Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 286
1.
Mol Cell ; 84(10): 1980-1994.e8, 2024 May 16.
Article En | MEDLINE | ID: mdl-38759629

Aggregation of proteins containing expanded polyglutamine (polyQ) repeats is the cytopathologic hallmark of a group of dominantly inherited neurodegenerative diseases, including Huntington's disease (HD). Huntingtin (Htt), the disease protein of HD, forms amyloid-like fibrils by liquid-to-solid phase transition. Macroautophagy has been proposed to clear polyQ aggregates, but the efficiency of aggrephagy is limited. Here, we used cryo-electron tomography to visualize the interactions of autophagosomes with polyQ aggregates in cultured cells in situ. We found that an amorphous aggregate phase exists next to the radially organized polyQ fibrils. Autophagosomes preferentially engulfed this amorphous material, mediated by interactions between the autophagy receptor p62/SQSTM1 and the non-fibrillar aggregate surface. In contrast, amyloid fibrils excluded p62 and evaded clearance, resulting in trapping of autophagic structures. These results suggest that the limited efficiency of autophagy in clearing polyQ aggregates is due to the inability of autophagosomes to interact productively with the non-deformable, fibrillar disease aggregates.


Amyloid , Autophagosomes , Autophagy , Huntingtin Protein , Huntington Disease , Peptides , Protein Aggregates , Sequestosome-1 Protein , Peptides/metabolism , Peptides/chemistry , Peptides/genetics , Humans , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/chemistry , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Amyloid/metabolism , Amyloid/chemistry , Amyloid/genetics , Huntington Disease/metabolism , Huntington Disease/genetics , Huntington Disease/pathology , Cryoelectron Microscopy , Animals , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/genetics
2.
Cells ; 10(11)2021 11 11.
Article En | MEDLINE | ID: mdl-34831346

AIMS: Tay-Sachs and Sandhoff diseases (GM2 gangliosidosis) are autosomal recessive disorders of lysosomal function that cause progressive neurodegeneration in infants and young children. Impaired hydrolysis catalysed by ß-hexosaminidase A (HexA) leads to the accumulation of GM2 ganglioside in neuronal lysosomes. Despite the storage phenotype, the role of autophagy and its regulation by mTOR has yet to be explored in the neuropathogenesis. Accordingly, we investigated the effects on autophagy and lysosomal integrity using skin fibroblasts obtained from patients with Tay-Sachs and Sandhoff diseases. RESULTS: Pathological autophagosomes with impaired autophagic flux, an abnormality confirmed by electron microscopy and biochemical studies revealing the accelerated release of mature cathepsins and HexA into the cytosol, indicating increased lysosomal permeability. GM2 fibroblasts showed diminished mTOR signalling with reduced basal mTOR activity. Accordingly, provision of a positive nutrient signal by L-arginine supplementation partially restored mTOR activity and ameliorated the cytopathological abnormalities. INNOVATION: Our data provide a novel molecular mechanism underlying GM2 gangliosidosis. Impaired autophagy caused by insufficient lysosomal function might represent a new therapeutic target for these diseases. CONCLUSIONS: We contend that the expression of autophagy/lysosome/mTOR-associated molecules may prove useful peripheral biomarkers for facile monitoring of treatment of GM2 gangliosidosis and neurodegenerative disorders that affect the lysosomal function and disrupt autophagy.


Arginine/pharmacology , Autophagy , Gangliosidoses, GM2/metabolism , TOR Serine-Threonine Kinases/metabolism , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Autophagy/drug effects , Cathepsins/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Hexosaminidase A/chemistry , Hexosaminidase A/metabolism , Hexosaminidase B/chemistry , Hexosaminidase B/metabolism , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Mutation/genetics , Permeability , Proto-Oncogene Proteins c-akt/metabolism , Sandhoff Disease/pathology , Signal Transduction/drug effects , Tay-Sachs Disease/pathology , Transcriptome/genetics
3.
Cells ; 10(11)2021 10 20.
Article En | MEDLINE | ID: mdl-34831036

Autophagy is an evolutionarily conserved pathway, in which cytoplasmic components are sequestered within double-membrane vesicles called autophagosomes and then transported into lysosomes or vacuoles for degradation. Over 40 conserved autophagy-related (ATG) genes define the core machinery for the five processes of autophagy: initiation, nucleation, elongation, closure, and fusion. In this review, we focus on one of the least well-characterized events in autophagy, namely the closure of the isolation membrane/phagophore to form the sealed autophagosome. This process is tightly regulated by ESCRT machinery, ATG proteins, Rab GTPase and Rab-related proteins, SNAREs, sphingomyelin, and calcium. We summarize recent progress in the regulation of autophagosome closure and discuss the key questions remaining to be addressed.


Autophagosomes/metabolism , Animals , Autophagosomes/ultrastructure , Calcium/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Humans , SNARE Proteins/metabolism , Sphingomyelins/metabolism , rab GTP-Binding Proteins/metabolism
4.
Cell Death Dis ; 12(10): 939, 2021 10 13.
Article En | MEDLINE | ID: mdl-34645799

Lysosome-autophagosome fusion is critical to autophagosome maturation. Although several proteins that regulate this fusion process have been identified, the prefusion architecture and its regulation remain unclear. Herein, we show that upon stimulation, multiple lysosomes form clusters around individual autophagosomes, setting the stage for membrane fusion. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein on lysosomes-vesicle-associated membrane protein 8 (VAMP8)-plays an important role in forming this prefusion state of lysosomal clusters. To study the potential role of phosphorylation on spontaneous fusion, we investigated the effect of phosphorylation of C-terminal residues of VAMP8. Using a phosphorylation mimic, we observed a decrease of fusion in an ensemble lipid mixing assay and an increase of unfused lysosomes associated with autophagosomes. These results suggest that phosphorylation not only reduces spontaneous fusion for minimizing autophagic flux under normal conditions, but also preassembles multiple lysosomes to increase the fusion probability for resuming autophagy upon stimulation. VAMP8 phosphorylation may thus play an important role in chemotherapy drug resistance by influencing autophagosome maturation.


Autophagosomes/metabolism , Lysosomes/metabolism , Membrane Fusion , R-SNARE Proteins/metabolism , Autophagosomes/drug effects , Autophagosomes/ultrastructure , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Drug Resistance, Neoplasm/drug effects , HeLa Cells , Humans , Lysosomes/drug effects , Lysosomes/ultrastructure , Membrane Fusion/drug effects , Phosphorylation/drug effects , R-SNARE Proteins/chemistry , SNARE Proteins/metabolism , Temozolomide/pharmacology
5.
Cell Death Dis ; 12(10): 917, 2021 10 07.
Article En | MEDLINE | ID: mdl-34620841

We previously demonstrated that sulforaphane (SFN) inhibited autophagy leading to apoptosis in human non-small cell lung cancer (NSCLC) cells, but the underlying subcellular mechanisms were unknown. Hereby, high-performance liquid chromatography-tandem mass spectrometry uncovered that SFN regulated the production of lipoproteins, and microtubule- and autophagy-associated proteins. Further, highly expressed fatty acid synthase (FASN) contributed to cancer malignancy and poor prognosis. Results showed that SFN depolymerized microtubules, downregulated FASN, and decreased its binding to α-tubulin; SFN downregulated FASN, acetyl CoA carboxylase (ACACA), and ATP citrate lyase (ACLY) via activating proteasomes and downregulating transcriptional factor SREBP1; SFN inhibited the interactions among α-tubulin and FASN, ACACA, and ACLY; SFN decreased the amount of intracellular fatty acid (FA) and mitochondrial phospholipids; and knockdown of FASN decreased mitochondrial membrane potential (ΔΨm) and increased reactive oxygen species, mitochondrial abnormality, and apoptosis. Further, SFN downregulated mitophagy-associated proteins Bnip3 and NIX, and upregulated mitochondrial LC3 II/I. Transmission electron microscopy showed mitochondrial abnormality and accumulation of mitophagosomes in response to SFN. Combined with mitophagy inducer CCCP or autophagosome-lysosome fusion inhibitor Bafilomycin A1, we found that SFN inhibited mitophagosome-lysosome fusion leading to mitophagosome accumulation. SFN reduced the interaction between NIX and LC3 II/I, and reversed CCCP-caused FA increase. Furthermore, knockdown of α-tubulin downregulated NIX and BNIP3 production, and upregulated LC3 II/I. Besides, SFN reduced the interaction and colocalization between α-tubulin and NIX. Thus, SFN might cause apoptosis via inhibiting microtubule-mediated mitophagy. These results might give us a new insight into the mechanisms of SFN-caused apoptosis in the subcellular level.


Apoptosis , Down-Regulation , Fatty Acid Synthases/metabolism , Isothiocyanates/pharmacology , Microtubules/metabolism , Mitophagy , Sulfoxides/pharmacology , Aged , Apoptosis/drug effects , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Cell Line, Tumor , Down-Regulation/drug effects , Fatty Acids/biosynthesis , Female , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Lysosomes/ultrastructure , Male , Membrane Fusion/drug effects , Microtubule-Associated Proteins/metabolism , Microtubules/drug effects , Microtubules/ultrastructure , Middle Aged , Mitophagy/drug effects , Models, Biological , Polymerization , Proteasome Endopeptidase Complex/metabolism , Protein Multimerization/drug effects , Tubulin/metabolism
6.
Cell Death Dis ; 12(10): 910, 2021 10 05.
Article En | MEDLINE | ID: mdl-34611143

Gastric cancer remains the third leading cause of cancer-related mortality worldwide. Emerging evidence has shown that circular RNAs (circRNAs) play a critical regulatory role in the occurrence and development of various cancers through sponging miRNAs or acting as RNA-binding protein (RBP) sponges. We found that circUBE2Q2 was significantly upregulated in GC tissues and cell lines. Knockdown of circUBE2Q2 inhibited proliferation, migration, invasion, and glycolysis, and increased autophagy in vitro. In addition, knockdown of circUBE2Q2 inhibited GC tumorigenicity and metastasis potential in vivo. A series of experiments were performed to confirm that circUBE2Q2 regulates GC progression via the circUBE2Q2-miR-370-3p-STAT3 axis and promotes tumor metastasis through exosomal communication. Further in vivo experiments confirmed that, combination treatment of circUBE2Q2 knocking down and STAT3 inhibitor has synergistic effects on the gastric cancer growth inhibition, which provides a possibility to enhance the sensitivity of targeted drugs to gastric cancer through targeting circUBE2Q2. Our findings revealed that circUBE2Q2 may serve as a new proliferation-promoting factor and prognostic marker in gastric cancer.


Autophagy/genetics , Disease Progression , Glycolysis/genetics , RNA, Circular/metabolism , STAT3 Transcription Factor/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Animals , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Base Sequence , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Exosomes/metabolism , Exosomes/ultrastructure , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Humans , Male , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Middle Aged , Neoplasm Invasiveness , Neoplasm Metastasis , RNA, Circular/genetics , Tumor Burden
7.
Cell Death Dis ; 12(10): 900, 2021 10 01.
Article En | MEDLINE | ID: mdl-34599153

Rituximab/chemotherapy relapsed and refractory B cell lymphoma patients have a poor overall prognosis, and it is urgent to develop novel drugs for improving the therapy outcomes. Here, we examined the therapeutic effects of chidamide, a new histone deacetylase (HDAC) inhibitor, on the cell and mouse models of rituximab/chemotherapy resistant B-cell lymphoma. In Raji-4RH/RL-4RH cells, the rituximab/chemotherapy resistant B-cell lymphoma cell lines (RRCL), chidamide treatment induced growth inhibition and G0/G1 cell cycle arrest. The primary B-cell lymphoma cells from Rituximab/chemotherapy relapsed patients were sensitive to chidamide. Interestingly, chidamide triggered the cell death with the activation of autophagy in RRCLs, likely due to the lack of the pro-apoptotic proteins. Based on the RNA-seq and chromatin immunoprecipitation (ChIP) analysis, we identified BTG1 and FOXO1 as chidamide target genes, which control the autophagy and the cell cycle, respectively. Moreover, the combination of chidamide with the chemotherapy drug cisplatin increased growth inhibition on the RRCL in a synergistic manner, and significantly reduced the tumor burden of a mouse lymphoma model established with engraftment of RRCL. Taken together, these results provide a theoretic and mechanistic basis for further evaluation of the chidamide-based treatment in rituximab/chemotherapy relapsed and refractory B-cell lymphoma patients.


Aminopyridines/therapeutic use , Autophagy , Benzamides/therapeutic use , Drug Resistance, Neoplasm , Lymphoma, B-Cell/drug therapy , Neoplasm Proteins/metabolism , Aminopyridines/pharmacology , Animals , Apoptosis/drug effects , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Autophagy/drug effects , Benzamides/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Forkhead Box Protein O1/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lymphoma, B-Cell/pathology , Male , Mice, Nude , Middle Aged , Recurrence , Up-Regulation/drug effects , Up-Regulation/genetics
8.
Nutrients ; 13(10)2021 Sep 25.
Article En | MEDLINE | ID: mdl-34684361

Lactoferrin (LF) was used at first as a vehicle to deliver non-soluble active compounds to the body, including the central nervous system (CNS). Nonetheless, it soon became evident that, apart from acting as a vehicle, LF itself owns active effects in the CNS. In the present study, the effects of LF are assessed both in baseline conditions, as well as to counteract methamphetamine (METH)-induced neurodegeneration by assessing cell viability, cell phenotype, mitochondrial status, and specific autophagy steps. In detail, cell integrity in baseline conditions and following METH administration was carried out by using H&E staining, Trypan blue, Fluoro Jade B, and WST-1. Western blot and immuno-fluorescence were used to assess the expression of the neurofilament marker ßIII-tubulin. Mitochondria were stained using Mito Tracker Red and Green and were further detailed and quantified by using transmission electron microscopy. Autophagy markers were analyzed through immuno-fluorescence and electron microscopy. LF counteracts METH-induced degeneration. In detail, LF significantly attenuates the amount of cell loss and mitochondrial alterations produced by METH; and mitigates the dissipation of autophagy-related proteins from the autophagy compartment, which is massively induced by METH. These findings indicate a protective role of LF in the molecular mechanisms of neurodegeneration.


Autophagy , Lactoferrin/pharmacology , Methamphetamine/toxicity , Mitochondria/metabolism , Protective Agents/pharmacology , Animals , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Autophagy/drug effects , Cathepsin D/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Humans , Lactoferrin/administration & dosage , Lysosomal-Associated Membrane Protein 1/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Membrane Fusion/drug effects , Methamphetamine/administration & dosage , Microtubule-Associated Proteins/metabolism , Mitochondria/drug effects , Mitochondria/ultrastructure , PC12 Cells , Phenotype , Rats , Time Factors , Tubulin/metabolism , Vacuoles/drug effects , Vacuoles/metabolism , Vacuoles/ultrastructure
9.
Int J Mol Sci ; 22(19)2021 Sep 26.
Article En | MEDLINE | ID: mdl-34638703

The peri-infarct region, which surrounds the irreversible ischemic stroke area is named ischemic penumbra. This term emphasizes the borderline conditions for neurons placed within such a critical region. Area penumbra separates the ischemic core, where frank cell loss occurs, from the surrounding healthy brain tissue. Within such a brain region, nervous matter, and mostly neurons are impaired concerning metabolic conditions. The classic biochemical marker, which reliably marks area penumbra is the over-expression of the heat shock protein 70 (HSP70). However, other proteins related to cell clearing pathways are modified within area penumbra. Among these, autophagy proteins like LC3 increase in a way, which recapitulates Hsp70. In contrast, components, such as P20S, markedly decrease. Despite apparent discrepancies, the present study indicates remarkable overlapping between LC3 and P20S redistribution within area penumbra. In fact, the amount of both proteins is markedly reduced within vacuoles. Specifically, a massive loss of LC3 + P20S immuno-positive vacuoles (autophagoproteasomes) is reported here. This represents the most relevant sub-cellular alteration here described in cell clearing pathways within area penumbra. The functional significance of these findings remains to be determined and it will take a novel experimental stream to decipher the fine-tuning of such a phenomenon.


Autophagosomes , Autophagy , HSP70 Heat-Shock Proteins/metabolism , Ischemic Stroke , Microtubule-Associated Proteins/metabolism , Animals , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Biomarkers/metabolism , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Male , Mice
10.
J Cell Biol ; 220(12)2021 12 06.
Article En | MEDLINE | ID: mdl-34714326

Mechanisms that turn over components of the nucleus and inner nuclear membrane (INM) remain to be fully defined. We explore how components of the INM are selected by a cytosolic autophagy apparatus through a transmembrane nuclear envelope-localized cargo adaptor, Atg39. A split-GFP reporter showed that Atg39 localizes to the outer nuclear membrane (ONM) and thus targets the INM across the nuclear envelope lumen. Consistent with this, sequence elements that confer both nuclear envelope localization and a membrane remodeling activity are mapped to the Atg39 lumenal domain; these lumenal motifs are required for the autophagy-mediated degradation of integral INM proteins. Interestingly, correlative light and electron microscopy shows that the overexpression of Atg39 leads to the expansion of the ONM and the enclosure of a network of INM-derived vesicles in the nuclear envelope lumen. Thus, we propose an outside-in model of nucleophagy where INM is delivered into vesicles in the nuclear envelope lumen, which can be targeted by the autophagosome.


Autophagosomes/metabolism , Autophagy-Related Proteins/metabolism , Cytoplasmic Vesicles/metabolism , Nuclear Envelope/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Autophagosomes/ultrastructure , Autophagy , Autophagy-Related Proteins/chemistry , Cytoplasmic Vesicles/ultrastructure , Green Fluorescent Proteins/metabolism , Nuclear Envelope/ultrastructure , Protein Domains , Receptors, Cytoplasmic and Nuclear/chemistry , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Structure-Activity Relationship , Time Factors , Vacuoles/metabolism , Vacuoles/ultrastructure , Vesicular Transport Proteins/metabolism
11.
Curr Issues Mol Biol ; 43(3): 1698-1714, 2021 Oct 22.
Article En | MEDLINE | ID: mdl-34698133

Autophagy has been demonstrated to have a beneficial effect on diabetic nephropathy (DN). Rapamycin, an inhibitor of mTOR, was shown to stimulate ß-cell autophagy. However, its effects on preventing or ameliorating DN is unclear, and its effects are worth studying. As fasting is now an attractive protective strategy, we aim to compare its effect to rapamycin effects on pancreatic and renal cells. Twenty-eight adult male Wistar Albino rats were randomly divided into four groups, using streptozotocin (STZ) to induce diabetes mellitus (DM). Autophagy was induced by two ways; rapamycin or fasting. The extent of autophagy and apoptosis were investigated by measuring the level of LC3B and p53 proteins, respectively, in pancreatic and kidney tissues using Western blotting (WB) technique and imaging the renal cells under transmission electron microscope. The efflux transporter P-glycoprotein was quantified by WB as well. Rapamycin-induced autophagy occurred concurrently with apoptosis. On the other hand, fasting supported P-glycoprotein recovery and renal cell survival together with disabling ß-cells apoptosis. In conclusion, this study provides a potential link between rapamycin or fasting for the cross-regulation of apoptosis and autophagy in the setting of cell stress as DN. Unlike rapamycin, fasting enhanced the active expression of ABCB1 efflux protein, providing insights on the potential ameliorative effects of fasting in DN that require further elucidation.


Autophagy/drug effects , Diabetic Nephropathies/metabolism , Fasting/metabolism , Sirolimus/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Apoptosis/drug effects , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Biomarkers , Cell Survival/drug effects , Diabetes Mellitus, Experimental , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/etiology , Disease Models, Animal , Disease Susceptibility , Kidney Function Tests , Liver Function Tests , Oxidative Stress , Rats
12.
Cell Death Dis ; 12(11): 1032, 2021 10 30.
Article En | MEDLINE | ID: mdl-34718337

Tumor necrosis factor (TNF)-α-induced protein 8-like 2 (TIPE2) is a newly discovered negative immunoregulatory protein that is involved in various cellular immune responses to infections. However, the underlying mechanism by which TIPE2 affects the immune function of dendritic cells (DCs) is not yet understood. This study aimed to determine the correlations among DCs TIPE2 expression, autophagic activity and immune function in the context of sepsis. In addition, the signaling pathway by which TIPE2 regulates autophagy in DCs was investigated. We reported for the first time that TIPE2 overexpression (knock-in, KI) exerted an inhibitory effect on autophagy in DCs and markedly suppressed the immune function of DCs upon septic challenge both in vitro and in vivo. In addition, TIPE2 knockout (KO) in DCs significantly enhanced autophagy and improved the immune response of DCs in sepsis. Of note, we found that the transforming growth factor-ß (TGF-ß)-activated kinase-1 (TAK1)/c-Jun N-terminal kinase (JNK) pathway was inhibited by TIPE2 in DCs, resulting in downregulated autophagic activity. Collectively, these results suggest that TIPE2 can suppress the autophagic activity of DCs by inhibiting the TAK1/JNK signaling pathway and further negatively regulate the immune function of DCs in the development of septic complications.


Autophagy , Dendritic Cells/immunology , Intracellular Signaling Peptides and Proteins/metabolism , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Signaling System , Sepsis/immunology , Sepsis/pathology , Animals , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Dendritic Cells/ultrastructure , Disease Models, Animal , Down-Regulation , Immunity , Lipopolysaccharides , Male , Mice, Inbred C57BL , Mice, Knockout , Spleen/pathology
13.
Mol Med ; 27(1): 118, 2021 09 23.
Article En | MEDLINE | ID: mdl-34556021

BACKGROUND: The present study aimed to further explore the potential interaction between oxidative stress and autophagy in the progression of traumatic brain injury (TBI) and therapeutic mechanism of calcitriol, the active form of vitamin D (VitD). METHODS: Neuroprotective effects of calcitriol were examined following TBI. We further evaluated the impacts of TBI and calcitriol treatment on autophagic process and nuclear factor E2-related factor 2 (Nrf2) signaling. RESULTS: We found that treatment of calcitriol markedly ameliorated the neurological deficits and histopathological changes following TBI. The brain damage impaired autophagic flux and impeded Nrf2 signaling, the major regulator in antioxidant response, consequently leading to uncontrolled and excessive oxidative stress. Meanwhile, calcitriol promoted autophagic process and activated Nrf2 signaling as evidenced by the reduced Keap1 expression and enhanced Nrf2 translocation, thereby mitigating TBI-induced oxidative damage. In support, we further found that chloroquine (CQ) treatment abrogated calcitriol-induced autophagy and compromised Nrf2 activation with increased Keap1 accumulation and reduced expression of Nrf2-targeted genes. Additionally, both CQ treatment and Nrf2 genetic knockout abolished the protective effects of calcitriol against both TBI-induced neurological deficits and neuronal apoptosis. CONCLUSIONS: Therefore, our work demonstrated a neuroprotective role of calcitriol in TBI by triggering Nrf2 activation, which might be mediated by autophagy.


Autophagy/drug effects , Brain Injuries, Traumatic/prevention & control , Calcitriol/pharmacology , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Animals , Apoptosis/drug effects , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/metabolism , Disease Models, Animal , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Male , Memory Disorders/genetics , Memory Disorders/metabolism , Memory Disorders/prevention & control , Mice, Knockout , Microscopy, Electron, Transmission , NF-E2-Related Factor 2/genetics , Nervous System Diseases/genetics , Nervous System Diseases/metabolism , Nervous System Diseases/prevention & control , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/pharmacology , Signal Transduction/genetics , Vitamins/pharmacology
14.
Biomed Pharmacother ; 142: 112045, 2021 Oct.
Article En | MEDLINE | ID: mdl-34426257

OBJECTIVE: Asthma is characterized by airway hyperresponsiveness(AHR), inflammation and remodeling. Autophagy and endoplasmic reticulum stress(ERS) are dysregulated in asthma, and ATG5 has attracted wide attentions a representative gene of autophagy. Previous evidence shows that acupuncture may treat asthma by regulating the immune environment.However,the precise mechanism involved in acupuncture's effects on asthma is unclear. Thus, we investigated the inner-relationships of acupuncture and ATG5-mediated autophagy, ERS and CD4+ T lymphocyte differentiation in asthma. METHODS: Ovalbumin (OVA)-sensitized and challenged ATG5+/- and ATG5-/-mice with asthma were treated by acupuncture at Dazhui(GV14),Feishu(BL13) and Zusanli(ST36),and sacrificed the next day.Then blood and bronchoalveolar lavage fluid (BALF)samples were collected to determine inflammatory cell counts and cytokine levels. Lung tissue samples were obtained for histological examination, and the spleen was harvested for flow cytometry. RESULTS: Compared with the untreated group, acupuncture decreased BALF inflammatory cell counts and AHR in OVA-induced mice.Acupuncture decreased autophagy-related protein and mRNA (ATG5,Beclin-1,p62 and LC3B)amounts and ERS-related protein (p-PERK, p-IRE-1,Grp78, and ATF6)levels as well as autophagosome formation in lung tissue, concomitant with increased IFN-γ and decreased IL-4, IL-17 and TGF-ß amounts in BALF.Consistently, the imbalance of CD4+ T lymphocyte subsets(Th1/Th2 and Treg/Th17) was also corrected by acupuncture.Meanwhile, AHR and inflammation were decreased in ATG5-/- mice compared with ATG+/-animals,without affecting the therapeutic effect of acupuncture. CONCLUSION: Acupuncture reduces airway inflammation and AHR in asthma by inhibiting ATG5-mediated autophagy to regulate endoplasmic reticulum stress and CD4+T lymphocyte differentiation.


Acupuncture Therapy , Asthma/therapy , Autophagy-Related Protein 5/antagonists & inhibitors , Autophagy-Related Protein 5/genetics , Autophagy/genetics , CD4-Positive T-Lymphocytes/immunology , Endoplasmic Reticulum Stress/genetics , Animals , Asthma/chemically induced , Asthma/immunology , Asthma/pathology , Autophagosomes/ultrastructure , Autophagy/immunology , Autophagy-Related Protein 5/immunology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , CD4-Positive T-Lymphocytes/cytology , Cell Differentiation/immunology , Cytokines/metabolism , Disease Models, Animal , Endoplasmic Reticulum Stress/immunology , Female , Inflammation/genetics , Inflammation/immunology , Mice, Inbred C57BL , Ovalbumin/toxicity , Respiratory Hypersensitivity
15.
Bull Exp Biol Med ; 171(3): 327-332, 2021 Jul.
Article En | MEDLINE | ID: mdl-34297297

We studied the prolonged action of kainic acid on glutamatergic neurons in the dorsal hippocampus and the endocannabinoid-dependent protection against neurodegeneration. The pyramidal neurons of the CA3 field of the hippocampus, as well as granular and mossy cells of the dentate gyrus were examined. Light and electron microscopy revealed substantial damage to the components of the protein-synthesizing (rough endoplasmic reticulum, Golgi apparatus, and polyribosomes) and catabolic (lysosomes, autophagosomes, multivesicular structures, and lipofuscin formations) systems in all cells. Pyramidal and mossy neurons die mainly by the necrotic pathway. The death of granular cells occurred through both apoptosis and necrosis. The most vulnerable cells are mossy neurons located in the hilus. Activation of the endocannabinoid system induced by intracerebral injection of URB597, an inhibitor of degradation of endocannabinoid anandamide, protected the normal structure of the hippocampus and prevented neuronal damage and death induced by KA.


Arachidonic Acids/metabolism , Endocannabinoids/metabolism , Excitatory Amino Acid Agonists/pharmacology , Kainic Acid/pharmacology , Nerve Degeneration/pathology , Polyunsaturated Alkamides/metabolism , Pyramidal Cells/drug effects , Status Epilepticus/pathology , Animals , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Benzamides/pharmacology , CA3 Region, Hippocampal/drug effects , CA3 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/pathology , Carbamates/pharmacology , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Dentate Gyrus/pathology , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , Golgi Apparatus/ultrastructure , Lysosomes/drug effects , Lysosomes/metabolism , Lysosomes/ultrastructure , Male , Microscopy, Electron , Necrosis/metabolism , Necrosis/pathology , Nerve Degeneration/chemically induced , Nerve Degeneration/metabolism , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Rats , Rats, Wistar , Status Epilepticus/chemically induced , Status Epilepticus/metabolism
16.
Eur J Histochem ; 65(s1)2021 Jun 01.
Article En | MEDLINE | ID: mdl-34060734

The interplay between autophagy (ATG) and ubiquitin proteasome (UP) cell-clearing systems was recently evidenced at biochemical and morphological levels, where subunits belonging to both pathways co-localize within a novel organelle named autophagoproteasome (APP). We previously documented that APP occurs at baseline conditions, while it is hindered by neurotoxicant administration. This is bound to the activity of the mechanistic target of rapamycin (mTOR), since APP is stimulated by mTOR inhibition, which in turn, is correlated with cell protection. In this brief report, we provide novel, morphological and biochemical evidence on APP, suggesting the presence of active UP subunits within ATG vacuoles. Although a stream of interpretation considers such a merging as a catabolic pathway to clear inactive UP subunits, our data further indicate that UP-ATG merging may rather provide an empowered catalytic organelle.


Autophagosomes/physiology , Autophagosomes/ultrastructure , Autophagy , Organelles/ultrastructure , Proteasome Endopeptidase Complex/metabolism , TOR Serine-Threonine Kinases/metabolism , Ubiquitin/metabolism , Animals , Organelles/physiology , PC12 Cells , Rats , Signal Transduction
17.
Ecotoxicol Environ Saf ; 221: 112438, 2021 Sep 15.
Article En | MEDLINE | ID: mdl-34175825

Microcystin-leucine arginine (MCLR), a widespread environmental contaminant produced by cyanobacteria, poses a severe threat to the male reproductive system. However, the mechanisms of MCLR-induced testis injury accompanied by autophagy are still obscure. This study aimed to investigate the effects of MCLR on autophagy and apoptosis on the male reproductive system and its mechanism both in vitro and in vivo. MCLR caused damage to the testis of zebrafish, resulting in decreased hatching and growth retardation in the offspring. It also remarkably enhanced autophagic flux by elevating the expression of LC3BII, ATG5, and ATG12 proteins. The autophagic flux was also confirmed through the formation of autophagosomes in the ultrastructure of the zebrafish testis and the accumulation of LC3-positive puncta in zebrafish testis and mouse TM4 cells. Further evaluations revealed that inhibition of autophagy by 3-methyladenine (3-MA) significantly attenuated MCLR-induced apoptosis. This finding indicated that autophagy plays an essential role in cell death in the male reproductive system. Besides, inhibiting endoplasmic reticulum (ER) stress using 4-phenylbutyrate (4-PBA) remarkably blocked autophagy and partially suppressed apoptosis in TM4 cells induced by MCLR. This phenomenon suggested that ER stress-related autophagy was involved in MCLR-induced apoptosis. This study reveals crosstalk between ER stress and autophagy via the PERK/eIF2α/ATF4 signaling pathway. It further suggests that ER stress-related autophagy contributes to MCLR-induced apoptosis and injury in the male reproductive system. These findings provide a novel insight into MCLR-induced impairments of the testis.


Apoptosis/drug effects , Autophagy/drug effects , Endoplasmic Reticulum Stress/drug effects , Microcystins/toxicity , Testis/drug effects , Animals , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Cell Line , Male , Mice , Phenylbutyrates/pharmacology , Signal Transduction/drug effects , Testis/ultrastructure , Zebrafish
18.
J Leukoc Biol ; 110(4): 629-649, 2021 10.
Article En | MEDLINE | ID: mdl-34085299

Despite the important function of neutrophils in the eradication of infections and induction of inflammation, the molecular mechanisms regulating the activation and termination of the neutrophil immune response is not well understood. Here, the function of the small GTPase from the RGK family, Gem, is characterized as a negative regulator of the NADPH oxidase through autophagy regulation. Gem knockout (Gem KO) neutrophils show increased NADPH oxidase activation and increased production of extracellular and intracellular reactive oxygen species (ROS). Enhanced ROS production in Gem KO neutrophils was associated with increased NADPH oxidase complex-assembly as determined by quantitative super-resolution microscopy, but normal exocytosis of gelatinase and azurophilic granules. Gem-deficiency was associated with increased basal autophagosomes and autolysosome numbers but decreased autophagic flux under phorbol ester-induced conditions. Neutrophil stimulation triggered the localization of the NADPH oxidase subunits p22phox and p47phox at LC3-positive structures suggesting that the assembled NADPH oxidase complex is recruited to autophagosomes, which was significantly increased in Gem KO neutrophils. Prevention of new autophagosome formation by treatment with SAR405 increased ROS production while induction of autophagy by Torin-1 decreased ROS production in Gem KO neutrophils, and also in wild-type neutrophils, suggesting that macroautophagy contributes to the termination of NADPH oxidase activity. Autophagy inhibition decreased NETs formation independently of enhanced ROS production. NETs production, which was significantly increased in Gem-deficient neutrophils, was decreased by inhibition of both autophagy and calmodulin, a known GEM interactor. Intracellular ROS production was increased in Gem KO neutrophils challenged with live Gram-negative bacteria Pseudomonas aeruginosa or Salmonella Typhimurium, but phagocytosis was not affected in Gem-deficient cells. In vivo analysis in a model of Salmonella Typhimurium infection indicates that Gem-deficiency provides a genetic advantage manifested as a moderate increased in survival to infections. Altogether, the data suggest that Gem-deficiency leads to the enhancement of the neutrophil innate immune response by increasing NADPH oxidase assembly and NETs production and that macroautophagy differentially regulates ROS and NETs in neutrophils.


Extracellular Traps/metabolism , Macroautophagy , Monomeric GTP-Binding Proteins/metabolism , NADPH Oxidases/metabolism , Animals , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Calmodulin/metabolism , Disease Models, Animal , Intracellular Space/metabolism , Mice, Knockout , Microtubule-Associated Proteins/metabolism , Monomeric GTP-Binding Proteins/deficiency , Neutrophil Activation , Neutrophils/metabolism , Neutrophils/ultrastructure , Pseudomonas aeruginosa/physiology , Reactive Oxygen Species/metabolism , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/pathology , Salmonella typhimurium/physiology
19.
Nat Commun ; 12(1): 2587, 2021 05 10.
Article En | MEDLINE | ID: mdl-33972537

Host cells use several anti-bacterial pathways to defend against pathogens. Here, using a uropathogenic Escherichia coli (UPEC) infection model, we demonstrate that bacterial infection upregulates RhoB, which subsequently promotes intracellular bacteria clearance by inducing LC3 lipidation and autophagosome formation. RhoB binds with Beclin 1 through its residues at 118 to 140 and the Beclin 1 CCD domain, with RhoB Arg133 being the key binding residue. Binding of RhoB to Beclin 1 enhances the Hsp90-Beclin 1 interaction, preventing Beclin 1 degradation. RhoB also directly interacts with Hsp90, maintaining RhoB levels. UPEC infections increase RhoB, Beclin 1 and LC3 levels in bladder epithelium in vivo, whereas Beclin 1 and LC3 levels as well as UPEC clearance are substantially reduced in RhoB+/- and RhoB-/- mice upon infection. We conclude that when stimulated by UPEC infections, host cells promote UPEC clearance through the RhoB-Beclin 1-HSP90 complex, indicating RhoB may be a useful target when developing UPEC treatment strategies.


Autophagosomes/metabolism , Beclin-1/metabolism , Escherichia coli Infections/metabolism , HSP90 Heat-Shock Proteins/metabolism , Urinary Tract Infections/metabolism , Uropathogenic Escherichia coli/growth & development , rhoB GTP-Binding Protein/metabolism , Animals , Autophagosomes/genetics , Autophagosomes/ultrastructure , Beclin-1/genetics , Cell Line , Epithelium/metabolism , Epithelium/microbiology , Escherichia coli Infections/genetics , Escherichia coli Infections/microbiology , Female , Gene Knockdown Techniques , HSP90 Heat-Shock Proteins/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Transmission , Microtubule-Associated Proteins/metabolism , Protein Binding , Protein Stability , RNA, Small Interfering , Recombinant Proteins , Urinary Bladder/metabolism , Urinary Bladder/microbiology , Urinary Tract Infections/genetics , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/pathogenicity , rhoB GTP-Binding Protein/genetics
20.
J Cell Physiol ; 236(11): 7376-7389, 2021 11.
Article En | MEDLINE | ID: mdl-33959973

Existing evidence suggests that adverse pregnancy outcomes are closely related to dietary factors. Folate plays an important role in neural tube formation and fetal growth, folate deficiency is a major risk factor of birth defects. Our early studies showed that folate deficiency could impair enddecidualization, however, the mechanism is still unclear. Dysfunctional autophagy is associated with many diseases. Here, we aimed to evaluate the adverse effect of folate deficiency on endometrial decidualization, with a particular focus on endometrial cell autophagy. Mice were fed with no folate diet in vivo and the mouse endometrial stromal cell was cultured in a folate-free medium in vitro. The decrease of the number of endometrial autophagosomes and the protein expressions of autophagy in the folate-deficient group indicated that autophagosome formation, autophagosome-lysosome fusion, and lysosomal degradation were inhibited. Autophagic flux examination using mCherry-GFP-LC3 transfection showed that the fusion of autophagosomes with lysosomes was inhibited by folate deficiency. Autophagy inducer rapamycin could reverse the impairment of folate deficiency on endometrial decidualization. Moreover, folate deficiency could reduce autophagy by disrupting AMPK/mTOR signaling, resulting in aberrant endometrial decidualization and adverse pregnancy outcomes. Further co-immunoprecipitation examination showed that decidual marker protein Hoxa10 could interact with autophagic marker protein Cathepsin L, and the interaction was notably reduced by folate deficiency. In conclusion, AMPK/mTOR downregulated autophagy was essential for aberrant endometrial decidualization in early pregnant mice, which could result in adverse pregnancy outcomes. This provided some new clues for understanding the causal mechanisms of birth defects induced by folate deficiency.


AMP-Activated Protein Kinases/metabolism , Autophagy , Decidua/enzymology , Folic Acid Deficiency/enzymology , Folic Acid/metabolism , Stromal Cells/enzymology , TOR Serine-Threonine Kinases/metabolism , Animals , Autophagosomes/enzymology , Autophagosomes/ultrastructure , Cells, Cultured , Decidua/ultrastructure , Disease Models, Animal , Female , Folic Acid Deficiency/genetics , Folic Acid Deficiency/pathology , Lysosomes/enzymology , Lysosomes/ultrastructure , Mice , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Pregnancy , Signal Transduction , Stromal Cells/ultrastructure
...