Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20.255
1.
Biomed Eng Online ; 23(1): 48, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760808

Monitoring of ingestive activities is critically important for managing the health and wellness of individuals with various health conditions, including the elderly, diabetics, and individuals seeking better weight control. Monitoring swallowing events can be an ideal surrogate for developing streamlined methods for effective monitoring and quantification of eating or drinking events. Swallowing is an essential process for maintaining life. This seemingly simple process is the result of coordinated actions of several muscles and nerves in a complex fashion. In this study, we introduce automated methods for the detection and quantification of various eating and drinking activities. Wireless surface electromyography (sEMG) was used to detect chewing and swallowing from sEMG signals obtained from the sternocleidomastoid muscle, in addition to signals obtained from a wrist-mounted IMU sensor. A total of 4675 swallows were collected from 55 participants in the study. Multiple methods were employed to estimate bolus volumes in the case of fluid intake, including regression and classification models. Among the tested models, neural networks-based regression achieved an R2 of 0.88 and a root mean squared error of 0.2 (minimum bolus volume was 10 ml). Convolutional neural networks-based classification (when considering each bolus volume as a separate class) achieved an accuracy of over 99% using random cross-validation and around 66% using cross-subject validation. Multiple classification methods were also used for solid bolus type detection, including SVM and decision trees (DT), which achieved an accuracy above 99% with random validation and above 94% in cross-subject validation. Finally, regression models with both random and cross-subject validation were used for estimating the solid bolus volume with an R2 value that approached 1 and root mean squared error values as low as 0.00037 (minimum solid bolus weight was 3 gm). These reported results lay the foundation for a cost-effective and non-invasive method for monitoring swallowing activities which can be extremely beneficial in managing various chronic health conditions, such as diabetes and obesity.


Deglutition , Electromyography , Humans , Deglutition/physiology , Male , Female , Automation , Signal Processing, Computer-Assisted , Adult , Neural Networks, Computer , Wireless Technology
2.
Ergonomics ; 67(6): 866-880, 2024 Jun.
Article En | MEDLINE | ID: mdl-38770836

By conducting a mixed-design experiment using simplified accident handling tasks performed by two-person teams, this study examined the effects of automation function and condition (before, during, and after malfunction) on human performance. Five different and non-overlapping functions related to human information processing model were considered and their malfunctions were set in a first-failure way. The results showed that while the automation malfunction impaired task performance, the performance degradation for information analysis was more severe than response planning. Contrary to other functions, the situation awareness for response planning and response implementation tended to increase during malfunctioning and decrease after. In addition, decreased task performance reduced trust in automation, and malfunctions in earlier stages of information processing resulted in lower trust. Suggestions provided for the design and training related to automation emphasise the importance of high-level cognitive support and the benefit of involving automation error handling in training.


The effects of automation function and malfunction on human performance are important for design and training. The experimental results in this study revealed the significance of high-level cognitive support. Also, introducing automation error handling in training can be helpful in improving situation awareness of the teams.


Automation , Task Performance and Analysis , Humans , Male , Female , Adult , Young Adult , Man-Machine Systems , Trust , Awareness
3.
J Exp Biol ; 227(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38690629

Identifying the kinematic and behavioral variables of prey that influence evasion from predator attacks remains challenging. To address this challenge, we have developed an automated escape system that responds quickly to an approaching predator and pulls the prey away from the predator rapidly, similar to real prey. Reaction distance, response latency, escape speed and other variables can be adjusted in the system. By repeatedly measuring the response latency and escape speed of the system, we demonstrated the system's ability to exhibit fast and rapid responses while maintaining consistency across successive trials. Using the live predatory fish species Coreoperca kawamebari, we show that escape speed and reaction distance significantly affect the outcome of predator-prey interactions. These findings indicate that the developed escape system is useful for identifying kinematic and behavioral features of prey that are critical for predator evasion, as well as for measuring the performance of predators.


Escape Reaction , Predatory Behavior , Animals , Escape Reaction/physiology , Biomechanical Phenomena , Automation , Reaction Time/physiology
4.
Med Eng Phys ; 127: 104162, 2024 May.
Article En | MEDLINE | ID: mdl-38692762

OBJECTIVE: Early detection of cardiovascular diseases is based on accurate quantification of the left ventricle (LV) function parameters. In this paper, we propose a fully automatic framework for LV volume and mass quantification from 2D-cine MR images already segmented using U-Net. METHODS: The general framework consists of three main steps: Data preparation including automatic LV localization using a convolution neural network (CNN) and application of morphological operations to exclude papillary muscles from the LV cavity. The second step consists in automatically extracting the LV contours using U-Net architecture. Finally, by integrating temporal information which is manifested by a spatial motion of myocytes as a third dimension, we calculated LV volume, LV ejection fraction (LVEF) and left ventricle mass (LVM). Based on these parameters, we detected and quantified cardiac contraction abnormalities using Python software. RESULTS: CNN was trained with 35 patients and tested on 15 patients from the ACDC database with an accuracy of 99,15 %. U-Net architecture was trained using ACDC database and evaluated using local dataset with a Dice similarity coefficient (DSC) of 99,78 % and a Hausdorff Distance (HD) of 4.468 mm (p < 0,001). Quantification results showed a strong correlation with physiological measures with a Pearson correlation coefficient (PCC) of 0,991 for LV volume, 0.962 for LVEF, 0.98 for stroke volume (SV) and 0.923 for LVM after pillars' elimination. Clinically, our method allows regional and accurate identification of pathological myocardial segments and can serve as a diagnostic aid tool of cardiac contraction abnormalities. CONCLUSION: Experimental results prove the usefulness of the proposed method for LV volume and function quantification and verify its potential clinical applicability.


Automation , Heart Ventricles , Image Processing, Computer-Assisted , Magnetic Resonance Imaging, Cine , Papillary Muscles , Humans , Heart Ventricles/diagnostic imaging , Magnetic Resonance Imaging, Cine/methods , Papillary Muscles/diagnostic imaging , Papillary Muscles/physiology , Image Processing, Computer-Assisted/methods , Organ Size , Male , Middle Aged , Neural Networks, Computer , Female , Stroke Volume
5.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230105, 2024 Jun 24.
Article En | MEDLINE | ID: mdl-38705192

Due to rapid technological innovations, the automated monitoring of insect assemblages comes within reach. However, this continuous innovation endangers the methodological continuity needed for calculating reliable biodiversity trends in the future. Maintaining methodological continuity over prolonged periods of time is not trivial, since technology improves, reference libraries grow and both the hard- and software used now may no longer be available in the future. Moreover, because data on many species are collected at the same time, there will be no simple way of calibrating the outputs of old and new devices. To ensure that reliable long-term biodiversity trends can be calculated using the collected data, I make four recommendations: (1) Construct devices to last for decades, and have a five-year overlap period when devices are replaced. (2) Construct new devices to resemble the old ones, especially when some kind of attractant (e.g. light) is used. Keep extremely detailed metadata on collection, detection and identification methods, including attractants, to enable this. (3) Store the raw data (sounds, images, DNA extracts, radar/lidar detections) for future reprocessing with updated classification systems. (4) Enable forward and backward compatibility of the processed data, for example by in-silico data 'degradation' to match the older data quality. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Biodiversity , Insecta , Animals , Automation/methods , Entomology/methods , Entomology/instrumentation , Entomology/trends , Insecta/physiology
6.
BMC Med Ethics ; 25(1): 51, 2024 May 05.
Article En | MEDLINE | ID: mdl-38706004

Data access committees (DAC) gatekeep access to secured genomic and related health datasets yet are challenged to keep pace with the rising volume and complexity of data generation. Automated decision support (ADS) systems have been shown to support consistency, compliance, and coordination of data access review decisions. However, we lack understanding of how DAC members perceive the value add of ADS, if any, on the quality and effectiveness of their reviews. In this qualitative study, we report findings from 13 semi-structured interviews with DAC members from around the world to identify relevant barriers and facilitators to implementing ADS for genomic data access management. Participants generally supported pilot studies that test ADS performance, for example in cataloging data types, verifying user credentials and tagging datasets for use terms. Concerns related to over-automation, lack of human oversight, low prioritization, and misalignment with institutional missions tempered enthusiasm for ADS among the DAC members we engaged. Tensions for change in institutional settings within which DACs operated was a powerful motivator for why DAC members considered the implementation of ADS into their access workflows, as well as perceptions of the relative advantage of ADS over the status quo. Future research is needed to build the evidence base around the comparative effectiveness and decisional outcomes of institutions that do/not use ADS into their workflows.


Genomics , Qualitative Research , Humans , Access to Information/ethics , Interviews as Topic , Automation , Decision Support Techniques
7.
Sci Rep ; 14(1): 10129, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698074

Artificial Intelligence (AI) systems are becoming widespread in all aspects of society, bringing benefits to the whole economy. There is a growing understanding of the potential benefits and risks of this type of technology. While the benefits are more efficient decision processes and industrial productivity, the risks may include a potential progressive disengagement of human beings in crucial aspects of decision-making. In this respect, a new perspective is emerging that aims at reconsidering the centrality of human beings while reaping the benefits of AI systems to augment rather than replace professional skills: Human-Centred AI (HCAI) is a novel framework that posits that high levels of human control do not contradict high levels of computer automation. In this paper, we investigate the two antipodes, automation vs augmentation, in the context of website usability evaluation. Specifically, we have analyzed whether the level of automation provided by a tool for semi-automatic usability evaluation can support evaluators in identifying usability problems. Three different visualizations, each one corresponding to a different level of automation, ranging from a full-automation approach to an augmentation approach, were compared in an experimental study. We found that a fully automated approach could help evaluators detect a significant number of medium and high-severity usability problems, which are the most critical in a software system; however, it also emerged that it was possible to detect more low-severity usability problems using one of the augmented approaches proposed in this paper.


Artificial Intelligence , Automation , Humans , Internet , User-Computer Interface , Software
8.
PLoS One ; 19(5): e0289109, 2024.
Article En | MEDLINE | ID: mdl-38753706

The microvasculature facilitates gas exchange, provides nutrients to cells, and regulates blood flow in response to stimuli. Vascular abnormalities are an indicator of pathology for various conditions, such as compromised vessel integrity in small vessel disease and angiogenesis in tumors. Traditional immunohistochemistry enables the visualization of tissue cross-sections containing exogenously labeled vasculature. Although this approach can be utilized to quantify vascular changes within small fields of view, it is not a practical way to study the vasculature on the scale of whole organs. Three-dimensional (3D) imaging presents a more appropriate method to visualize the vascular architecture in tissue. Here we describe the complete protocol that we use to characterize the vasculature of different organs in mice encompassing the methods to fluorescently label vessels, optically clear tissue, collect 3D vascular images, and quantify these vascular images with a semi-automated approach. To validate the automated segmentation of vascular images, one user manually segmented one hundred random regions of interest across different vascular images. The automated segmentation results had an average sensitivity of 83±11% and an average specificity of 91±6% when compared to manual segmentation. Applying this procedure of image analysis presents a method to reliably quantify and characterize vascular networks in a timely fashion. This procedure is also applicable to other methods of tissue clearing and vascular labels that generate 3D images of microvasculature.


Imaging, Three-Dimensional , Animals , Imaging, Three-Dimensional/methods , Mice , Microvessels/diagnostic imaging , Automation
9.
Anal Chim Acta ; 1308: 342575, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38740448

BACKGROUND: Alzheimer's disease (AD) is a prevalent neurodegenerative disease with no effective treatment. Efficient and rapid detection plays a crucial role in mitigating and managing AD progression. Deep learning-assisted smartphone-based microfluidic paper analysis devices (µPADs) offer the advantages of low cost, good sensitivity, and rapid detection, providing a strategic pathway to address large-scale disease screening in resource-limited areas. However, existing smartphone-based detection platforms usually rely on large devices or cloud servers for data transfer and processing. Additionally, the implementation of automated colorimetric enzyme-linked immunoassay (c-ELISA) on µPADs can further facilitate the realization of smartphone µPADs platforms for efficient disease detection. RESULTS: This paper introduces a new deep learning-assisted offline smartphone platform for early AD screening, offering rapid disease detection in low-resource areas. The proposed platform features a simple mechanical rotating structure controlled by a smartphone, enabling fully automated c-ELISA on µPADs. Our platform successfully applied sandwich c-ELISA for detecting the ß-amyloid peptide 1-42 (Aß 1-42, a crucial AD biomarker) and demonstrated its efficacy in 38 artificial plasma samples (healthy: 19, unhealthy: 19, N = 6). Moreover, we employed the YOLOv5 deep learning model and achieved an impressive 97 % accuracy on a dataset of 1824 images, which is 10.16 % higher than the traditional method of curve-fitting results. The trained YOLOv5 model was seamlessly integrated into the smartphone using the NCNN (Tencent's Neural Network Inference Framework), enabling deep learning-assisted offline detection. A user-friendly smartphone application was developed to control the entire process, realizing a streamlined "samples in, answers out" approach. SIGNIFICANCE: This deep learning-assisted, low-cost, user-friendly, highly stable, and rapid-response automated offline smartphone-based detection platform represents a good advancement in point-of-care testing (POCT). Moreover, our platform provides a feasible approach for efficient AD detection by examining the level of Aß 1-42, particularly in areas with low resources and limited communication infrastructure.


Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Enzyme-Linked Immunosorbent Assay , Paper , Smartphone , Alzheimer Disease/diagnosis , Alzheimer Disease/blood , Humans , Biomarkers/blood , Biomarkers/analysis , Amyloid beta-Peptides/analysis , Amyloid beta-Peptides/blood , Peptide Fragments/blood , Peptide Fragments/analysis , Lab-On-A-Chip Devices , Deep Learning , Automation , Microfluidic Analytical Techniques/instrumentation
10.
PLoS One ; 19(5): e0301643, 2024.
Article En | MEDLINE | ID: mdl-38696424

BACKGROUND: Delayed response to clinical deterioration of hospital inpatients is common. Deployment of an electronic automated advisory vital signs monitoring and notification system to signal clinical deterioration is associated with significant improvements in clinical outcomes but there is no evidence on the cost-effectiveness compared with routine monitoring, in the National Health Service (NHS) in the United Kingdom (UK). METHODS: A decision analytic model was developed to estimate the cost-effectiveness of an electronic automated advisory notification system versus standard care, in adults admitted to a district general hospital. Analyses considered: (1) the cost-effectiveness of the technology based on secondary analysis of patient level data of 3787 inpatients in a before-and-after study; and (2) the cost-utility (cost per quality-adjusted life-year (QALY)) over a lifetime horizon, extrapolated using published data. Analysis was conducted from the perspective of the NHS. Uncertainty in the model was assessed using a range of sensitivity analyses. RESULTS: The study population had a mean age of 68 years, 48% male, with a median inpatient stay of 6 days. Expected life expectancy at discharge was assumed to be 17.74 years. (1) Cost-effectiveness analysis: The automated notification system was more effective (-0.027 reduction in mean events per patient) and provided a cost saving of -£12.17 (-182.07 to 154.80) per patient admission. (2) Cost-utility analysis: Over a lifetime horizon the automated notification system was dominant, demonstrating a positive incremental QALY gain (0.0287 QALYs, equivalent to ~10 days of perfect health) and a cost saving of £55.35. At a threshold of £20,000 per QALY, the probability of automated monitoring being cost-effective in the NHS was 81%. Increased use of cableless sensors may reduce cost-savings, however, the intervention remains cost-effective at 100% usage (ICER: £3,107/QALY). Stratified cost-effectiveness analysis by age, National Early Warning Score (NEWS) on admission, and primary diagnosis indicated the automated notification system was cost-effective for most strategies and that use representative of the patient population studied was the most cost-saving strategy. CONCLUSION: Automated notification system for adult patients admitted to general wards appears to be a cost-effective use in the NHS; adopting this technology could be good use of scarce resources with significance for patient safety.


Cost-Benefit Analysis , Quality-Adjusted Life Years , Humans , Male , Aged , Female , United Kingdom , Middle Aged , Clinical Deterioration , Aged, 80 and over , Adult , Automation/economics
11.
Anal Chem ; 96(19): 7643-7650, 2024 May 14.
Article En | MEDLINE | ID: mdl-38708712

Chemiluminescence (CL), especially commercialized CL immunoassay (CLIA), is normally performed within the eye-visible region of the spectrum by exploiting the electronic-transition-related emission of the molecule luminophore. Herein, dual-stabilizers-capped CdTe nanocrystals (NCs) is employed as a model of nanoparticulated luminophore to finely tune the CL color with superior color purity. Initialized by oxidizing the CdTe NCs with potassium periodate (KIO4), intermediates of the reactive oxygen species (ROS) tend to charge CdTe NCs in both series-connection and parallel-connection routes and dominate the charge-transfer CL of CdTe NCs. The CdTe NCs/KIO4 system can exhibit color-tunable CL with the maximum emission wavelength shifted from 694 nm to 801 nm, and the red-shift span is over 100 nm. Both PL and CL of each of the CdTe NCs are bandgap-engineered; the change in the NCs surface state via CL reaction enables CL of each of the CdTe NCs to be red-shifted for ∼20 nm to PL, while the change in the NCs surface state via labeling CdTe NCs to secondary-antibody (Ab2) enables CL of the CdTe NCs-Ab2 conjugates to be red-shifted for another ∼20 nm to bare CdTe NCs. The CL of CdTe753-Ab2/KIO4 is ∼791 nm, which can perform near-infrared CL immunoassay and semi-automatically determined procalcitonin (PCT) on commercialized in vitro diagnosis (IVD) instruments.


Cadmium Compounds , Luminescent Measurements , Nanoparticles , Tellurium , Tellurium/chemistry , Immunoassay/methods , Cadmium Compounds/chemistry , Nanoparticles/chemistry , Color , Luminescence , Automation , Humans
12.
Sensors (Basel) ; 24(7)2024 Apr 08.
Article En | MEDLINE | ID: mdl-38610583

Due to the global population increase and the recovery of agricultural demand after the COVID-19 pandemic, the importance of agricultural automation and autonomous agricultural vehicles is growing. Fallen person detection is critical to preventing fatal accidents during autonomous agricultural vehicle operations. However, there is a challenge due to the relatively limited dataset for fallen persons in off-road environments compared to on-road pedestrian datasets. To enhance the generalization performance of fallen person detection off-road using object detection technology, data augmentation is necessary. This paper proposes a data augmentation technique called Automated Region of Interest Copy-Paste (ARCP) to address the issue of data scarcity. The technique involves copying real fallen person objects obtained from public source datasets and then pasting the objects onto a background off-road dataset. Segmentation annotations for these objects are generated using YOLOv8x-seg and Grounded-Segment-Anything, respectively. The proposed algorithm is then applied to automatically produce augmented data based on the generated segmentation annotations. The technique encompasses segmentation annotation generation, Intersection over Union-based segment setting, and Region of Interest configuration. When the ARCP technique is applied, significant improvements in detection accuracy are observed for two state-of-the-art object detectors: anchor-based YOLOv7x and anchor-free YOLOv8x, showing an increase of 17.8% (from 77.8% to 95.6%) and 12.4% (from 83.8% to 96.2%), respectively. This suggests high applicability for addressing the challenges of limited datasets in off-road environments and is expected to have a significant impact on the advancement of object detection technology in the agricultural industry.


Agriculture , Pandemics , Humans , Technology , Algorithms , Automation
13.
Radiographics ; 44(5): e230067, 2024 May.
Article En | MEDLINE | ID: mdl-38635456

Artificial intelligence (AI) algorithms are prone to bias at multiple stages of model development, with potential for exacerbating health disparities. However, bias in imaging AI is a complex topic that encompasses multiple coexisting definitions. Bias may refer to unequal preference to a person or group owing to preexisting attitudes or beliefs, either intentional or unintentional. However, cognitive bias refers to systematic deviation from objective judgment due to reliance on heuristics, and statistical bias refers to differences between true and expected values, commonly manifesting as systematic error in model prediction (ie, a model with output unrepresentative of real-world conditions). Clinical decisions informed by biased models may lead to patient harm due to action on inaccurate AI results or exacerbate health inequities due to differing performance among patient populations. However, while inequitable bias can harm patients in this context, a mindful approach leveraging equitable bias can address underrepresentation of minority groups or rare diseases. Radiologists should also be aware of bias after AI deployment such as automation bias, or a tendency to agree with automated decisions despite contrary evidence. Understanding common sources of imaging AI bias and the consequences of using biased models can guide preventive measures to mitigate its impact. Accordingly, the authors focus on sources of bias at stages along the imaging machine learning life cycle, attempting to simplify potentially intimidating technical terminology for general radiologists using AI tools in practice or collaborating with data scientists and engineers for AI tool development. The authors review definitions of bias in AI, describe common sources of bias, and present recommendations to guide quality control measures to mitigate the impact of bias in imaging AI. Understanding the terms featured in this article will enable a proactive approach to identifying and mitigating bias in imaging AI. Published under a CC BY 4.0 license. Test Your Knowledge questions for this article are available in the supplemental material. See the invited commentary by Rouzrokh and Erickson in this issue.


Algorithms , Artificial Intelligence , Humans , Automation , Machine Learning , Bias
14.
Anal Chem ; 96(16): 6282-6291, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38595038

Respiratory tract infections (RTIs) pose a grave threat to human health, with bacterial pathogens being the primary culprits behind severe illness and mortality. In response to the pressing issue, we developed a centrifugal microfluidic chip integrated with a recombinase-aided amplification (RAA)-clustered regularly interspaced short palindromic repeats (CRISPR) system to achieve rapid detection of respiratory pathogens. The limitations of conventional two-step CRISPR-mediated systems were effectively addressed by employing the all-in-one RAA-CRISPR detection method, thereby enhancing the accuracy and sensitivity of bacterial detection. Moreover, the integration of a centrifugal microfluidic chip led to reduced sample consumption and significantly improved the detection throughput, enabling the simultaneous detection of multiple respiratory pathogens. Furthermore, the incorporation of Chelex-100 in the sample pretreatment enabled a sample-to-answer capability. This pivotal addition facilitated the deployment of the system in real clinical sample testing, enabling the accurate detection of 12 common respiratory bacteria within a set of 60 clinical samples. The system offers rapid and reliable results that are crucial for clinical diagnosis, enabling healthcare professionals to administer timely and accurate treatment interventions to patients.


Respiratory Tract Infections , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/microbiology , Humans , Microfluidic Analytical Techniques/instrumentation , Lab-On-A-Chip Devices , Nucleic Acid Amplification Techniques , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Bacteria/isolation & purification , Bacteria/genetics , Recombinases/metabolism , Automation , Bacterial Infections/diagnosis
15.
Stud Health Technol Inform ; 313: 179-185, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38682527

Systematic reviews provide robust evidence but require significant human labor, a challenge that can be mitigated with digital tools. This paper focuses on machine learning (ML) support for the title and abstract screening phase, the most time-intensive aspect of the systematic review process. The existing literature was systematically reviewed and five promising tools were analyzed, focusing on their ability to reduce human workload and their application of ML. This paper details the current state of automation capabilities and highlights significant research findings that point towards further improvements in the field. Directions for future research in this evolving field are outlined, with an emphasis on the need for a cautious application of existing systems.


Machine Learning , Systematic Reviews as Topic , Humans , Automation
16.
Cogn Res Princ Implic ; 9(1): 20, 2024 04 08.
Article En | MEDLINE | ID: mdl-38589710

In service of the goal of examining how cognitive science can facilitate human-computer interactions in complex systems, we explore how cognitive psychology research might help educators better utilize artificial intelligence and AI supported tools as facilitatory to learning, rather than see these emerging technologies as a threat. We also aim to provide historical perspective, both on how automation and technology has generated unnecessary apprehension over time, and how generative AI technologies such as ChatGPT are a product of the discipline of cognitive science. We introduce a model for how higher education instruction can adapt to the age of AI by fully capitalizing on the role that metacognition knowledge and skills play in determining learning effectiveness. Finally, we urge educators to consider how AI can be seen as a critical collaborator to be utilized in our efforts to educate around the critical workforce skills of effective communication and collaboration.


Artificial Intelligence , Cognitive Psychology , Humans , Automation , Cognitive Science , Learning
17.
Cogn Res Princ Implic ; 9(1): 21, 2024 04 10.
Article En | MEDLINE | ID: mdl-38598036

The use of partially-automated systems require drivers to supervise the system functioning and resume manual control whenever necessary. Yet literature on vehicle automation show that drivers may spend more time looking away from the road when the partially-automated system is operational. In this study we answer the question of whether this pattern is a manifestation of inattentional blindness or, more dangerously, it is also accompanied by a greater attentional processing of the driving scene. Participants drove a simulated vehicle in manual or partially-automated mode. Fixations were recorded by means of a head-mounted eye-tracker. A surprise two-alternative forced-choice recognition task was administered at the end of the data collection whereby participants were quizzed on the presence of roadside billboards that they encountered during the two drives. Data showed that participants were more likely to fixate and recognize billboards when the automated system was operational. Furthermore, whereas fixations toward billboards decreased toward the end of the automated drive, the performance in the recognition task did not suffer. Based on these findings, we hypothesize that the use of the partially-automated driving system may result in an increase in attention allocation toward peripheral objects in the road scene which is detrimental to the drivers' ability to supervise the automated system and resume manual control of the vehicle.


Blindness , Mental Disorders , Humans , Automation , Data Collection , Recognition, Psychology
18.
ACS Nano ; 18(19): 12105-12116, 2024 May 14.
Article En | MEDLINE | ID: mdl-38669469

Early detection of cancer is critical to improving clinical outcomes, especially in territories with limited healthcare resources. DNA methylation biomarkers have shown promise in early cancer detection, but typical workflows require highly trained personnel and specialized equipment for manual and lengthy processing, limiting use in resource-constrained areas. As a potential solution, we introduce the Automated Cartridge-based Cancer Early Screening System (ACCESS), a compact, portable, multiplexed, automated platform that performs droplet magnetofluidic- and methylation-specific qPCR-based assays for the detection of DNA methylation cancer biomarkers. Development of ACCESS focuses on esophageal cancer, which is among the most prevalent cancers in low- and middle-income countries with extremely low survival rates. Upon implementing detection assays for two esophageal cancer methylation biomarkers within ACCESS, we demonstrated successful detection of both biomarkers from esophageal tumor tissue samples from eight esophageal cancer patients while showing specificity in paired normal esophageal tissue samples. These results illustrate ACCESS's potential as an amenable epigenetic diagnostic tool for resource-constrained areas toward early detection of esophageal cancer and potentially other malignancies.


Biomarkers, Tumor , DNA Methylation , Esophageal Neoplasms , Humans , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/genetics , Early Detection of Cancer/instrumentation , Automation , Microfluidic Analytical Techniques/instrumentation
19.
Nat Commun ; 15(1): 3447, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658554

Achieving cost-competitive bio-based processes requires development of stable and selective biocatalysts. Their realization through in vitro enzyme characterization and engineering is mostly low throughput and labor-intensive. Therefore, strategies for increasing throughput while diminishing manual labor are gaining momentum, such as in vivo screening and evolution campaigns. Computational tools like machine learning further support enzyme engineering efforts by widening the explorable design space. Here, we propose an integrated solution to enzyme engineering challenges whereby ML-guided, automated workflows (including library generation, implementation of hypermutation systems, adapted laboratory evolution, and in vivo growth-coupled selection) could be realized to accelerate pipelines towards superior biocatalysts.


Biocatalysis , Protein Engineering , Protein Engineering/methods , Enzymes/metabolism , Enzymes/genetics , Enzymes/chemistry , Machine Learning , Directed Molecular Evolution/methods , Automation , Gene Library
20.
Water Res ; 256: 121527, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38685173

For real-time control to become a standard measure for upgrading urban drainage systems, control potential screenings need to be easily integrated into the early planning processes that already take place. However, current screening methods are either not aligned with the present planning process, unrelatable for water managers or too time-consuming. We therefore developed an automated screening methodology through a co-design process with six Danish utilities. The process started out from a literature review, included interviews and workshops, and resulted in the control potential screening tool COPOTO. In the co-design process, utilities generally responded that indicators based solely on an assessment of static system attributes are insufficient. Thus, COPOTO instead post-processes the results of urban drainage simulation models that are commonly available. The decision context considered in initial planning phases was found to include environmental, economic, social and technical objectives that were highly case-dependent. When presenting CSO reduction potentials, the utilities therefore generally preferred interactive, spatially explicit visualisations that link the CSO reduction at a particular location to the storages and actuators that need to be activated. This enables water managers to discuss, for example, operational constraints of a considered control location. COPOTO provides such assessments with very limited manual and computational effort and thus facilitates the integration of real-time control into standard planning workflows of utilities.


Sewage , Automation , Denmark , Models, Theoretical , Waste Disposal, Fluid/methods , Drainage, Sanitary
...