Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Wiley Interdiscip Rev RNA ; 9(6): e1488, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29869836

RESUMEN

Ataxin-2 (ATXN2) is a eukaryotic RNA-binding protein that is conserved from yeast to human. Genetic expansion of a poly-glutamine tract in human ATXN2 has been implicated in several neurodegenerative diseases, likely acting through gain-of-function effects. Emerging evidence, however, suggests that ATXN2 plays more direct roles in neural function via specific molecular and cellular pathways. ATXN2 and its associated protein complex control distinct steps in posttranscriptional gene expression, including poly-A tailing, RNA stabilization, microRNA-dependent gene silencing, and translational activation. Specific RNA substrates have been identified for the functions of ATXN2 in aspects of neural physiology, such as circadian rhythms and olfactory habituation. Genetic models of ATXN2 loss-of-function have further revealed its significance in stress-induced cytoplasmic granules, mechanistic target of rapamycin signaling, and cellular metabolism, all of which are crucial for neural homeostasis. Accordingly, we propose that molecular evolution has been selecting the ATXN2 protein complex as an important trans-acting module for the posttranscriptional control of diverse neural functions. This explains how ATXN2 intimately interacts with various neurodegenerative disease genes, and suggests that loss-of-function effects of ATXN2 could be therapeutic targets for ATXN2-related neurological disorders. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.


Asunto(s)
Ataxina-2/fisiología , Animales , Ataxina-2/química , Humanos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , ARN/metabolismo , Procesamiento Postranscripcional del ARN
2.
Mol Biol Cell ; 27(20): 3052-3064, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27559134

RESUMEN

The spindle midzone harbors both microtubules and proteins necessary for furrow formation and the completion of cytokinesis. However, the mechanisms that mediate the temporal and spatial recruitment of cell division factors to the spindle midzone and midbody remain unclear. Here we describe a mechanism governed by the conserved RNA-binding protein ATX-2/Ataxin-2, which targets and maintains ZEN-4 at the spindle midzone. ATX-2 does this by regulating the amount of PAR-5 at mitotic structures, particularly the spindle, centrosomes, and midbody. Preventing ATX-2 function leads to elevated levels of PAR-5, enhanced chromatin and centrosome localization of PAR-5-GFP, and ultimately a reduction of ZEN-4-GFP at the spindle midzone. Codepletion of ATX-2 and PAR-5 rescued the localization of ZEN-4 at the spindle midzone, indicating that ATX-2 mediates the localization of ZEN-4 upstream of PAR-5. We provide the first direct evidence that ATX-2 is necessary for cytokinesis and suggest a model in which ATX-2 facilitates the targeting of ZEN-4 to the spindle midzone by mediating the posttranscriptional regulation of PAR-5.


Asunto(s)
Ataxina-2/metabolismo , Ataxina-2/fisiología , Citocinesis/fisiología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Centrosoma/metabolismo , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Huso Acromático/metabolismo
3.
Proc Natl Acad Sci U S A ; 113(32): E4620-9, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27457958

RESUMEN

Dietary restriction (DR) is a metabolic intervention that extends the lifespan of multiple species, including yeast, flies, nematodes, rodents, and, arguably, rhesus monkeys and humans. Hallmarks of lifelong DR are reductions in body size, fecundity, and fat accumulation, as well as slower development. We have identified atx-2, the Caenorhabditis elegans homolog of the human ATXN2L and ATXN2 genes, as the regulator of these multiple DR phenotypes. Down-regulation of atx-2 increases the body size, cell size, and fat content of dietary-restricted animals and speeds animal development, whereas overexpression of atx-2 is sufficient to reduce the body size and brood size of wild-type animals. atx-2 regulates the mechanistic target of rapamycin (mTOR) pathway, downstream of AMP-activated protein kinase (AMPK) and upstream of ribosomal protein S6 kinase and mTOR complex 1 (TORC1), by its direct association with Rab GDP dissociation inhibitor ß, which likely regulates RHEB shuttling between GDP-bound and GTP-bound forms. Taken together, this work identifies a previously unknown mechanism regulating multiple aspects of DR, as well as unknown regulators of the mTOR pathway. They also extend our understanding of diet-dependent growth retardation, and offers a potential mechanism to treat obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Ataxina-2/fisiología , Caenorhabditis elegans/crecimiento & desarrollo , Tamaño de la Célula , Serina-Treonina Quinasas TOR/fisiología , Proteínas Quinasas Activadas por AMP/fisiología , Animales , Caenorhabditis elegans/citología , Dieta , Proteínas Quinasas S6 Ribosómicas/fisiología , Transducción de Señal/fisiología
4.
PLoS One ; 10(6): e0128769, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26086378

RESUMEN

Spinocerebellar ataxia type 2 (SCA2) is a progressive autosomal dominant disorder caused by the expansion of a CAG tract in the ATXN2 gene. The SCA2 disease phenotype is characterized by cerebellar atrophy, gait ataxia, and slow saccades. ATXN2 mutation causes gains of toxic and normal functions of the ATXN2 gene product, ataxin-2, and abnormally slow Purkinje cell firing frequency. Previously we investigated features of ATXN2 controlling expression and noted expression differences for ATXN2 constructs with varying CAG lengths, suggestive of repeat associated non-AUG translation (RAN translation). To determine whether RAN translation occurs for ATXN2 we assembled various ATXN2 constructs with ATXN2 tagged by luciferase, HA or FLAG tags, driven by the CMV promoter or the ATXN2 promoter. Luciferase expression from ATXN2-luciferase constructs lacking the ATXN2 start codon was weak vs AUG translation, regardless of promoter type, and did not increase with longer CAG repeat lengths. RAN translation was detected on western blots by the anti-polyglutamine antibody 1C2 for constructs driven by the CMV promoter but not the ATXN2 promoter, and was weaker than AUG translation. Strong RAN translation was also observed when driving the ATXN2 sequence with the CMV promoter with ATXN2 sequence downstream of the CAG repeat truncated to 18 bp in the polyglutamine frame but not in the polyserine or polyalanine frames. Our data demonstrate that ATXN2 RAN translation is weak compared to AUG translation and is dependent on ATXN2 sequences flanking the CAG repeat.


Asunto(s)
Ataxina-2/genética , Expansión de Repetición de Trinucleótido/genética , Ataxina-2/fisiología , Células HEK293 , Humanos , Luciferasas/metabolismo , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA