Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28.671
1.
Siglo cero (Madr.) ; 54(4): 65-83, oct.-dic. 2024.
Article Es | IBECS | ID: ibc-229229

La falta de información sobre el uso de la tecnología en niños con trastorno del espectro autista (TEA) de diferentes perfiles puede dificultar que docentes y alumnos se estén beneficiando del apoyo tecnológico más eficaz y ajustado a sus necesidades. El objetivo de esta revisión fue analizar y sintetizar la evidencia científica sobre la eficacia de los recursos tecnológicos en la mejora de la comprensión emocional de estudiantes con TEA con perfiles de alto y bajo funcionamiento. Para ello se realizó una revisión sistemática de las publicaciones científicas indexadas en algunas de las bases de datos de mayor relevancia siguiendo los criterios establecidos en la declaración PRISMA. En total se analizaron 38 artículos que cumplieron con los criterios de inclusión preestablecidos. Los resultados muestran la importancia de diseñar sistemas versátiles que puedan personalizarse y adaptarse en tiempo real y en contextos naturales con un enfoque claramente inclusivo. Pero también sugieren que la tecnología puede no ser una herramienta de intervención complementaria adecuada para todos los niños con TEA. Lo que subraya la necesidad de ensayos adicionales bien controlados sobre las características que permitan identificar qué estudiantes podrían o no beneficiarse de diferentes modalidades de tecnología. (AU)


The lack of information on the use of technology in children with autism spectrum disorder (ASD) of different profiles can make it difficult for teachers and students to benefit from the most effective technology support tailored to their needs. The aim of this review was to analyze and synthesize scientific evidence on the effectiveness of technological resources in improving the emotional understanding of students with high and low functioning ASD profiles. A systematic review of the scientific publications indexed in some of the most relevant databases was carried out following the criteria established in the PRISMA declaration. A total of 38 articles that met the pre-established inclusion criteria were analyzed. The results show the importance of designing versatile systems that can be customized and adapted in real time and in natural contexts with a clearly inclusive approach. But they also suggest that technology may not be an appropriate complementary intervention tool for all children with ASD. This underlines the need for additional well-controlled tests on the characteristics that would allow identifying which students might or might not benefit from different technology modalities. (AU)


Humans , Child, Preschool , Child , Adolescent , Educational Technology , Autism Spectrum Disorder , Autistic Disorder
2.
Siglo cero (Madr.) ; 54(4): 65-83, oct.-dic. 2024.
Article Es | IBECS | ID: ibc-EMG-559

La falta de información sobre el uso de la tecnología en niños con trastorno del espectro autista (TEA) de diferentes perfiles puede dificultar que docentes y alumnos se estén beneficiando del apoyo tecnológico más eficaz y ajustado a sus necesidades. El objetivo de esta revisión fue analizar y sintetizar la evidencia científica sobre la eficacia de los recursos tecnológicos en la mejora de la comprensión emocional de estudiantes con TEA con perfiles de alto y bajo funcionamiento. Para ello se realizó una revisión sistemática de las publicaciones científicas indexadas en algunas de las bases de datos de mayor relevancia siguiendo los criterios establecidos en la declaración PRISMA. En total se analizaron 38 artículos que cumplieron con los criterios de inclusión preestablecidos. Los resultados muestran la importancia de diseñar sistemas versátiles que puedan personalizarse y adaptarse en tiempo real y en contextos naturales con un enfoque claramente inclusivo. Pero también sugieren que la tecnología puede no ser una herramienta de intervención complementaria adecuada para todos los niños con TEA. Lo que subraya la necesidad de ensayos adicionales bien controlados sobre las características que permitan identificar qué estudiantes podrían o no beneficiarse de diferentes modalidades de tecnología. (AU)


The lack of information on the use of technology in children with autism spectrum disorder (ASD) of different profiles can make it difficult for teachers and students to benefit from the most effective technology support tailored to their needs. The aim of this review was to analyze and synthesize scientific evidence on the effectiveness of technological resources in improving the emotional understanding of students with high and low functioning ASD profiles. A systematic review of the scientific publications indexed in some of the most relevant databases was carried out following the criteria established in the PRISMA declaration. A total of 38 articles that met the pre-established inclusion criteria were analyzed. The results show the importance of designing versatile systems that can be customized and adapted in real time and in natural contexts with a clearly inclusive approach. But they also suggest that technology may not be an appropriate complementary intervention tool for all children with ASD. This underlines the need for additional well-controlled tests on the characteristics that would allow identifying which students might or might not benefit from different technology modalities. (AU)


Humans , Child, Preschool , Child , Adolescent , Educational Technology , Autism Spectrum Disorder , Autistic Disorder
3.
Clin Neuropharmacol ; 47(3): 97-100, 2024.
Article En | MEDLINE | ID: mdl-38743603

OBJECTIVE: Ketamine and esketamine have been used in the field of psychiatry to alleviate conditions such as major depressive disorder. Our objective was to evaluate the current literature on the use of ketamine for symptoms of social withdrawal in autism spectrum disorder (ASD) and autism-like conditions. METHODS: A comprehensive search of PubMed and Web of Science was conducted to identify literature involving the use of ketamine to treat symptoms of autism and social withdrawal. Patients with comorbid disorders were also included. RESULTS: Two original studies were found, showing mixed results on the use of ketamine for ASD. The use of esketamine found no statistically significant results, whereas the use of intravenous ketamine was shown to alleviate symptoms of social withdrawal especially in the short term. Neither study reported a significant amount of serious adverse events. Five case reports were also included, showing decreased depressive symptoms and evidence of increased social condition. CONCLUSIONS: Research on the use of ketamine for ASD and ASD-related conditions is limited. Evidence of improved social condition exists, but further studies should be conducted to increase sample power and test various doses and methods of administration.


Ketamine , Ketamine/therapeutic use , Humans , Autism Spectrum Disorder/drug therapy , Autistic Disorder/drug therapy
4.
Clin Ter ; 175(3): 168-175, 2024.
Article En | MEDLINE | ID: mdl-38767074

Objective: The combination of femininity and inequality is an increasingly studied in the field of social medicine, even more if the girls or women in question experience conditions of disability or neurodivergence. The onset of menstruation, menarche, constitutes a significant and transformative event in women's lives comprising a true and proper watershed in mental and reproductive health and sexual welfare. The onset of menstruation has a profound effect not just for girls but, in the case of disabled girls, for the whole family. In this scoping review, we have researched the literature in studies which consider the issue of menstruation and autism. The works in scientific literature have been selected which, in the last 5 years, investigated the issue of menstrua-tion for autistic girls and/or women. Results: Selected studies, although few in number, have all equally evidenced the total lack of in-depth understanding of this theme, notwithstanding the fact that females, girls and women with autism would benefit from specialized services if these existed. Families, girls and women involved, moreover, although not experiencing menstruation per se in a negative light, note a deterioration in their condition particularly in respect of sensorial perception and the intensification of anxious depressive instances. This work highlights the need to deepen the aspects concerning the period in autistic girls/women, up to now the question appears to have been little studied, investigated in an uneven way. We propose a social medical program to improve sexual-affective knowledge and body awareness in autistic people.


Autistic Disorder , Menstruation , Humans , Female , Autistic Disorder/psychology , Menstruation/psychology , Menstrual Cycle/physiology , Menarche/psychology
5.
PLoS One ; 19(5): e0303209, 2024.
Article En | MEDLINE | ID: mdl-38768146

Mental health issues are markedly increased in individuals with autism, making it the number one research priority by stakeholders. There is a crucial need to use personalized approaches to understand the underpinnings of mental illness in autism and consequently, to address individual needs. Based on the risk factors identified in typical mental research, we propose the following themes central to mental health issues in autism: sleep difficulties and stress. Indeed, the prevalence of manifold circadian disruptions and sleep difficulties in autism, alongside stress related to sensory overload, forms an integral part of autistic symptomatology. This proof-of-concept study protocol outlines an innovative, individualised approach towards investigating the interrelationships between stress indices, sleep and circadian activation patterns, and sensory sensitivity in autism. Embracing an individualized methodology, we aim to collect 14 days of data per participant from 20 individuals with autism diagnoses and 20 without. Participants' sleep will be monitored using wearable EEG headbands and a sleep diary. Diurnal tracking of heart rate and electrodermal activity through wearables will serve as proxies of stress. Those objective data will be synchronized with subjective experience traces collected throughout the day using the Temporal Experience Tracing (TET) method. TET facilitates the quantification of relevant aspects of individual experience states, such as stress or sensory sensitivities, by providing a continuous multidimensional description of subjective experiences. Capturing the dynamics of subjective experiences phase-locked to neural and physiological proxies both between and within individuals, this approach has the potential to contribute to our understanding of critical issues in autism, including sleep problems, sensory reactivity and stress. The planned strives to provide a pathway towards developing a more nuanced and individualized approach to addressing mental health in autism.


Autistic Disorder , Circadian Rhythm , Stress, Psychological , Humans , Autistic Disorder/physiopathology , Autistic Disorder/psychology , Circadian Rhythm/physiology , Stress, Psychological/physiopathology , Sleep Quality , Male , Female , Adult , Adolescent , Sleep/physiology , Heart Rate/physiology , Young Adult , Electroencephalography
6.
Sci Rep ; 14(1): 11590, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773178

Human interaction is immersed in laughter; though genuine and posed laughter are acoustically distinct, they are both crucial socio-emotional signals. In this novel study, autistic and non-autistic adults explicitly rated the affective properties of genuine and posed laughter. Additionally, we explored whether their self-reported everyday experiences with laughter differ. Both groups could differentiate between these two types of laughter. However, autistic adults rated posed laughter as more authentic and emotionally arousing than non-autistic adults, perceiving it to be similar to genuine laughter. Autistic adults reported laughing less, deriving less enjoyment from laughter, and experiencing difficulty in understanding the social meaning of other people's laughter compared to non-autistic people. Despite these differences, autistic adults reported using laughter socially as often as non-autistic adults, leveraging it to mediate social contexts. Our findings suggest that autistic adults show subtle differences in their perception of laughter, which may be associated with their struggles in comprehending the social meaning of laughter, as well as their diminished frequency and enjoyment of laughter in everyday scenarios. By combining experimental evidence with first-person experiences, this study suggests that autistic adults likely employ different strategies to understand laughter in everyday contexts, potentially leaving them socially vulnerable in communication.


Autistic Disorder , Laughter , Humans , Laughter/psychology , Male , Adult , Female , Autistic Disorder/psychology , Autistic Disorder/physiopathology , Young Adult , Emotions/physiology , Middle Aged
7.
Cereb Cortex ; 34(13): 84-93, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696598

Multimodal integration is crucial for human interaction, in particular for social communication, which relies on integrating information from various sensory modalities. Recently a third visual pathway specialized in social perception was proposed, which includes the right superior temporal sulcus (STS) playing a key role in processing socially relevant cues and high-level social perception. Importantly, it has also recently been proposed that the left STS contributes to audiovisual integration of speech processing. In this article, we propose that brain areas along the right STS that support multimodal integration for social perception and cognition can be considered homologs to those in the left, language-dominant hemisphere, sustaining multimodal integration of speech and semantic concepts fundamental for social communication. Emphasizing the significance of the left STS in multimodal integration and associated processes such as multimodal attention to socially relevant stimuli, we underscore its potential relevance in comprehending neurodevelopmental conditions characterized by challenges in social communication such as autism spectrum disorder (ASD). Further research into this left lateral processing stream holds the promise of enhancing our understanding of social communication in both typical development and ASD, which may lead to more effective interventions that could improve the quality of life for individuals with atypical neurodevelopment.


Social Cognition , Speech Perception , Temporal Lobe , Humans , Temporal Lobe/physiology , Temporal Lobe/physiopathology , Speech Perception/physiology , Social Perception , Autistic Disorder/physiopathology , Autistic Disorder/psychology , Functional Laterality/physiology
8.
Cereb Cortex ; 34(13): 94-103, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696597

Autism (or autism spectrum disorder) was initially defined as a psychiatric disorder, with the likely cause maternal behavior (the very destructive "refrigerator mother" theory). It took several decades for research into brain mechanisms to become established. Both neuropathological and imaging studies found differences in the cerebellum in autism spectrum disorder, the most widely documented being a decreased density of Purkinje cells in the cerebellar cortex. The popular interpretation of these results is that cerebellar neuropathology is a critical cause of autism spectrum disorder. We challenge that view by arguing that if fewer Purkinje cells are critical for autism spectrum disorder, then any condition that causes the loss of Purkinje cells should also cause autism spectrum disorder. We will review data on damage to the cerebellum from cerebellar lesions, tumors, and several syndromes (Joubert syndrome, Fragile X, and tuberous sclerosis). Collectively, these studies raise the question of whether the cerebellum really has a role in autism spectrum disorder. Autism spectrum disorder is now recognized as a genetically caused developmental disorder. A better understanding of the genes that underlie the differences in brain development that result in autism spectrum disorder is likely to show that these genes affect the development of the cerebellum in parallel with the development of the structures that do underlie autism spectrum disorder.


Cerebellum , Humans , Cerebellum/pathology , Autism Spectrum Disorder/pathology , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/diagnostic imaging , Animals , Autistic Disorder/pathology , Autistic Disorder/genetics , Autistic Disorder/physiopathology , Purkinje Cells/pathology
9.
Int J Med Inform ; 187: 105469, 2024 Jul.
Article En | MEDLINE | ID: mdl-38723429

BACKGROUND: Human Emotion Recognition (HER) has been a popular field of study in the past years. Despite the great progresses made so far, relatively little attention has been paid to the use of HER in autism. People with autism are known to face problems with daily social communication and the prototypical interpretation of emotional responses, which are most frequently exerted via facial expressions. This poses significant practical challenges to the application of regular HER systems, which are normally developed for and by neurotypical people. OBJECTIVE: This study reviews the literature on the use of HER systems in autism, particularly with respect to sensing technologies and machine learning methods, as to identify existing barriers and possible future directions. METHODS: We conducted a systematic review of articles published between January 2011 and June 2023 according to the 2020 PRISMA guidelines. Manuscripts were identified through searching Web of Science and Scopus databases. Manuscripts were included when related to emotion recognition, used sensors and machine learning techniques, and involved children with autism, young, or adults. RESULTS: The search yielded 346 articles. A total of 65 publications met the eligibility criteria and were included in the review. CONCLUSIONS: Studies predominantly used facial expression techniques as the emotion recognition method. Consequently, video cameras were the most widely used devices across studies, although a growing trend in the use of physiological sensors was observed lately. Happiness, sadness, anger, fear, disgust, and surprise were most frequently addressed. Classical supervised machine learning techniques were primarily used at the expense of unsupervised approaches or more recent deep learning models. Studies focused on autism in a broad sense but limited efforts have been directed towards more specific disorders of the spectrum. Privacy or security issues were seldom addressed, and if so, at a rather insufficient level of detail.


Autistic Disorder , Emotions , Facial Expression , Machine Learning , Humans , Autistic Disorder/psychology , Child
10.
Autism Res ; 17(5): 934-946, 2024 May.
Article En | MEDLINE | ID: mdl-38716802

Autistic people exhibit atypical use of prior information when processing simple perceptual stimuli; yet, it remains unclear whether and how these difficulties in using priors extend to complex social stimuli. Here, we compared autistic people without accompanying intellectual disability and nonautistic people in their ability to acquire an "emotional prior" of a facial expression and update this prior to a different facial expression of the same identity. Participants performed a two-interval same/different discrimination task between two facial expressions. To study the acquisition of the prior, we examined how discrimination was modified by the contraction of the perceived facial expressions toward the average of presented stimuli (i.e., regression to the mean). At first, facial expressions surrounded one average emotional prior (mostly sad or angry), and then the average switched (to mostly angry or sad, accordingly). Autistic people exhibited challenges in facial discrimination, and yet acquired the first prior, demonstrating typical regression-to-the-mean effects. However, unlike nonautistic people, autistic people did not update their perception to the second prior, suggesting they are less flexible in updating an acquired prior of emotional expressions. Our findings shed light on the perception of emotional expressions, one of the most pressing challenges in autism.


Anger , Autistic Disorder , Facial Expression , Humans , Female , Male , Adult , Anger/physiology , Autistic Disorder/psychology , Young Adult , Learning/physiology , Social Perception , Adolescent , Emotions/physiology , Discrimination, Psychological/physiology
11.
JAMA Netw Open ; 7(5): e2411190, 2024 May 01.
Article En | MEDLINE | ID: mdl-38743420

Importance: Finding effective and scalable solutions to address diagnostic delays and disparities in autism is a public health imperative. Approaches that integrate eye-tracking biomarkers into tiered community-based models of autism evaluation hold promise for addressing this problem. Objective: To determine whether a battery of eye-tracking biomarkers can reliably differentiate young children with and without autism in a community-referred sample collected during clinical evaluation in the primary care setting and to evaluate whether combining eye-tracking biomarkers with primary care practitioner (PCP) diagnosis and diagnostic certainty is associated with diagnostic outcome. Design, Setting, and Participants: Early Autism Evaluation (EAE) Hub system PCPs referred a consecutive sample of children to this prospective diagnostic study for blinded eye-tracking index test and follow-up expert evaluation from June 7, 2019, to September 23, 2022. Participants included 146 children (aged 14-48 months) consecutively referred by 7 EAE Hubs. Of 154 children enrolled, 146 provided usable data for at least 1 eye-tracking measure. Main Outcomes and Measures: The primary outcomes were sensitivity and specificity of a composite eye-tracking (ie, index) test, which was a consolidated measure based on significant eye-tracking indices, compared with reference standard expert clinical autism diagnosis. Secondary outcome measures were sensitivity and specificity of an integrated approach using an index test and PCP diagnosis and certainty. Results: Among 146 children (mean [SD] age, 2.6 [0.6] years; 104 [71%] male; 21 [14%] Hispanic or Latine and 96 [66%] non-Latine White; 102 [70%] with a reference standard autism diagnosis), 113 (77%) had concordant autism outcomes between the index (composite biomarker) and reference outcomes, with 77.5% sensitivity (95% CI, 68.4%-84.5%) and 77.3% specificity (95% CI, 63.0%-87.2%). When index diagnosis was based on the combination of a composite biomarker, PCP diagnosis, and diagnostic certainty, outcomes were concordant with reference standard for 114 of 127 cases (90%) with a sensitivity of 90.7% (95% CI, 83.3%-95.0%) and a specificity of 86.7% (95% CI, 70.3%-94.7%). Conclusions and Relevance: In this prospective diagnostic study, a composite eye-tracking biomarker was associated with a best-estimate clinical diagnosis of autism, and an integrated diagnostic model including PCP diagnosis and diagnostic certainty demonstrated improved sensitivity and specificity. These findings suggest that equipping PCPs with a multimethod diagnostic approach has the potential to substantially improve access to timely, accurate diagnosis in local communities.


Autistic Disorder , Biomarkers , Eye-Tracking Technology , Primary Health Care , Humans , Male , Female , Child, Preschool , Primary Health Care/methods , Prospective Studies , Infant , Biomarkers/blood , Biomarkers/analysis , Autistic Disorder/diagnosis , Sensitivity and Specificity
12.
BMC Psychiatry ; 24(1): 359, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745143

BACKGROUND: Delays in early social and executive function are predictive of later developmental delays and eventual neurodevelopmental diagnoses. There is limited research examining such markers in the first year of life. High-risk infant groups commonly present with a range of neurodevelopmental challenges, including social and executive function delays, and show higher rates of autism diagnoses later in life. For example, it has been estimated that up to 30% of infants diagnosed with cerebral palsy (CP) will go on to be diagnosed with autism later in life. METHODS: This article presents a protocol of a prospective longitudinal study. The primary aim of this study is to identify early life markers of delay in social and executive function in high-risk infants at the earliest point in time, and to explore how these markers may relate to the increased risk for social and executive delay, and risk of autism, later in life. High-risk infants will include Neonatal Intensive Care Unit (NICU) graduates, who are most commonly admitted for premature birth and/or cardiovascular problems. In addition, we will include infants with, or at risk for, CP. This prospective study will recruit 100 high-risk infants at the age of 3-12 months old and will track social and executive function across the first 2 years of their life, when infants are 3-7, 8-12, 18 and 24 months old. A multi-modal approach will be adopted by tracking the early development of social and executive function using behavioural, neurobiological, and caregiver-reported everyday functioning markers. Data will be analysed to assess the relationship between the early markers, measured from as early as 3-7 months of age, and the social and executive function as well as the autism outcomes measured at 24 months. DISCUSSION: This study has the potential to promote the earliest detection and intervention opportunities for social and executive function difficulties as well as risk for autism in NICU graduates and/or infants with, or at risk for, CP. The findings of this study will also expand our understanding of the early emergence of autism across a wider range of at-risk groups.


Cerebral Palsy , Executive Function , Intensive Care Units, Neonatal , Humans , Cerebral Palsy/psychology , Executive Function/physiology , Prospective Studies , Infant , Female , Male , Longitudinal Studies , Child Development/physiology , Autistic Disorder/psychology , Social Behavior , Risk Factors , Child, Preschool
13.
Mol Autism ; 15(1): 20, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745228

BACKGROUND: Do autistic people share the same moral foundations as typical people? Here we built on two prominent theories in psychology, moral foundations theory and the empathizing-systemizing (E-S) theory, to observe the nature of morality in autistic people and systemizers. METHODS: In dataset 1, we measured five foundations of moral judgements (Care, Fairness, Loyalty, Authority, and Sanctity) measured by the Moral Foundations Questionnaire (MFQ) in autistic (n = 307) and typical people (n = 415) along with their scores on the Empathy Quotient (EQ) and Systemizing Quotient (SQ). In dataset 2, we measured these same five foundations along with E-S cognitive types (previously referred to as "brain types") in a large sample of typical people (N = 7595). RESULTS: Autistic people scored the same on Care (i.e., concern for others) as typical people (h1). Their affective empathy (but not their cognitive empathy) scores were positively correlated with Care. Autistic people were more likely to endorse Fairness (i.e., giving people what they are owed, and treating them with justice) over Care (h2). Their systemizing scores were positively correlated with Fairness. Autistic people or those with a systemizing cognitive profile had lower scores on binding foundations: Loyalty, Authority, and Sanctity (h3). Systemizing in typical people was positively correlated with Liberty (i.e., hypervigilance against oppression), which is a sixth moral foundation (h4). Although the majority of people in all five E-S cognitive types self-identified as liberal, with a skew towards empathizing (h5), the percentage of libertarians was highest in systemizing cognitive types (h6). E-S cognitive types accounted for 2 to 3 times more variance for Care than did sex. LIMITATIONS: Our study is limited by its reliance on self-report measures and a focus on moral judgements rather than behavior or decision-making. Further, only dataset 2 measured political identification, therefore we were unable to assess politics in autistic people. CONCLUSIONS: We conclude that some moral foundations in autistic people are similar to those in typical people (despite the difficulties in social interaction that are part of autism), and some are subtly different. These subtle differences vary depending on empathizing and systemizing cognitive types.


Autistic Disorder , Empathy , Morals , Humans , Male , Female , Autistic Disorder/psychology , Adult , Young Adult , Surveys and Questionnaires , Adolescent , Middle Aged
14.
PLoS One ; 19(5): e0300274, 2024.
Article En | MEDLINE | ID: mdl-38748641

Visual statistical Learning (SL) allows infants to extract the statistical relationships embedded in a sequence of elements. SL plays a crucial role in language and communication competencies and has been found to be impacted in Autism Spectrum Disorder (ASD). This study aims to investigate visual SL in infants at higher likelihood of developing ASD (HL-ASD) and its predictive value on autistic-related traits at 24-36 months. At 6 months of age, SL was tested using a visual habituation task in HL-ASD and neurotypical (NT) infants. All infants were habituated to a visual sequence of shapes containing statistically predictable patterns. In the test phase, infants viewed the statistically structured, familiar sequence in alternation with a novel sequence that did not contain any statistical information. HL-ASD infants were then evaluated at 24-36 months to investigate the associations between visual SL and ASD-related traits. Our results showed that NT infants were able to learn the statistical structure embedded in the visual sequences, while HL-ASD infants showed different learning patterns. A regression analysis revealed that SL ability in 6-month-old HL-ASD infants was related to social communication and interaction abilities at 24-36 months of age. These findings indicate that early differences in learning visual statistical patterns might contribute to later social communication skills.


Autism Spectrum Disorder , Learning , Humans , Infant , Male , Female , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/psychology , Learning/physiology , Child, Preschool , Communication , Social Skills , Autistic Disorder/physiopathology , Autistic Disorder/psychology
15.
Biol Sex Differ ; 15(1): 40, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750585

BACKGROUND: Recent studies have shown that prenatal BPA exposure altered the transcriptome profiles of autism-related genes in the offspring's hippocampus, disrupting hippocampal neuritogenesis and causing male-specific deficits in learning. However, the sex differences in the effects of prenatal BPA exposure on the developing prefrontal cortex, which is another brain region highly implicated in autism spectrum disorder (ASD), have not been investigated. METHODS: We obtained transcriptome data from RNA sequencing analysis of the prefrontal cortex of male and female rat pups prenatally exposed to BPA or control and reanalyzed. BPA-responsive genes associated with cortical development and social behaviors were selected for confirmation by qRT-PCR analysis. Neuritogenesis of primary cells from the prefrontal cortex of pups prenatally exposed to BPA or control was examined. The social behaviors of the pups were assessed using the two-trial and three-chamber tests. The male-specific impact of the downregulation of a selected BPA-responsive gene (i.e., Sema5a) on cortical development in vivo was interrogated using siRNA-mediated knockdown by an in utero electroporation technique. RESULTS: Genes disrupted by prenatal BPA exposure were associated with ASD and showed sex-specific dysregulation. Sema5a and Slc9a9, which were involved in neuritogenesis and social behaviors, were downregulated only in males, while Anxa2 and Junb, which were also linked to neuritogenesis and social behaviors, were suppressed only in females. Neuritogenesis was increased in males and showed a strong inverse correlation with Sema5a and Slc9a9 expression levels, whereas, in the females, neuritogenesis was decreased and correlated with Anxa2 and Junb levels. The siRNA-mediated knockdown of Sema5a in males also impaired cortical development in utero. Consistent with Anxa2 and Junb downregulations, deficits in social novelty were observed only in female offspring but not in males. CONCLUSION: This is the first study to show that prenatal BPA exposure dysregulated the expression of ASD-related genes and functions, including cortical neuritogenesis and development and social behaviors, in a sex-dependent manner. Our findings suggest that, besides the hippocampus, BPA could also exert its adverse effects through sex-specific molecular mechanisms in the offspring's prefrontal cortex, which in turn would lead to sex differences in ASD-related neuropathology and clinical manifestations, which deserves further investigation.


Benzhydryl Compounds , Phenols , Prefrontal Cortex , Prenatal Exposure Delayed Effects , Sex Characteristics , Social Behavior , Animals , Female , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Phenols/toxicity , Phenols/adverse effects , Male , Benzhydryl Compounds/toxicity , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Autistic Disorder/genetics , Autistic Disorder/chemically induced , Rats, Sprague-Dawley , Rats , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/genetics
16.
Cereb Cortex ; 34(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38752979

Spontaneous and conversational laughter are important socio-emotional communicative signals. Neuroimaging findings suggest that non-autistic people engage in mentalizing to understand the meaning behind conversational laughter. Autistic people may thus face specific challenges in processing conversational laughter, due to their mentalizing difficulties. Using fMRI, we explored neural differences during implicit processing of these two types of laughter. Autistic and non-autistic adults passively listened to funny words, followed by spontaneous laughter, conversational laughter, or noise-vocoded vocalizations. Behaviourally, words plus spontaneous laughter were rated as funnier than words plus conversational laughter, and the groups did not differ. However, neuroimaging results showed that non-autistic adults exhibited greater medial prefrontal cortex activation while listening to words plus conversational laughter, than words plus genuine laughter, while autistic adults showed no difference in medial prefrontal cortex activity between these two laughter types. Our findings suggest a crucial role for the medial prefrontal cortex in understanding socio-emotionally ambiguous laughter via mentalizing. Our study also highlights the possibility that autistic people may face challenges in understanding the essence of the laughter we frequently encounter in everyday life, especially in processing conversational laughter that carries complex meaning and social ambiguity, potentially leading to social vulnerability. Therefore, we advocate for clearer communication with autistic people.


Autistic Disorder , Brain Mapping , Brain , Laughter , Magnetic Resonance Imaging , Humans , Laughter/physiology , Laughter/psychology , Male , Female , Adult , Autistic Disorder/physiopathology , Autistic Disorder/diagnostic imaging , Autistic Disorder/psychology , Young Adult , Brain/diagnostic imaging , Brain/physiopathology , Brain/physiology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology , Prefrontal Cortex/physiology , Acoustic Stimulation
17.
Autism Res ; 17(5): 989-1000, 2024 May.
Article En | MEDLINE | ID: mdl-38690644

Prior work examined how minimally verbal (MV) children with autism used their gestural communication during social interactions. However, interactions are exchanges between social partners. Examining parent-child social interactions is critically important given the influence of parent responsivity on children's communicative development. Specifically, parent responses that are semantically contingent to the child's communication plays an important role in further shaping children's language learning. This study examines whether MV autistic children's (N = 47; 48-95 months; 10 females) modality and form of communication are associated with parent responsivity during an in-home parent-child interaction (PCI). The PCI was collected using natural language sampling methods and coded for child modality and form of communication and parent responses. Findings from Kruskal-Wallis H tests revealed that there was no significant difference in parent semantically contingent responses based on child communication modality (spoken language, gesture, gesture-speech combinations, and AAC) and form of communication (precise vs. imprecise). Findings highlight the importance of examining multiple modalities and forms of communication in MV children with autism to obtain a more comprehensive understanding of their communication abilities; and underscore the inclusion of interactionist models of communication to examine children's input on parent responses in further shaping language learning experiences.


Autistic Disorder , Communication , Parent-Child Relations , Humans , Female , Male , Child , Child, Preschool , Autistic Disorder/psychology , Gestures , Parents , Language Development , Speech
18.
J Neurodev Disord ; 16(1): 23, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720286

BACKGROUND: Autism spectrum disorder has been linked to a variety of organizational and developmental deviations in the brain. One such organizational difference involves hemispheric lateralization, which may be localized to language-relevant regions of the brain or distributed more broadly. METHODS: In the present study, we estimated brain hemispheric lateralization in autism based on each participant's unique functional neuroanatomy rather than relying on group-averaged data. Additionally, we explored potential relationships between the lateralization of the language network and behavioral phenotypes including verbal ability, language delay, and autism symptom severity. We hypothesized that differences in hemispheric asymmetries in autism would be limited to the language network, with the alternative hypothesis of pervasive differences in lateralization. We tested this and other hypotheses by employing a cross-sectional dataset of 118 individuals (48 autistic, 70 neurotypical). Using resting-state fMRI, we generated individual network parcellations and estimated network asymmetries using a surface area-based approach. A series of multiple regressions were then used to compare network asymmetries for eight significantly lateralized networks between groups. RESULTS: We found significant group differences in lateralization for the left-lateralized Language (d = -0.89), right-lateralized Salience/Ventral Attention-A (d = 0.55), and right-lateralized Control-B (d = 0.51) networks, with the direction of these group differences indicating less asymmetry in autistic males. These differences were robust across different datasets from the same participants. Furthermore, we found that language delay stratified language lateralization, with the greatest group differences in language lateralization occurring between autistic males with language delay and neurotypical individuals. CONCLUSIONS: These findings evidence a complex pattern of functional lateralization differences in autism, extending beyond the Language network to the Salience/Ventral Attention-A and Control-B networks, yet not encompassing all networks, indicating a selective divergence rather than a pervasive one. Moreover, we observed an association between Language network lateralization and language delay in autistic males.


Brain , Functional Laterality , Magnetic Resonance Imaging , Humans , Male , Functional Laterality/physiology , Brain/physiopathology , Brain/diagnostic imaging , Adult , Young Adult , Cross-Sectional Studies , Adolescent , Autism Spectrum Disorder/physiopathology , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Autistic Disorder/physiopathology , Child , Language
19.
Dev Neuropsychol ; 49(4): 153-166, 2024 Jul.
Article En | MEDLINE | ID: mdl-38753030

Although most individuals who carry the Fragile X premutation allele, defined as 55-200 CGG repeats on the X-linked FMR1 gene (Fragile X Messenger Ribonucleoprotein 1 gene), do not meet diagnostic criteria for autism spectrum disorder, there is a suggestion of increased behaviors associated with subtle autistic traits. More autism associated characteristics have been reported among adults than children. This may highlight a possible worsening developmental trajectory, variable findings due to research quality or differences in number of studies done in adults vs children, rather than true developmental changes. This review is designed to examine the neurodevelopmental profile associated with the premutation allele from a developmental perspective, focused on autistic traits.


Fragile X Mental Retardation Protein , Fragile X Syndrome , Humans , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Child , Alleles , Autism Spectrum Disorder/genetics , Adult , Autistic Disorder/genetics
20.
Cereb Cortex ; 34(13): 161-171, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696595

Autism spectrum disorder (ASD) is a developmental disorder with a rising prevalence and unknown etiology presenting with deficits in cognition and abnormal behavior. We hypothesized that the investigation of the synaptic component of prefrontal cortex may provide proteomic signatures that may identify the biological underpinnings of cognitive deficits in childhood ASD. Subcellular fractions of synaptosomes from prefrontal cortices of age-, brain area-, and postmortem-interval-matched samples from children and adults with idiopathic ASD vs. controls were subjected to HPLC-tandem mass spectrometry. Analysis of data revealed the enrichment of ASD risk genes that participate in slow maturation of the postsynaptic density (PSD) structure and function during early brain development. Proteomic analysis revealed down regulation of PSD-related proteins including AMPA and NMDA receptors, GRM3, DLG4, olfactomedins, Shank1-3, Homer1, CaMK2α, NRXN1, NLGN2, Drebrin1, ARHGAP32, and Dock9 in children with autism (FDR-adjusted P < 0.05). In contrast, PSD-related alterations were less severe or unchanged in adult individuals with ASD. Network analyses revealed glutamate receptor abnormalities. Overall, the proteomic data support the concept that idiopathic autism is a synaptopathy involving PSD-related ASD risk genes. Interruption in evolutionarily conserved slow maturation of the PSD complex in prefrontal cortex may lead to the development of ASD in a susceptible individual.


Dorsolateral Prefrontal Cortex , Proteomics , Humans , Child , Male , Female , Adult , Dorsolateral Prefrontal Cortex/metabolism , Child, Preschool , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/genetics , Synapses/metabolism , Adolescent , Young Adult , Autistic Disorder/metabolism , Autistic Disorder/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Synaptosomes/metabolism , Prefrontal Cortex/metabolism , Post-Synaptic Density/metabolism
...