remains incurable, with patients reliant on symptomatic and supportive treatments. In the pursuit of therapeutic solutions, various studies have explored avenues ranging from pharmacological drugs to advanced therapies, including cell or gene-based approaches. These endeavours aim to address the root causes or counteract distinct pathological features of SCA2. This review is intended to provide an updated compendium of ATXN2 functions, delineate the associated pathological mechanisms, and present current perspectives on the development of innovative therapeutic strategies.


Asunto(s)
Ataxina-2 , Péptidos , Humanos , Ataxina-2/metabolismo , Ataxina-2/genética , Péptidos/metabolismo , Péptidos/genética , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología
3.
J Biol Chem ; 300(7): 107413, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810698

RESUMEN

Ataxin-2 (Atx2) is a polyglutamine (polyQ) tract-containing RNA-binding protein, while its polyQ expansion may cause protein aggregation that is implicated in the pathogenesis of neurodegenerative diseases such as spinocerebellar ataxia type 2 (SCA2). However, the molecular mechanism underlying how Atx2 aggregation contributes to the proteinopathies remains elusive. Here, we investigated the influence of Atx2 aggregation on the assembly and functionality of cellular processing bodies (P-bodies) by using biochemical and fluorescence imaging approaches. We have revealed that polyQ-expanded (PQE) Atx2 sequesters the DEAD-box RNA helicase (DDX6), an essential component of P-bodies, into aggregates or puncta via some RNA sequences. The N-terminal like-Sm (LSm) domain of Atx2 (residues 82-184) and the C-terminal helicase domain of DDX6 are responsible for the interaction and specific sequestration. Moreover, sequestration of DDX6 may aggravate pre-mRNA mis-splicing, and interfere with the assembly of cellular P-bodies, releasing the endoribonuclease MARF1 that promotes mRNA decay and translational repression. Rescuing the DDX6 protein level can recover the assembly and functionality of P-bodies, preventing targeted mRNA from degradation. This study provides a line of evidence for sequestration of the P-body components and impairment of the P-body homeostasis in dysregulating RNA metabolism, which is implicated in the disease pathologies and a potential therapeutic target.


Asunto(s)
Ataxina-2 , ARN Helicasas DEAD-box , Homeostasis , Péptidos , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Humanos , Ataxina-2/metabolismo , Ataxina-2/genética , Péptidos/metabolismo , Péptidos/química , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Células HEK293 , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/genética , Agregado de Proteínas , Empalme del ARN , Dominios Proteicos , Precursores del ARN/metabolismo , Precursores del ARN/genética
4.
PLoS Genet ; 20(5): e1011251, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38768217

RESUMEN

Ataxin-2 (ATXN2) is a gene implicated in spinocerebellar ataxia type II (SCA2), amyotrophic lateral sclerosis (ALS) and Parkinsonism. The encoded protein is a therapeutic target for ALS and related conditions. ATXN2 (or Atx2 in insects) can function in translational activation, translational repression, mRNA stability and in the assembly of mRNP-granules, a process mediated by intrinsically disordered regions (IDRs). Previous work has shown that the LSm (Like-Sm) domain of Atx2, which can help stimulate mRNA translation, antagonizes mRNP-granule assembly. Here we advance these findings through a series of experiments on Drosophila and human Ataxin-2 proteins. Results of Targets of RNA Binding Proteins Identified by Editing (TRIBE), co-localization and immunoprecipitation experiments indicate that a polyA-binding protein (PABP) interacting, PAM2 motif of Ataxin-2 may be a major determinant of the mRNA and protein content of Ataxin-2 mRNP granules. Experiments with transgenic Drosophila indicate that while the Atx2-LSm domain may protect against neurodegeneration, structured PAM2- and unstructured IDR- interactions both support Atx2-induced cytotoxicity. Taken together, the data lead to a proposal for how Ataxin-2 interactions are remodelled during translational control and how structured and non-structured interactions contribute differently to the specificity and efficiency of RNP granule condensation as well as to neurodegeneration.


Asunto(s)
Ataxina-2 , Proteínas de Drosophila , Drosophila melanogaster , ARN Mensajero , Ribonucleoproteínas , Ataxina-2/genética , Ataxina-2/metabolismo , Animales , Humanos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Proteínas de Unión a Poli(A)/genética , Animales Modificados Genéticamente , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ADN
5.
PLoS One ; 18(12): e0296085, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38128014

RESUMEN

Spinocerebellar ataxia 2 (SCA2) is a neurodegenerative disorder caused by the expansion of the poly-glutamine (polyQ) tract of Ataxin-2 (ATXN2). Other polyQ-containing proteins such as ATXN7 and huntingtin are associated with the development of neurodegenerative diseases when their N-terminal polyQ domains are expanded. Furthermore, they undergo proteolytic processing events that produce N-terminal fragments that include the polyQ stretch, which are implicated in pathogenesis. Interestingly, N-terminal ATXN2 fragments were reported in a brain extract from a SCA2 patient, but it is currently unknown whether an expanded polyQ domain contributes to ATXN2 proteolytic susceptibility. Here, we used transient expression in HEK293 cells to determine whether ATXN2 is a target for specific N-terminal proteolysis. We found that ATXN2 proteins with either normal or expanded polyQ stretches undergo proteolytic cleavage releasing an N-terminal polyQ-containing fragment. We identified a short amino acid sequence downstream of the polyQ domain that is necessary for N-terminal cleavage of full-length ATXN2 and sufficient to induce proteolysis of a heterologous protein. However, this sequence is not required for cleavage of a short ATXN2 isoform produced from an alternative start codon located just upstream of the CAG repeats encoding the polyQ domain. Our study extends our understanding of ATXN2 posttranslational regulation by revealing that this protein can be the target of specific proteolytic cleavage events releasing polyQ-containing products that are modulated by the N-terminal domain of ATXN2. N-terminal ATXN2 proteolysis of expanded polyQ domains might contribute to SCA2 pathology, as observed in other neurodegenerative disorders caused by polyQ domain expansion.


Asunto(s)
Ataxina-2 , Ataxias Espinocerebelosas , Humanos , Ataxina-2/genética , Ataxina-2/metabolismo , Proteolisis , Células HEK293 , Ataxias Espinocerebelosas/patología , Secuencia de Aminoácidos
6.
Cell Rep ; 42(7): 112819, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37454291

RESUMEN

The Notch signaling pathway controls cell growth, differentiation, and fate decisions. Dysregulation of Notch signaling has been linked to various human diseases. Notch receptor resides in multiple cellular compartments, and its translocation plays a central role in pathway activation. However, the spatial regulation of Notch receptor functions remains largely elusive. Using TurboID-based proximity labeling followed by affinity purification and mass spectrometry, we establish a spatially defined human Notch receptor interaction network. Notch receptors interact with different proteins in distinct subcellular compartments to perform specific cellular functions. This spatially defined interaction network also reveals that a large fraction of NOTCH is stored at the endoplasmic reticulum (ER)-Golgi intermediate compartment and recruits Ataxin-2-dependent recycling machinery for rapid recycling, Notch signaling activation, and leukemogenesis. Our work provides insights into dynamic Notch receptor complexes with exquisite spatial resolution, which will help in elucidating the detailed regulation of Notch receptors and highlight potential therapeutic targets for Notch-related pathogenesis.


Asunto(s)
Ataxina-2 , Receptores Notch , Humanos , Receptores Notch/metabolismo , Ataxina-2/metabolismo , Orgánulos/metabolismo , Transducción de Señal , Diferenciación Celular , Receptor Notch1/metabolismo
7.
Mol Cell ; 83(12): 1961-1963, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37327772

RESUMEN

Ataxin-2, an RNA-binding protein that is conserved across eukaryotes, is involved in stress granule assembly and age-associated neurodegenerative diseases. In this issue of Molecular Cell, Boeynaems et al.1 identify a short linear motif in ataxin-2 as a condensation switch, providing molecular insights into its essential role in cellular stress response.


Asunto(s)
Ataxina-2 , Enfermedades Neurodegenerativas , Humanos , Ataxina-2/genética , Ataxina-2/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , Enfermedades Neurodegenerativas/genética , Ataxina-1/metabolismo
8.
PLoS Genet ; 19(5): e1010774, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37216416

RESUMEN

Pbp1 (poly(A)-binding protein-binding protein 1) is a cytoplasmic stress granule marker that is capable of forming condensates that function in the negative regulation of TORC1 signaling under respiratory conditions. Polyglutamine expansions in its mammalian ortholog ataxin-2 lead to spinocerebellar dysfunction due to toxic protein aggregation. Here, we show that loss of Pbp1 in S. cerevisiae leads to decreased amounts of mRNAs and mitochondrial proteins which are targets of Puf3, a member of the PUF (Pumilio and FBF) family of RNA-binding proteins. We found that Pbp1 supports the translation of Puf3-target mRNAs in respiratory conditions, such as those involved in the assembly of cytochrome c oxidase and subunits of mitochondrial ribosomes. We further show that Pbp1 and Puf3 interact through their respective low complexity domains, which is required for Puf3-target mRNA translation. Our findings reveal a key role for Pbp1-containing assemblies in enabling the translation of mRNAs critical for mitochondrial biogenesis and respiration. They may further explain prior associations of Pbp1/ataxin-2 with RNA, stress granule biology, mitochondrial function, and neuronal health.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ataxina-2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Biogénesis de Organelos , Proteínas de Unión al ARN/metabolismo , Mamíferos/genética , Proteínas Portadoras/genética
9.
Mol Neurobiol ; 60(6): 3553-3567, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36894829

RESUMEN

Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited neurodegenerative disease, which belongs to the trinucleotide repeat disease group with a CAG repeat expansion in exon 1 of the ATXN2 gene resulting in an ataxin-2 protein with an expanded polyglutamine (polyQ)-stretch. The disease is late manifesting leading to early death. Today, therapeutic interventions to cure the disease or even to decelerate disease progression are not available yet. Furthermore, primary readout parameter for disease progression and therapeutic intervention studies are limited. Thus, there is an urgent need for quantifiable molecular biomarkers such as ataxin-2 becoming even more important due to numerous potential protein-lowering therapeutic intervention strategies. The aim of this study was to establish a sensitive technique to measure the amount of soluble polyQ-expanded ataxin-2 in human biofluids to evaluate ataxin-2 protein levels as prognostic and/or therapeutic biomarker in SCA2. Time-resolved fluorescence energy transfer (TR-FRET) was used to establish a polyQ-expanded ataxin-2-specific immunoassay. Two different ataxin-2 antibodies and two different polyQ-binding antibodies were validated in three different concentrations and tested in cellular and animal tissue as well as in human cell lines, comparing different buffer conditions to evaluate the best assay conditions. We established a TR-FRET-based immunoassay for soluble polyQ-expanded ataxin-2 and validated measurements in human cell lines including iPSC-derived cortical neurons. Additionally, our immunoassay was sensitive enough to monitor small ataxin-2 expression changes by siRNA or starvation treatment. We successfully established the first sensitive ataxin-2 immunoassay to measure specifically soluble polyQ-expanded ataxin-2 in human biomaterials.


Asunto(s)
Ataxina-2 , Ataxias Espinocerebelosas , Animales , Humanos , Ataxina-2/genética , Ataxina-2/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Ataxias Espinocerebelosas/genética , Inmunoensayo , Progresión de la Enfermedad , Ataxina-3/metabolismo , Ataxina-1/metabolismo
10.
J Immunol Res ; 2022: 6863240, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213324

RESUMEN

As one of the primary therapeutic choices, chemotherapy is widely adopted for progressive gastric cancer (GC), but the development of chemoresistance has limited chemotherapy efficacy and partly contributes to poor prognosis. Immunotherapy is increasingly being applied in the clinical treatment of GC and is also benefitting patients. To ascertain whether ATXN2 affects chemotherapy efficacy in GC cells and its role in GC immune escape, we performed high-throughput sequencing to clarify genes differentially expressed between 5-FU-resistant and 5-FU-sensitive GC cells and then conducted qRT-PCR to assess ATXN2 expression in GC tissues. Furthermore, the influence of ATXN2 on resistance was studied in vitro and in vivo, ATXN2 and other protein expression levels were detected using Western blotting and immunohistochemistry (IHC), and the direct association of SP1 and ATXN2 was confirmed through luciferase reporter gene analysis. We found elevated ATXN2 in GC tumors and a negative correlation between ATXN2 levels and the prognosis of GC. Furthermore, by activating the PI3K/AKT pathway, ATXN2 was found to promote chemoresistance in GC, facilitating BCL2L1 expression. In GC cells, ATXN2 further stimulated PD-L1 expression and provided better immunotherapy efficacy. Finally, we demonstrated that SP1 transcriptionally regulated the expression of ATXN2 and prompted GC chemoresistance and immune escape. In conclusion, our study reveals the important roles of the SP1/ATXN2/PI3K-AKT/BCL2L1 signalling pathway in GC chemoresistance and of the SP1/ATXN2/PI3K-AKT/PD-L1 signalling pathway in GC immunotherapy. Our findings provide new theories and experimental references for overcoming chemotherapy resistance in GC and enhancing the efficacy of immunotherapy for GC.


Asunto(s)
Neoplasias Gástricas , Ataxina-2/genética , Ataxina-2/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Fluorouracilo , Regulación Neoplásica de la Expresión Génica , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
11.
Cell Rep ; 41(4): 111508, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36288714

RESUMEN

Mutations in the ataxin-2 gene (ATXN2) cause the neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia type 2 (SCA2). A therapeutic strategy using antisense oligonucleotides targeting ATXN2 has entered clinical trial in humans. Additional ways to decrease ataxin-2 levels could lead to cheaper or less invasive therapies and elucidate how ataxin-2 is normally regulated. Here, we perform a genome-wide fluorescence-activated cell sorting (FACS)-based CRISPR-Cas9 screen in human cells and identify genes encoding components of the lysosomal vacuolar ATPase (v-ATPase) as modifiers of endogenous ataxin-2 protein levels. Multiple FDA-approved small molecule v-ATPase inhibitors lower ataxin-2 protein levels in mouse and human neurons, and oral administration of at least one of these drugs-etidronate-is sufficient to decrease ataxin-2 in the brains of mice. Together, we propose v-ATPase as a drug target for ALS and SCA2 and demonstrate the value of FACS-based screens in identifying genetic-and potentially druggable-modifiers of human disease proteins.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ataxias Espinocerebelosas , ATPasas de Translocación de Protón Vacuolares , Animales , Humanos , Ratones , Ataxina-2/genética , Ataxina-2/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Preparaciones Farmacéuticas , Ácido Etidrónico , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/genética , Oligonucleótidos Antisentido/genética
12.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36233198

RESUMEN

Spinocerebellar ataxia type 2 (SCA2) is a rare autosomal, dominantly inherited disease, in which the affected individuals have a disease onset around their third life decade. The molecular mechanisms underlying SCA2 are not yet completely understood, for which we hypothesize that aging plays a role in SCA2 molecular pathogenesis. In this study, we performed a striatal injection of mutant ataxin-2 mediated by lentiviral vectors, in young and aged animals. Twelve weeks post-injection, we analyzed the striatum for SCA2 neuropathological features and specific aging hallmarks. Our results show that aged animals had a higher number of mutant ataxin-2 aggregates and more neuronal marker loss, compared to young animals. Apoptosis markers, cleaved caspase-3, and cresyl violet staining also indicated increased neuronal death in the aged animal group. Additionally, mRNA levels of microtubule-associated protein 1 light-chain 3B (LC3) and sequestosome-1 (SQSTM1/p62) were altered in the aged animal group, suggesting autophagic pathway dysfunction. This work provides evidence that aged animals injected with expanded ataxin-2 had aggravated SCA2 disease phenotype, suggesting that aging plays an important role in SCA2 disease onset and disease progression.


Asunto(s)
Ataxina-2 , Ataxias Espinocerebelosas , Animales , Ataxina-2/genética , Ataxina-2/metabolismo , Ataxina-3/genética , Caspasa 3/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , ARN Mensajero , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Ataxias Espinocerebelosas/patología
13.
Life Sci Alliance ; 5(12)2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114004

RESUMEN

Cytoplasmic polyadenylation is a mechanism to promote mRNA translation in a wide variety of biological contexts. A canonical complex centered around the conserved RNA-binding protein family CPEB has been shown to be responsible for this process. We have previously reported evidence for an alternative noncanonical, CPEB-independent complex in <i>Drosophila</i>, of which the RNA-interference factor Dicer-2 is a component. Here, we investigate Dicer-2 mRNA targets and protein cofactors in cytoplasmic polyadenylation. Using RIP-Seq analysis, we identify hundreds of potential Dicer-2 target transcripts, ∼60% of which were previously found as targets of the cytoplasmic poly(A) polymerase Wispy, suggesting widespread roles of Dicer-2 in cytoplasmic polyadenylation. Large-scale immunoprecipitation revealed Ataxin-2 and Twenty-four among the high-confidence interactors of Dicer-2. Complex analyses indicated that both factors form an RNA-independent complex with Dicer-2 and mediate interactions of Dicer-2 with Wispy. Functional poly(A)-test analyses showed that Twenty-four and Ataxin-2 are required for cytoplasmic polyadenylation of a subset of Dicer-2 targets. Our results reveal components of a novel cytoplasmic polyadenylation complex that operates during <i>Drosophila</i> early embryogenesis.


Asunto(s)
Ataxina-2 , Poliadenilación , Animales , Ataxina-2/genética , Ataxina-2/metabolismo , Drosophila/genética , Drosophila/metabolismo , Poliadenilación/genética , Polinucleotido Adenililtransferasa/genética , Polinucleotido Adenililtransferasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
14.
J Neuropathol Exp Neurol ; 81(7): 535-544, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35511239

RESUMEN

Spinocerebellar ataxia type 2 (SCA2) is caused by mutations in the ATXN2 gene in which toxic effects are triggered by expanded polyglutamine repeats within ataxin-2. SCA2 is accompanied by motor neuron degeneration as occurs in amyotrophic lateral sclerosis (ALS). We investigated the distribution patterns of ataxin-2 and transactivation-responsive DNA-binding protein 43 (TDP-43), a major disease-related protein in ALS, in the CNS of 3 SCA2 patients. Phosphorylated TDP-43 (pTDP-43)-positive lesions were widely distributed throughout the CNS and generally overlapped with 1C2 (expanded polyglutamine)-immunoreactive lesions. This distribution pattern is different from the pattern in limbic-predominant age-related TDP-43 encephalopathy. In SCA2, double immunostaining of TDP-43 and 1C2 in motor neurons revealed 3 staining patterns: cytoplasmic 1C2 and nuclear TDP-43, nucleocytoplasmic 1C2 and nuclear TDP-43, and nuclear 1C2 and cytoplasmic TDP-43, which reflect the early, active, and final stages of pathological change, respectively. The translocation of TDP-43 from the nucleus to the cytoplasm along with the translocation of 1C2 in the opposite direction indicates that nuclear accumulation of the disease-specific protein ataxin-2 affects the intracellular dynamics of TDP-43. Such a close interrelationship between mutant ataxin-2 and TDP-43 in the cell might account for the similarity of their distribution in the CNS of patients with SCA2.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Ataxias Espinocerebelosas , Ataxina-2/genética , Ataxina-2/metabolismo , Encéfalo/patología , Proteínas de Unión al ADN/genética , Humanos , Péptidos , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Activación Transcripcional/genética
15.
Mol Ther ; 30(3): 1089-1103, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34995801

RESUMEN

N6-methyladenosine (m6A) is the most prevalent RNA modification, and the effect of its dysregulation on esophageal squamous cell carcinoma (ESCC) development remains unclear. Here, by performing transcriptome-wide m6A sequencing in 16 ESCC tissue samples, we identified the key roles of m6A in TNFRSF1A (also known as TNFR1)-mediated MAPK and NF-κB activation in ESCC. Mechanistically, a functional protein involved in m6A methylation, ATXN2, is identified that augments the translation of TNFRSF1A by binding to m6A-modified TNFRSF1A mRNA. Upregulation of the TNFRSF1A protein level, a vital upstream switch for TNFRSF1A-mediated signaling events, activates the NF-κB and MAPK pathways and thus promotes ESCC development. Furthermore, TNFRSF1A m6A modifications and protein levels are upregulated in ESCC, and high levels of TNFRSF1A m6A and protein are correlated with poor ESCC patient survival. These results collectively indicate that the m6A-TNFRSF1A axis is critical for ESCC development and thus may serve as a potential druggable target.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Ataxina-2/genética , Ataxina-2/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , FN-kappa B/metabolismo , ARN Mensajero/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética
16.
Cerebellum ; 21(5): 742-749, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34978024

RESUMEN

Spinocerebellar ataxia type 2 (SCA2) is an incurable hereditary disorder accompanied by cerebellar degeneration following ataxic symptoms. The causative gene for SCA2 is ATXN2. The ataxin-2 protein is involved in RNA metabolism; the polyQ expansion may interrupt ataxin-2 interaction with its molecular targets, thus representing a loss-of-function mutation. However, mutant ataxin-2 protein also displays the features of gain-of-function mutation since it forms the aggregates in SCA2 cells and also enhances the IP3-induced calcium release in affected neurons. The cerebellar Purkinje cells (PCs) are primarily affected in SCA2. Their tonic pacemaker activity is crucial for the proper cerebellar functioning. Disturbances in PC pacemaking are observed in many ataxic disorders. The abnormal intrinsic pacemaking was reported in mouse models of episodic ataxia type 2 (EA2), SCA1, SCA2, SCA3, SCA6, Huntington's disease (HD), and in some other murine models of the disorders associated with the cerebellar degeneration. In our studies using SCA2-58Q transgenic mice via cerebellar slice recording and in vivo recording from urethane-anesthetized mice and awake head-fixed mice, we have demonstrated the impaired firing frequency and irregularity of PCs in these mice. PC pacemaker activity is regulated by SK channels. The pharmacological activation of SK channels has demonstrated some promising results in the electrophysiological experiments on EA2, SCA1, SCA2, SCA3, SCA6, HD mice, and also on mutant CACNA1A mice. In our studies, we have reported that the SK activators CyPPA and NS309 converted bursting activity into tonic, while oral treatment with CyPPA and NS13001 significantly improved motor performance and PC morphology in SCA2 mice. The i.p. injections of chlorzoxazone (CHZ) during in vivo recording sessions converted bursting cells into tonic in anesthetized SCA2 mice. And, finally, long-term injections of CHZ recovered the precision of PC pacemaking activity in awake SCA2 mice and alleviated their motor decline. Thus, the SK activation can be used as a potential way to treat SCA2 and other diseases accompanied by cerebellar degeneration.


Asunto(s)
Ataxina-2 , Ataxias Espinocerebelosas , Animales , Ataxina-2/metabolismo , Cerebelo , Ratones , Ratones Transgénicos , Células de Purkinje/fisiología , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo
17.
J Comp Neurol ; 530(2): 537-552, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34350994

RESUMEN

Polyglutamine repeat expansions in the Ataxin-2 (ATXN2) gene were first implicated in Spinocerebellar Ataxia Type 2, a disease associated with degeneration of motor neurons and Purkinje cells. Recent studies linked single nucleotide polymorphisms in the gene to elevated intraocular pressure in primary open angle glaucoma (POAG); yet, the localization of ATXN2 across glaucoma-relevant tissues of the vertebrate eye has not been thoroughly examined. This study characterizes ATXN2 expression in the mouse and human retina, and anterior eye, using an antibody validated in ATXN2-/- retinas. ATXN2-ir was localized to cytosolic sub compartments in retinal ganglion cell (RGC) somata and proximal dendrites in addition to GABAergic, glycinergic, and cholinergic amacrine cells in the inner plexiform layer (IPL) and displaced amacrine cells. Human, but not mouse retinas showed modest immunolabeling of bipolar cells. ATXN2 immunofluorescence was prominent in the trabecular meshwork and pigmented and nonpigmented cells of the ciliary body, with analyses of primary human trabecular meshwork cells confirming the finding. The expression of ATXN2 in key POAG-relevant ocular tissues supports the potential role in autophagy and stress granule formation in response to ocular hypertension.


Asunto(s)
Células Amacrinas/metabolismo , Ataxina-2/metabolismo , Glaucoma de Ángulo Abierto/fisiopatología , Células Ganglionares de la Retina/metabolismo , Gránulos de Estrés/patología , Animales , Dendritas/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Polimorfismo de Nucleótido Simple , Retina/fisiología
18.
Biomolecules ; 11(8)2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-34439914

RESUMEN

Membraneless organelles are non-stoichiometric supramolecular structures in the micron scale. These structures can be quickly assembled/disassembled in a regulated fashion in response to specific stimuli. Membraneless organelles contribute to the spatiotemporal compartmentalization of the cell, and they are involved in diverse cellular processes often, but not exclusively, related to RNA metabolism. Liquid-liquid phase separation, a reversible event involving demixing into two distinct liquid phases, provides a physical framework to gain insights concerning the molecular forces underlying the process and how they can be tuned according to the cellular needs. Proteins able to undergo phase separation usually present a modular architecture, which favors a multivalency-driven demixing. We discuss the role of low complexity regions in establishing networks of intra- and intermolecular interactions that collectively control the phase regime. Post-translational modifications of the residues present in these domains provide a convenient strategy to reshape the residue-residue interaction networks that determine the dynamics of phase separation. Focus will be placed on those proteins with low complexity domains exhibiting a biased composition towards the amino acid methionine and the prominent role that reversible methionine sulfoxidation plays in the assembly/disassembly of biomolecular condensates.


Asunto(s)
Extracción Líquido-Líquido , Metionina/química , Procesamiento Proteico-Postraduccional , Animales , Ataxina-2/metabolismo , Proteínas de Unión al ADN/química , Humanos , Simulación de Dinámica Molecular , Orgánulos/química , Proteínas de Unión a Poli(A)/química , Dominios Proteicos , Proteínas/química , ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/química
19.
Cell Mol Life Sci ; 78(17-18): 6143-6160, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34322715

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a rare, devastating disease, causing movement impairment, respiratory failure and ultimate death. A plethora of genetic, cellular and molecular mechanisms are involved in ALS signature, although the initiating causes and progressive pathological events are far from being understood. Drosophila research has produced seminal discoveries for more than a century and has been successfully used in the past 25 years to untangle the process of ALS pathogenesis, and recognize potential markers and novel strategies for therapeutic solutions. This review will provide an updated view of several ALS modifiers validated in C9ORF72, SOD1, FUS, TDP-43 and Ataxin-2 Drosophila models. We will discuss basic and preclinical findings, illustrating recent developments and novel breakthroughs, also depicting unsettled challenges and limitations in the Drosophila-ALS field. We intend to stimulate a renewed debate on Drosophila as a screening route to identify more successful disease modifiers and neuroprotective agents.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Drosophila/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Animales Modificados Genéticamente/metabolismo , Ataxina-2/genética , Ataxina-2/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo
20.
Curr Opin Neurol ; 34(4): 578-588, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34010218

RESUMEN

PURPOSE OF REVIEW: To provide an update on the role of Ataxin-2 gene (ATXN2) in health and neurological diseases. RECENT FINDINGS: There is a growing complexity emerging on the role of ATXN2 and its variants in association with SCA2 and several other neurological diseases. Polymorphisms and intermediate alleles in ATXN2 establish this gene as a powerful modulator of neurological diseases including lethal neurodegenerative conditions such as motor neuron disease, spinocerebellar ataxia 3 (SCA3), and peripheral nerve disease such as familial amyloidosis polyneuropathy. This role is in fact far wider than the previously described for polymorphism in the prion protein (PRNP) gene. Positive data from antisense oligo therapy in a murine model of SCA2 suggest that similar approaches may be feasible in humans SCA2 patients. SUMMARY: ATXN2 is one of the few genes where a single gene causes several diseases and/or modifies several and disparate neurological disorders. Hence, understanding mutagenesis, genetic variants, and biological functions will help managing SCA2, and several human diseases connected with dysfunctional pathways in the brain, innate immunity, autophagy, cellular, lipid, and RNA metabolism.


Asunto(s)
Enfermedades del Sistema Nervioso , Ataxias Espinocerebelosas , Animales , Ataxina-2/genética , Ataxina-2/metabolismo , Encéfalo/metabolismo , Humanos , Ratones , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/terapia , Proteínas , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA