Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Biochem ; 479(3): 553-566, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37120495

RESUMEN

Long non-coding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) has been shown to be a regulator for many cancers, including non-small cell lung cancer (NSCLC). Therefore, its role and mechanism in the process of NSCLC deserve to be further revealed. The expression levels of GAS5, fat mass and obesity-associated protein (FTO) and bromodomain-containing protein 4 (BRD4) were detected by quantitative real-time PCR. Western blot analysis was used to examine the protein expression of FTO, BRD4, up-frameshift protein 1 (UPF1) and autophagy-related markers. Methylated RNA immunoprecipitation was used to assess the m6A level of GAS5 regulated by FTO. Cell proliferation and apoptosis were determined using MTT assay, EdU assay and flow cytometry. Autophagy ability was assessed by immunofluorescence staining and transmission electron microscope. Xenograft tumor model was constructed to explore the effects of FTO and GAS5 on NSCLC tumor growth in vivo. The interaction between UPF1 and GAS5 or BRD4 was confirmed by pull-down assay, RIP assay, dual-luciferase reporter assay, and chromatin immunoprecipitation. Fluorescent in situ hybridization was used to analyze the co-localization of GAS5 and UPF1. Actinomycin D treatment was employed to evaluate BRD4 mRNA stability. GAS5 was downregulated in NSCLC tissues and was associated with poor prognosis in NSCLC patients. FTO was highly expressed in NSCLC, and it inhibited GAS5 expression by reducing GAS5 m6A methylation level. GAS5 suppressed by FTO could promote the autophagic death of NSCLC cells in vitro and inhibit NSCLC tumor growth in vivo. In addition, GAS5 was able to interact with UPF1 to reduce the mRNA stability of BRD4. Knockdown of BRD4 reversed the inhibition of GAS5 or UPF1 silencing on the autophagic cell death of NSCLC. The findings of the study showed that lncRNA GAS5 mediated by FTO could contribute to the autophagic cell death of NSCLC by interacting with UPF1 to reduce BRD4 mRNA stability, suggesting that GAS5 might be a vital therapy target for NSCLC progression.


Asunto(s)
Muerte Celular Autofágica , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Animales , Humanos , Adenina/análogos & derivados , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Muerte Celular Autofágica/genética , Proteínas que Contienen Bromodominio/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteínas de Ciclo Celular , Proliferación Celular/genética , Desmetilación , Modelos Animales de Enfermedad , Hibridación Fluorescente in Situ , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MicroARNs/genética , Proteínas Nucleares/metabolismo , ARN Helicasas/metabolismo , ARN Largo no Codificante/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
J Reprod Immunol ; 153: 103681, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35964538

RESUMEN

BACKGROUND: Hypercholesterolemia is defined as a high risk factor for causing female infertility by changing the cholesterol level in granulosa cells to impair the microenvironment of oocyte development and maturation. High blood levels of oxidized low-density lipoprotein (ox-LDL) undergoes an increase of autophagic granulosa cell death. Unfortunately, this underlying molecular mechanism remains largely elusive. We aim to uncover the role of circ-ubiquitin specific peptidase 36 (USP36) in autophagic granulosa cell death. METHODS: Exposure of ox-LDL on the ovarian granulosa cell-like human granulosa (KGN) cells line was established for simulating the situation of hypercholesterolemia in vitro. Levels of circUSP36 and ULK1 were detected using real-time polymerase chain reaction (RT-PCR). Cell viability and apoptosis were assessed using (4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, respectively. Immunofluorescence staining of LC3 was performed to evaluate activity of autophagy. Western blot was employed to determine expression of apoptosis and autophagy-associated markers. RNA immunoprecipitation (RIP) and RNA pull-down assays were subjected to verify the circUSP36-PTBP1-NEDD4L regulatory axis. RESULTS: Treatment of ox-LDL induced aberrantly up-regulated circUSP36. Knockdown of circUSP36 alleviated cell apoptosis and excessive autophagy of granulosa cells triggered by ox-LDL. Mechanistically, reinforced expression of circUSP36 guided and facilitated PTBP1 binding to the coding region (CDS) of NEDD4L, resulting in NEDD4L mRNA decay. ULK1 was regulated by the circUSP36-PTBP1-NEDD4L axis in granulosa cells, thereby contributing to autophagic granulosa cell death. CONCLUSIONS: In summary, ox-LDL fostered autophagic granulosa cell death through circUSP36-mediated NEDD4L mRNA decay, thus elevating ULK1 expression.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia , Células de la Granulosa , Ribonucleoproteínas Nucleares Heterogéneas , Ubiquitina-Proteína Ligasas Nedd4 , Ubiquitina Tiolesterasa , Apoptosis/fisiología , Muerte Celular Autofágica/genética , Muerte Celular Autofágica/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Bromuros/metabolismo , Proliferación Celular , Células Cultivadas , Colesterol , ADN Nucleotidilexotransferasa/metabolismo , Femenino , Células de la Granulosa/metabolismo , Células de la Granulosa/fisiología , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hipercolesterolemia/complicaciones , Hipercolesterolemia/metabolismo , Hipercolesterolemia/fisiopatología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipoproteínas LDL/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/genética , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
3.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34830394

RESUMEN

Signet ring cell gastric carcinoma (SRCGC) is a lethal malignancy that has developed drug resistance to cisplatin therapies. The aim of this study was to characterize the acquisition of the cisplatin-resistance SRCGC cell line (KATO/DDP cells) and to understand the molecular mechanisms underlying cisplatin resistance. Transcriptomic and bioinformatic analyses were used to identify the candidate gene. This was confirmed by qPCR and Western blot. Aldoketoreductase1C1 and 1C3 (AKR1C1 and AKR1C3) were the most promising molecules in KATO/DDP cells. A specific inhibitor of AKR1C1 (5PBSA) and AKR1C3 (ASP9521) was used to enhance cisplatin-induced KATO/DPP cell death. Although cisplatin alone induced KATO/DDP apoptosis, a combination treatment of cisplatin and the AKR1C inhibitors had no influence on percent cell apoptosis. In conjunction with the autophagy inhibitor, 3MA, attenuated the effects of 5PBSA or ASP9521 to enhance cisplatin-induced cell death. These results indicated that AKR1C1 and 1C3 regulated cisplatin-induced KATO/DDP cell death via autophagy. Moreover, cisplatin in combination with AKR1C inhibitors and N-acetyl cysteine increased KATO/DDP cells' viability when compared with a combination treatment of cisplatin and the inhibitors. Taken together, our results suggested that AKR1C1 and 1C3 play a crucial role in cisplatin resistance of SRCGC by regulating redox-dependent autophagy.


Asunto(s)
20-Hidroxiesteroide Deshidrogenasas/genética , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/genética , Carcinoma de Células en Anillo de Sello/tratamiento farmacológico , Neoplasias Gástricas/tratamiento farmacológico , Muerte Celular Autofágica/efectos de los fármacos , Muerte Celular Autofágica/genética , Carcinoma de Células en Anillo de Sello/genética , Carcinoma de Células en Anillo de Sello/patología , Línea Celular Tumoral , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Transcriptoma/efectos de los fármacos
4.
Sci Rep ; 11(1): 8274, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33859278

RESUMEN

Ciliated protozoans form dormant cysts for survival under adverse conditions. The molecular mechanisms regulating this process are critical for understanding how single-celled eukaryotes adapt to the environment. Despite the accumulated data on morphology and gene coding sequences, the molecular mechanism by which lncRNAs regulate ciliate encystment remains unknown. Here, we first detected and analyzed the lncRNA expression profile and coexpressed mRNAs in dormant cysts versus vegetative cells in the hypotrich ciliate Pseudourostyla cristata by high-throughput sequencing and qRT-PCR. A total of 853 differentially expressed lncRNAs were identified. Compared to vegetative cells, 439 and 414 lncRNAs were upregulated and downregulated, respectively, while 47 lncRNAs were specifically expressed in dormant cysts. A lncRNA-mRNA coexpression network was constructed, and the possible roles of lncRNAs were screened. Three of the identified lncRNAs, DN12058, DN20924 and DN30855, were found to play roles in fostering encystment via their coexpressed mRNAs. These lncRNAs can regulate a variety of physiological activities that are essential for encystment, including autophagy, protein degradation, the intracellular calcium concentration, microtubule-associated dynein and microtubule interactions, and cell proliferation inhibition. These findings provide the first insight into the potentially functional lncRNAs and their coexpressed mRNAs involved in the dormancy of ciliated protozoa and contribute new evidence for understanding the molecular mechanisms regulating encystment.


Asunto(s)
Cilióforos/genética , Cilióforos/fisiología , Perfilación de la Expresión Génica , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Protozoario/genética , ARN Protozoario/metabolismo , Transcriptoma/genética , Transcriptoma/fisiología , Muerte Celular Autofágica/genética , Calcio/metabolismo , Proliferación Celular/genética , Dineínas , Proteínas Asociadas a Microtúbulos , Proteolisis , Proteínas Protozoarias/metabolismo
5.
Science ; 371(6528)2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33303683

RESUMEN

Treatments are lacking for sarcopenia, a debilitating age-related skeletal muscle wasting syndrome. We identifed increased amounts of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), the prostaglandin E2 (PGE2)-degrading enzyme, as a hallmark of aged tissues, including skeletal muscle. The consequent reduction in PGE2 signaling contributed to muscle atrophy in aged mice and results from 15-PGDH-expressing myofibers and interstitial cells, such as macrophages, within muscle. Overexpression of 15-PGDH in young muscles induced atrophy. Inhibition of 15-PGDH, by targeted genetic depletion or a small-molecule inhibitor, increased aged muscle mass, strength, and exercise performance. These benefits arise from a physiological increase in PGE2 concentrations, which augmented mitochondrial function and autophagy and decreased transforming growth factor-ß signaling and activity of ubiquitin-proteasome pathways. Thus, PGE2 signaling ameliorates muscle atrophy and rejuvenates muscle function, and 15-PGDH may be a suitable therapeutic target for countering sarcopenia.


Asunto(s)
Envejecimiento/metabolismo , Dinoprostona/metabolismo , Hidroxiprostaglandina Deshidrogenasas/fisiología , Músculo Esquelético/patología , Rejuvenecimiento , Sarcopenia/enzimología , Animales , Muerte Celular Autofágica/genética , Muerte Celular Autofágica/fisiología , Hidroxiprostaglandina Deshidrogenasas/antagonistas & inhibidores , Hidroxiprostaglandina Deshidrogenasas/genética , Macrófagos/enzimología , Ratones , Ratones Endogámicos C57BL , Mitocondrias Musculares/ultraestructura , Fuerza Muscular/genética , Fuerza Muscular/fisiología , Músculo Esquelético/enzimología , Miofibrillas/enzimología , Sarcopenia/genética
6.
Mol Med Rep ; 22(1): 257-264, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32468046

RESUMEN

The incidence of peri-implant bone loss is high, and is a difficult condition to treat. Previous studies have shown that titanium (Ti) ions released from implants can lead to osteoblast cell damage, but the specific mechanisms have not been elucidated. The present study established a Ti ion damage osteoblast cell model. The levels of mitochondrion­derived reactive oxygen species (mROS) and autophagy, cell viability and the sirtuin 3 (SIRT3)/superoxide dismutase 2 (SOD2) pathway were examined in this model. It was found that Ti ions decreased osteoblast viability. Moreover, with increased Ti ion concentration, the expression levels of microtubule associated protein 1 light chain 3α (LC3) progressively increased, P62 decreased, autophagic flow increased and mROS levels increased. After the addition of an autophagy inhibitor Bafilomycin A1 and Mito­TEMPO, a mitochondrial antioxidant, the production of mROS was inhibited, the level of autophagy was decreased and cell activity was improved. In addition, with increased Ti ion concentration, the activity of SOD2 decreased, the acetylation level of SOD2 increased, the SIRT3 mRNA and protein expression levels decreased, and the activity of SIRT3 was significantly decreased. Furthermore, it was demonstrated that SIRT3 overexpression reduced the acetylation of SOD2 and increased the activity of SOD2, as well as reducing the production of mROS and the expression level of LC3, thus increasing cell viability. Therefore, the present results suggested that excessive production of mROS induced by Ti ions led to autophagic cell death of osteoblasts, which is dependent on the SIRT3/SOD2 pathway.


Asunto(s)
Muerte Celular Autofágica/genética , Mitocondrias/metabolismo , Osteoblastos/metabolismo , Sirtuina 3/metabolismo , Superóxido Dismutasa/metabolismo , Titanio/toxicidad , Acetilación , Antioxidantes/farmacología , Muerte Celular Autofágica/efectos de los fármacos , Autofagia/efectos de los fármacos , Autofagia/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Humanos , Iones/metabolismo , Iones/toxicidad , Macrólidos/farmacología , Proteínas Asociadas a Microtúbulos/metabolismo , Compuestos Organofosforados/farmacología , Osteoblastos/efectos de los fármacos , Osteoblastos/enzimología , Piperidinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Sirtuina 3/genética , Regulación hacia Arriba
7.
Biochim Biophys Acta Mol Cell Res ; 1867(7): 118692, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32135176

RESUMEN

Prostate apoptosis response-4 (Par-4) is a tumor suppressor protein that selectively induces apoptosis in cancer cells. Although the mechanism of Par-4-mediated induction of apoptosis has been well studied, the involvement of Par-4 in other mechanisms of cell death such as autophagy is unclear. We investigated the mechanism involved in Par-4-mediated autophagic cell death in human malignant glioma. We demonstrate for the first time that the tumor suppressor lipid, ceramide (Cer), causes Par-4 induction, leading to autophagic cell death in human malignant glioma. Furthermore, we identified the tumor suppressor protein p53 and BCL2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3) as downstream targets of Par-4 during Cer-mediated autophagic cell death. RNAi-mediated down-regulation of Par-4 blocks Cer-induced p53-BNIP3 activation and autophagic cell death, while upregulation of Par-4 augmented p53-BNIP3 activation and autophagic cell death. Remarkably, in many instances, Par-4 overexpression alone was sufficient to induce cell death which is associated with features of autophagy. Interestingly, similar results were seen when glioma cells were exposed to classical autophagy inducers such as serum starvation, arsenic trioxide, and curcumin. Collectively, the novel Par-4-p53-BNIP3 axis plays a crucial role in autophagy-mediated cell death in human malignant glioma.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Glioma/genética , Proteínas de la Membrana/genética , Proteínas Proto-Oncogénicas/genética , Proteína p53 Supresora de Tumor/genética , Apoptosis/efectos de los fármacos , Trióxido de Arsénico/farmacología , Muerte Celular Autofágica/efectos de los fármacos , Muerte Celular Autofágica/genética , Línea Celular Tumoral , Curcumina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/patología , Humanos , Activación Transcripcional/efectos de los fármacos
8.
PLoS One ; 15(3): e0222072, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32210435

RESUMEN

NR4A is a nuclear receptor protein family whose members act as sensors of cellular environment and regulate multiple processes such as metabolism, proliferation, migration, apoptosis, and autophagy. Since the ligand binding domains of these receptors have no cavity for ligand interaction, their function is most likely regulated by protein abundance and post-translational modifications. In particular, NR4A1 is regulated by protein abundance, phosphorylation, and subcellular distribution (nuclear-cytoplasmic translocation), and acts both as a transcription factor and as a regulator of other interacting proteins. SUMOylation is a post-translational modification that can affect protein stability, transcriptional activity, alter protein-protein interactions and modify intracellular localization of target proteins. In the present study we evaluated the role of SUMOylation as a posttranslational modification that can regulate the activity of NR4A1 to induce autophagy-dependent cell death. We focused on a model potentially relevant for neuronal cell death and demonstrated that NR4A1 needs to be SUMOylated to induce autophagic cell death. We observed that a triple mutant in SUMOylation sites has reduced SUMOylation, increased transcriptional activity, altered intracellular distribution, and more importantly, its ability to induce autophagic cell death is impaired.


Asunto(s)
Muerte Celular Autofágica/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Células HEK293 , Humanos , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Fosforilación/genética , Estabilidad Proteica , Receptores de Neuroquinina-1/genética , Receptores de Neuroquinina-1/metabolismo , Sustancia P/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/genética , Transfección
9.
J Alzheimers Dis ; 72(4): 1279-1286, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31707369

RESUMEN

There is currently no knowledge about the expression profile of the autophagy (BECN1), mitophagy (BNIP3), and apoptosis (CASP3) genes in the CA3 region of the hippocampus after cerebral ischemia. In addition, it is unknown whether genes for BECN1, BNIP3, and CASP3 have any effect on the neuronal death in the CA3 area of the hippocampus due to ischemia. In this study, for the first time, we present, by means of a quantitative PCR protocol with reverse transcriptase, the expression of BECN1 and CASP3 genes in the neuronal CA3 region of the hippocampus with the co-expression of the mitochondrial BNIP3 gene, which genes are associated with Alzheimer's disease, in the ischemic model of Alzheimer's disease in the rat. The present study showed that after ischemia, the CASP3 gene was significantly expressed within 7-30 days, the BECN1 gene was significantly overexpressed on the thirtieth day, and the BINP3 gene was lowered below control values during post-ischemic follow-up period. The caspase-dependent neuronal death in the CA3 region of the hippocampus after ischemia is not accompanied by overexpression of the BNIP3 gene. Our data may therefore suggest a new insight into the BNIP3 gene in the regulation of neuronal mitophagy in neurodegeneration in the CA3 region of the hippocampus after ischemia. This indicates no involvement of the BNIP3 gene along with the CASP3 gene in the CA3 region of the hippocampus in delayed neuronal death after brain ischemia.


Asunto(s)
Enfermedad de Alzheimer/genética , Beclina-1/genética , Isquemia Encefálica/genética , Región CA3 Hipocampal/metabolismo , Caspasa 3/genética , Regulación de la Expresión Génica , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Apoptosis/genética , Muerte Celular Autofágica/genética , Beclina-1/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Región CA3 Hipocampal/patología , Caspasa 3/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia/genética , Neuronas/metabolismo , Neuronas/patología , Ratas , Ratas Wistar
10.
Oxid Med Cell Longev ; 2019: 1038932, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781319

RESUMEN

Chronic exposure to arsenic induces a variety of cancers, particularly in the skin. Autophagy is a highly conserved process which plays a dual role in tumorigenesis. In the present study, we found that chronic exposure to an environmentally relevant dose of arsenite induced malignant transformation of human keratinocytes (HaCaT) with dysregulated autophagy as indicated by an increased number of autophagosomes, activation of mTORC1 pathway, and elevated protein levels of p62 and LC3II. Meanwhile, arsenite-transformed cells showed lower intracellular levels of reactive oxygen species compared with control. Silencing p62 ameliorated elevation in mRNA levels of NRF2 downstream genes (AKR1C1 and NQO1) and malignant phenotypes (acquired invasiveness and anchor-independent growth) induced by chronic arsenite exposure. On the other hand, silencing NRF2 abrogated the increase in mRNA and protein levels of p62 and malignant phenotypes induced by arsenite. In response to acute arsenite exposure, impaired autophagic flux with an increase in p62 protein level and interrupted autophagosome-lysosome fusion was observed. The increase in p62 protein levels in response to arsenite was not completely dependent on NRF2 activation and at least partially attributed to protein degradation. Our data indicate that accumulation of p62 by impaired autophagic flux is involved in the activation of NRF2 and contributes to skin tumorigenesis due to chronic arsenite exposure.


Asunto(s)
Arsénico/toxicidad , Muerte Celular Autofágica/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Retroalimentación Fisiológica/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/efectos de los fármacos , Muerte Celular Autofágica/genética , Línea Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Humanos , Queratinocitos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Factor 2 Relacionado con NF-E2/genética , Proteínas de Neoplasias/genética , Proteolisis/efectos de los fármacos , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Proteínas de Unión al ARN/genética , Transducción de Señal/genética
11.
DNA Repair (Amst) ; 82: 102690, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31479843

RESUMEN

Combining natural products with chemotherapy and/or radiotherapy may increase the efficacy of cancer treatment. It has been hypothesized that natural products may inhibit DNA repair and sensitize cancer cells to DNA damage-based cancer therapy. However, the molecular mechanisms underlying these activities remain unclear. In this study, we found that diallyl disulfide (DADS), an organosulfur compound, increased the sensitivity of yeast cells to DNA damage and has potential for development as an adjuvant drug for DNA damage-based cancer therapy. We induced HO endonuclease to generate a specific DNA double-strand break (DSB) by adding galactose to yeast and used this system to study how DADS affects DNA repair. In this study, we found that DADS inhibited DNA repair in single-strand annealing (SSA) system and sensitized SSA cells to a single DSB. DADS impaired DNA repair by inhibiting the protein levels of the DNA resection-related proteins Sae2 and Exo1. We also found that the recruitment of MRX and the Mec1-Ddc2 complex to a DSB was prevented by DADS. This result suggests that DADS counteracts G2/M DNA damage checkpoint activation in a Mec1 (ATR)- and Tel1 (ATM)-dependent manner. Only by elucidating the molecular mechanisms by which DADS influences DNA repair will we be able to discover new adjuvant drugs to improve chemotherapy and/or radiotherapy.


Asunto(s)
Compuestos Alílicos/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Disulfuros/farmacología , Endonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Muerte Celular Autofágica/efectos de los fármacos , Muerte Celular Autofágica/genética , Sinergismo Farmacológico , Proteolisis/efectos de los fármacos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
12.
J Immunol ; 203(7): 1820-1829, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31451676

RESUMEN

The clear role of autophagy in human inflammatory diseases such as Crohn disease was first identified by genome-wide association studies and subsequently dissected in multiple mechanistic studies. ATG16L1 has been particularly well studied in knockout and hypomorph settings as well as models recapitulating the Crohn disease-associated T300A polymorphism. Interestingly, ATG16L1 has a single homolog, ATG16L2, which is independently implicated in diseases, including Crohn disease and systemic lupus erythematosus. However, the contribution of ATG16L2 to canonical autophagy pathways and other cellular functions is poorly understood. To better understand its role, we generated and analyzed the first, to our knowledge, ATG16L2 knockout mouse. Our results show that ATG16L1 and ATG16L2 contribute very distinctly to autophagy and cellular ontogeny in myeloid, lymphoid, and epithelial lineages. Dysregulation of any of these lineages could contribute to complex diseases like Crohn disease and systemic lupus erythematosus, highlighting the value of examining cell-specific effects. We also identify a novel genetic interaction between ATG16L2 and epithelial ATG16L1. These findings are discussed in the context of how these genes may contribute distinctly to human disease.


Asunto(s)
Muerte Celular Autofágica , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras , Enfermedad de Crohn , Lupus Eritematoso Sistémico , Animales , Muerte Celular Autofágica/genética , Muerte Celular Autofágica/inmunología , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/inmunología , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Enfermedad de Crohn/genética , Enfermedad de Crohn/inmunología , Modelos Animales de Enfermedad , Humanos , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Ratones , Ratones Noqueados , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología
13.
J Biol Chem ; 294(20): 8197-8217, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30926605

RESUMEN

Endoplasmic reticulum (ER) stress is thought to activate autophagy via unfolded protein response (UPR)-mediated transcriptional up-regulation of autophagy machinery components and modulation of microtubule-associated protein 1 light chain 3 (LC3). The upstream UPR constituents pancreatic EIF2-α kinase (PERK) and inositol-requiring enzyme 1 (IRE1) have been reported to mediate these effects, suggesting that UPR may stimulate autophagy via PERK and IRE1. However, how the UPR and its components affect autophagic activity has not been thoroughly examined. By analyzing the flux of LC3 through the autophagic pathway, as well as the sequestration and degradation of autophagic cargo, we here conclusively show that the classical ER stressor tunicamycin (TM) enhances autophagic activity in mammalian cells. PERK and its downstream factor, activating transcription factor 4 (ATF4), were crucial for this induction, but surprisingly, IRE1 constitutively suppressed autophagic activity. TM-induced autophagy required autophagy-related 13 (ATG13), Unc-51-like autophagy-activating kinases 1/2 (ULK1/ULK2), and GABA type A receptor-associated proteins (GABARAPs), but interestingly, LC3 proteins appeared to be redundant. Strikingly, ATF4 was activated independently of PERK in both LNCaP and HeLa cells, and our further examination revealed that ATF4 and PERK regulated autophagy through separate mechanisms. Specifically, whereas ATF4 controlled transcription and was essential for autophagosome formation, PERK acted in a transcription-independent manner and was required at a post-sequestration step in the autophagic pathway. In conclusion, our results indicate that TM-induced UPR activates functional autophagy, and whereas IRE1 is a negative regulator, PERK and ATF4 are required at distinct steps in the autophagic pathway.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Muerte Celular Autofágica/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Tunicamicina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , eIF-2 Quinasa/metabolismo , Factor de Transcripción Activador 4/genética , Muerte Celular Autofágica/genética , Autofagosomas/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Estrés del Retículo Endoplásmico/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Células PC-3 , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética , Respuesta de Proteína Desplegada/genética , eIF-2 Quinasa/genética
14.
Cell Death Dis ; 10(4): 255, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30874538

RESUMEN

Hepatocellular carcinoma (HCC), a common liver malignancy worldwide, has high morbidity and mortality. ß-Thujaplicin, a tropolone derivative, has been used in some health-care products and clinical adjuvant drugs, but its use for HCC is unknown. In this study, we found that ß-Thujaplicin inhibits the growth of HCC cells, but not normal liver cells, with nanomolar potency. Mechanistically, we found that ß-Thujaplicin could induce autophagy, as judged by western blot, confocal microscopy, and transmission electron microscopy. Further using ß-Thujaplicin combined with an autophagy blocker or agonist treatment HepG2 cells, we found that ß-Thujaplicin induced autophagic cell death (ACD) mediated by ROS caused inhibition of the Akt-mTOR signaling pathway. Moreover, ß-Thujaplicin triggered HepG2 apoptosis and increased cleaved PARP1, cleaved caspase-3, and Bax/Bcl-2 ratio, which indicated that ß-Thujaplicin induced apoptosis mediated by the mitochondrial-dependent pathway. We also found that increased expression of p21 and decreased expression of CDK7, Cyclin D1, and Cyclin A2 participating in ß-Thujaplicin caused the S-phase arrest. It seems that ß-Thujaplicin exerts these functions by ROS-mediated p38/ERK MAPK but not by JNK signaling pathway activation. Consistent with in vitro findings, our in vivo study verified that ß-Thujaplicin treatment significantly reduced HepG2 tumor xenograft growth. Taken together these findings suggest that ß-Thujaplicin have an ability of anti-HCC cells and may conducively promote the development of novel anti-cancer agents.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Muerte Celular Autofágica/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Monoterpenos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Tropolona/análogos & derivados , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Anciano , Animales , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/genética , Muerte Celular Autofágica/genética , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/ultraestructura , Células Cultivadas , Femenino , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/ultraestructura , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Mitocondrias/metabolismo , Monoterpenos/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/genética , Especies Reactivas de Oxígeno/metabolismo , Puntos de Control de la Fase S del Ciclo Celular/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Trasplante Heterólogo , Tropolona/farmacología , Tropolona/uso terapéutico , Proteínas Quinasas p38 Activadas por Mitógenos/genética
15.
Plant Physiol ; 180(1): 634-653, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30872424

RESUMEN

Mitochondria adjust their activities in response to external and internal stimuli to optimize growth via the mitochondrial retrograde response signaling pathway. The Arabidopsis (Arabidopsis thaliana) NAC domain transcription factor ANAC017 has previously been identified as a regulator of the mitochondrial retrograde response. We show here that overexpression of ANAC017 in Arabidopsis leads to growth retardation, altered leaf development with decreased cell size and viability, and early leaf senescence. RNA sequencing analyses revealed that increased ANAC017 expression leads to higher expression of genes related to mitochondrial stress, cell death/autophagy, and leaf senescence under nonlimiting growth conditions as well as extensive repression of chloroplast function. Gene regulatory network analysis indicated that a complex hierarchy of transcription factors exists downstream of ANAC017. These involve a set of up-regulated ANAC and WRKY transcription factors associated with organellar signaling and senescence. The network also includes a number of ethylene- and gibberellic acid-related transcription factors with established functions in stress responses and growth regulation, which down-regulate their target genes. A number of BASIC LEUCINE-ZIPPER MOTIF transcription factors involved in the endoplasmic reticulum unfolded protein response or balancing of energy homeostasis via the SNF1-RELATED PROTEIN KINASE1 were also down-regulated by ANAC017 overexpression. Our results show that the endoplasmic reticulum membrane tethering of the constitutively expressed ANAC017, and its controlled release, are crucial to fine-tune a fast reactive but potentially harmful signaling cascade. Thus, ANAC017 is a master regulator of cellular responses with mitochondria acting as central sensors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Redes Reguladoras de Genes , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Muerte Celular Autofágica/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica de las Plantas , Mitocondrias/genética , Mitocondrias/metabolismo , Plantas Modificadas Genéticamente , Estrés Fisiológico/fisiología , Factores de Transcripción/genética
16.
Cell Death Differ ; 26(4): 640-652, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30659234

RESUMEN

The recent discovery of autosis as a variant of autophagy-dependent cell death has challenged the conventional understanding of cell death and programmed cell death in cellular decision making. In contrast to previous accounts of distinct cell death modalities, autosis occurs with high autophagic activity, in the absence of apoptotic and necrotic markers and yet is not fully regulated by typical autophagy markers. Given the metabolic importance of autophagic responses and the extensive cross-talk with both apoptosis and necrosis signalling, the classical and morphotype-driven characterization of cell death as pre-determined subroutines is being increasingly called into question. Furthermore, the conflicting evidence with regards to cell death induction through autophagy modulation in various cancer models highlights the lack of consensus over the extent to which autophagy assists in cell death ontrol and whether it is capable of being a bona fide lethal process. This review evaluates the evidence and context of autophagy-dependent cell death and delineates the role of an autophagic flux threshold associated with 'lethal' and 'non-lethal' autophagy and its role in autosis control. In doing so, cancer treatment avenues will be explored with regards to precision modulation of tumour autophagic flux to ascertain whether autosis induction may present a novel therapeutic strategy.


Asunto(s)
Apoptosis/genética , Muerte Celular Autofágica/genética , Autofagosomas/metabolismo , Autofagia/genética , Neoplasias/metabolismo , Apoptosis/fisiología , Muerte Celular Autofágica/fisiología , Autofagosomas/fisiología , Autofagia/fisiología , Humanos , Necrosis/genética , Necrosis/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Transducción de Señal/genética
17.
J Exp Med ; 216(2): 267-278, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30635357

RESUMEN

Heterozygous loss-of-function mutations of TANK-binding kinase 1 (TBK1 ) cause familial ALS, yet downstream mechanisms of TBK1 mutations remained elusive. TBK1 is a pleiotropic kinase involved in the regulation of selective autophagy and inflammation. We show that heterozygous Tbk1 deletion alone does not lead to signs of motoneuron degeneration or disturbed autophagy in mice during a 200-d observation period. Surprisingly, however, hemizygous deletion of Tbk1 inversely modulates early and late disease phases in mice additionally overexpressing ALS-linked SOD1G93A , which represents a "second hit" that induces both neuroinflammation and proteostatic dysregulation. At the early stage, heterozygous Tbk1 deletion impairs autophagy in motoneurons and prepones both the clinical onset and muscular denervation in SOD1G93A/Tbk1+/- mice. At the late disease stage, however, it significantly alleviates microglial neuroinflammation, decelerates disease progression, and extends survival. Our results indicate a profound effect of TBK1 on brain inflammatory cells under pro-inflammatory conditions and point to a complex, two-edged role of TBK1 in SOD1-linked ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Encéfalo , Eliminación de Gen , Neuronas Motoras , Proteínas Serina-Treonina Quinasas , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Muerte Celular Autofágica/genética , Encéfalo/metabolismo , Encéfalo/patología , Mutación con Pérdida de Función , Ratones , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
18.
Haematologica ; 104(4): 738-748, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30381299

RESUMEN

Translocation t(12;21), resulting in the ETV6-RUNX1 (or TEL-AML1) fusion protein, is present in 25% of pediatric patients with B-cell precursor acute lymphoblastic leukemia and is considered a first hit in leukemogenesis. A targeted therapy approach is not available for children with this subtype of leukemia. To identify the molecular mechanisms underlying ETV6-RUNX1-driven leukemia, we performed gene expression profiling of healthy hematopoietic progenitors in which we ectopically expressed ETV6-RUNX1. We reveal an ETV6-RUNX1-driven transcriptional network that induces proliferation, survival and cellular homeostasis. In addition, Vps34, an important regulator of autophagy, was found to be induced by ETV6-RUNX1 and up-regulated in ETV6-RUNX1-positive leukemic patient cells. We show that induction of Vps34 was transcriptionally regulated by ETV6-RUNX1 and correlated with high levels of autophagy. Knockdown of Vps34 in ETV6-RUNX1-positive cell lines severely reduced proliferation and survival. Inhibition of autophagy by hydroxychloroquine, a well-tolerated autophagy inhibitor, reduced cell viability in both ETV6-RUNX1-positive cell lines and primary acute lymphoblastic leukemia samples, and selectively sensitized primary ETV6-RUNX1-positive leukemia samples to L asparaginase. These findings reveal a causal relationship between ETV6-RUNX1 and autophagy, and provide pre-clinical evidence for the efficacy of autophagy inhibitors in ETV6-RUNX1-driven leukemia.


Asunto(s)
Asparaginasa/farmacología , Muerte Celular Autofágica/efectos de los fármacos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Sistemas de Liberación de Medicamentos , Proteínas de Fusión Oncogénica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Muerte Celular Autofágica/genética , Niño , Preescolar , Fosfatidilinositol 3-Quinasas Clase III/genética , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Femenino , Humanos , Masculino , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología
19.
J Cell Biochem ; 120(3): 4366-4374, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30387162

RESUMEN

Toll-like receptors (TLRs), which are essential components of the innate immune response, play an important role in acute kidney injury (AKI). Toll-like receptor 2 (TLR2) is constitutively expressed in tubular epithelial cells of the kidney and participates in cisplatin-induced AKI. The autophagy is a dynamic catabolic process that maintains intracellular homeostasis, which is involved in the pathogenesis of AKI. Recent studies demonstrate that PI3K/Akt signaling pathway regulates autophagy in response to various stimuli. Therefore, we propose that cisplatin might activate TLR2, which subsequently phosphorylates PI3K/Akt, leading to enhanced autophagy of renal tubular epithelial cells and protecting cisplatin-induced AKI. We found that TLR2 expression was significantly increased in the kidney after the cisplatin treatment. TLR2-deficient mice exacerbated renal injury in cisplatin-induced AKI, with higher serum creatinine and blood urea nitrogen, more severe morphological injury compared with that of wild-type mice. In vitro, we found that inhibition of TLR2 reduced tubular epithelial cell autophagy after the cisplatin treatment. Mechanistically, TLR2 inhibited autophagy via activating PI3K/Akt signaling pathway in renal tubular epithelial cells after the cisplatin treatment. Take together, these results suggest that TLR2 may protect cisplatin-induced AKI by activating autophagy via PI3K/Akt signaling pathway.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Muerte Celular Autofágica/efectos de los fármacos , Cisplatino/efectos adversos , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 2/metabolismo , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Animales , Muerte Celular Autofágica/genética , Línea Celular , Cisplatino/farmacología , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética , Receptor Toll-Like 2/genética
20.
Cell Death Differ ; 26(4): 763-778, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29959404

RESUMEN

Animal development and homeostasis require the programmed removal of cells. Autophagy-dependent cell deletion is a unique form of cell death often involved in bulk degradation of tissues. In Drosophila the steroid hormone ecdysone controls developmental transitions and triggers the autophagy-dependent removal of the obsolete larval midgut. The production of ecdysone is exquisitely coordinated with signals from numerous organ systems to mediate the correct timing of such developmental programs. Here we report an unexpected role for the Drosophila bone morphogenetic protein/transforming growth factor ß ligand, Decapentaplegic (Dpp), in the regulation of ecdysone-mediated midgut degradation. We show that blocking Dpp signaling induces premature autophagy, rapid cell death, and midgut degradation, whereas sustained Dpp signaling inhibits autophagy induction. Furthermore, Dpp signaling in the midgut prevents the expression of ecdysone responsive genes and impairs ecdysone production in the prothoracic gland. We propose that Dpp has dual roles: one within the midgut to prevent improper tissue degradation, and one in interorgan communication to coordinate ecdysone biosynthesis and developmental timing.


Asunto(s)
Muerte Celular Autofágica , Autofagia/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Ecdisona/metabolismo , Metamorfosis Biológica/genética , Animales , Muerte Celular Autofágica/genética , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Larva/citología , Larva/crecimiento & desarrollo , Larva/metabolismo , Lisosomas/genética , Lisosomas/metabolismo , Lisosomas/ultraestructura , Transducción de Señal/genética , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...