Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
EMBO J ; 42(17): e113105, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37409525

RESUMEN

Cells use noncanonical autophagy, also called conjugation of ATG8 to single membranes (CASM), to label damaged intracellular compartments with ubiquitin-like ATG8 family proteins in order to signal danger caused by pathogens or toxic compounds. CASM relies on E3 complexes to sense membrane damage, but so far, only the mechanism to activate ATG16L1-containing E3 complexes, associated with proton gradient loss, has been described. Here, we show that TECPR1-containing E3 complexes are key mediators of CASM in cells treated with a variety of pharmacological drugs, including clinically relevant nanoparticles, transfection reagents, antihistamines, lysosomotropic compounds, and detergents. Interestingly, TECPR1 retains E3 activity when ATG16L1 CASM activity is obstructed by the Salmonella Typhimurium pathogenicity factor SopF. Mechanistically, TECPR1 is recruited by damage-induced sphingomyelin (SM) exposure using two DysF domains, resulting in its activation and ATG8 lipidation. In vitro assays using purified human TECPR1-ATG5-ATG12 complex show direct activation of its E3 activity by SM, whereas SM has no effect on ATG16L1-ATG5-ATG12. We conclude that TECPR1 is a key activator of CASM downstream of SM exposure.


Asunto(s)
Esfingomielinas , Ubiquitinas , Humanos , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína 12 Relacionada con la Autofagia/metabolismo , Proteínas de la Membrana/metabolismo
2.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37445677

RESUMEN

Recent advanced studies in neurodegenerative diseases have revealed several links connecting autophagy and neurodegeneration. Autophagy is the major cellular degradation process for the removal of toxic protein aggregates responsible for neurodegenerative diseases. More than 30 autophagy-related proteins have been identified as directly participating in the autophagy process. Proteins regulating the process of autophagy are much more numerous and unknown. To address this, in our present study, we identified a novel regulator (ARL6IP5) of neuronal autophagy and showed that the level of ARL6IP5 decreases in the brain with age and in Parkinson's disease in mice and humans. Moreover, a cellular model of PD (Wild type and A53T mutant α-synuclein overexpression) has also shown decreased levels of ARL6IP5. ARL6IP5 overexpression reduces α-synuclein aggregate burden and improves cell survival in an A53T model of Parkinson's disease. Interestingly, detailed mechanistic studies revealed that ARL6IP5 is an autophagy inducer. ARL6IP5 enhances Rab1-dependent autophagosome initiation and elongation by stabilizing free ATG12. We report for the first time that α-synuclein downregulates ARL6IP5 to inhibit autophagy-dependent clearance of toxic aggregates that exacerbate neurodegeneration.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Ratones , Animales , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/metabolismo , Línea Celular , Autofagia/fisiología , Proteína 12 Relacionada con la Autofagia/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Transporte de Membrana
3.
Cell Death Dis ; 14(1): 10, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624091

RESUMEN

Circular RNAs are key regulators in regulating the progression and chemoresistance of gastric cancer (GC), suggesting circular RNAs as potential therapeutic targets for GC. The roles of a novel circular RNA circPOFUT1 in GC are unknown. Here, we found that circPOFUT1 was upregulated in GC tissues and cells, and increased circPOFUT1 expression indicated poor prognosis. Overexpression of circPOFUT1 enhanced cell proliferation, migration, invasion and autophagy-associated chemoresistance in GC, which were suppressed by miR-488-3p overexpression. CircPOFUT1 reduced miR-488-3p expression via sponging miR-488-3p in GC cells. PLAG1 interacted with ATG12 and promoted its expression. MiR-488-3p bound to PLAG1 and suppressed the expression of PLAG1 and ATG12 in GC cells. Overexpression of circPOFUT1 enhanced autophagy-associated chemoresistance of GC cells in vivo, but it was inhibited by overexpression of miR-488-3p. Collectively, circPOFUT1 directly sponged miR-488-3p to activate the expression of PLAG1 and ATG12, thus enhancing malignant phenotypes and autophagy-associated chemoresistance in GC. Our findings show the potential of circPOFUT1 as biomarkers and targeting circPOFUT1 as a therapeutic strategy for GC.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Humanos , Autofagia/genética , Proteína 12 Relacionada con la Autofagia/genética , Proteína 12 Relacionada con la Autofagia/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Fenotipo , ARN Circular/genética , ARN Circular/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
4.
Pharmacology ; 108(1): 61-73, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36382664

RESUMEN

INTRODUCTION: During breast cancer chemotherapy, the chemoresistance that frequently accompanies the treatment has become a big challenge. Long noncoding RNAs (LncRNAs) have been related to the development of chemoresistance in multiple cancer types. LncRNA DDX11-AS1 has shown a carcinogenic role in lung and colorectal cancer and was reported to enhance oxaliplatin resistance in gastric cancer and Taxol insensitivity in esophageal cancer. But its role in breast cancer chemotherapy drug resistance remains unknown. This study aimed to investigate the function and mechanism of lncRNA DDX11-AS1 in breast cancer chemoresistance. METHODS: The relationship between DDX11-AS1 and adriamycin (ADR) resistance was confirmed by qPCR, cell viability tests, and survival analysis. Then, RNA immunoprecipitation was conducted to evaluate the interaction between DDX11-AS1 and RNA-binding protein LIN28A. The regulation effect of LIN28A on autophagy-related genes ATG7 or ATG12 was detected by RNA stability assay and Western blot. Their correlation analysis was evaluated in GEO datasets and further validated by immunohistochemical results. The clinical significance of DDX11-AS1, ATG7, or ATG12 was evaluated by Kaplan-Meier Plotter analysis. RESULTS: Here, we reported DDX11-AS1 was significantly upregulated in chemoresistant breast cancer cells and overexpression of DDX11-AS1 promoted ADR resistance in breast cancer. LIN28A could interact with DDX11-AS1 and was involved in DDX11-AS1-mediated ADR resistance. Interfering with LIN28A reversed DDX11-AS1-induced ADR resistance. LIN28A could increase the protein level of ATG7 and ATG12 by increasing their mRNA stability. Survival analysis showed that ATG12 expression level was negatively correlated with the prognosis of breast cancer patients. CONCLUSION: This study clarifies the role of DDX11-AS1 in breast cancer chemoresistance and revealed a new mechanism, that is, interacting with LIN28A to stabilize ATG7 and ATG12 and jointly promote chemorefractory. These findings warrant further in vivo investigations to study DDX11-AS1 as a potential target to overcome chemoresistance.


Asunto(s)
Neoplasias de la Mama , MicroARNs , ARN Largo no Codificante , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , ARN Mensajero , Proliferación Celular/genética , Línea Celular Tumoral , MicroARNs/genética , Proteína 12 Relacionada con la Autofagia/genética , Proteína 12 Relacionada con la Autofagia/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo
5.
Autophagy ; 19(4): 1258-1276, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36095096

RESUMEN

In apicomplexan parasites, the macroautophagy/autophagy machinery is repurposed to maintain the plastid-like organelle apicoplast. Previously, we showed that in Toxoplasma and Plasmodium, ATG12 interacts with ATG5 in a non-covalent manner, in contrast to the covalent interaction in most organisms. However, it remained unknown whether apicomplexan parasites have functional orthologs of ATG16L1, a protein that is essential for the function of the covalent ATG12-ATG5 complex in vivo in other organisms. Furthermore, the mechanism used by the autophagy machinery to maintain the apicoplast is unclear. We report that the ATG12-ATG5-ATG16L complex exists in Toxoplasma gondii (Tg). This complex is localized on isolated structures at the periphery of the apicoplast dependent on TgATG16L. Inducible depletion of TgATG12, TgATG5, or TgATG16L caused loss of the apicoplast and affected parasite growth. We found that a putative soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) protein, synaptosomal-associated protein 29 (TgSNAP29, Qbc SNARE), is required to maintain the apicoplast in T. gondii. TgSNAP29 depletion disrupted TgATG8 localization at the apicoplast. Additionally, we identified a putative ubiquitin-interacting motif-docking site (UDS) of TgATG8. Mutation of the UDS site abolished TgATG8 localization on the apicoplast but not lipidation. These findings suggest that the TgATG12-TgATG5-TgATG16L complex is required for biogenesis of the apicoplast, in which TgATG8 is translocated to the apicoplast via vesicles in a SNARE -dependent manner in T. gondii.Abbreviations: AID: auxin-inducible degron; CCD: coiled-coil domain; HFF: human foreskin fibroblast; IAA: indole-3-acetic acid; LAP: LC3-associated phagocytosis; NAA: 1-naphthaleneacetic acid; PtdIns3P: phosphatidylinositol-3-phosphate; SNARE: soluble N-ethylmaleimide sensitive factor attachment protein receptor; UDS: ubiquitin-interacting motif-docking site; UIM: ubiquitin-interacting motif.


Asunto(s)
Apicoplastos , Parásitos , Toxoplasma , Animales , Humanos , Toxoplasma/genética , Toxoplasma/metabolismo , Apicoplastos/genética , Apicoplastos/metabolismo , Etilmaleimida/metabolismo , Autofagia , Ubiquitinas/metabolismo , Proteínas Protozoarias/genética , Proteína 12 Relacionada con la Autofagia/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE , Proteína 5 Relacionada con la Autofagia/metabolismo
6.
J Ethnopharmacol ; 300: 115724, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36115599

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Danhong injection (DHI) is a renowned traditional Chinese medicine often used clinically to treat cardiovascular and cerebrovascular diseases. Studies have shown that DHI can significantly alter microRNA (miRNA) expression in the brain tissue. Therefore, exploring specific miRNAs' regulatory mechanisms during treatment with DHI is essential. AIM OF THE STUDY: To investigate DHI's regulatory mechanism on cerebral autophagy in rats with cerebral ischemia-reperfusion injury (CIRI). MATERIAL AND METHODS: Rats were randomly divided into the sham, middle cerebral artery occlusion (MCAO) model, and DHI-treatment groups. The extent of brain damage was evaluated using triphenyl tetrazolium chloride and hematoxylin-eosin staining. Hippocampal cell autophagy was observed using transmission electron microscopy. Autophagy-related proteins were analyzed using western blotting. Differentially expressed miRNAs were screened using high-throughput and real-time quantitative reverse transcription PCR. The relationship between miR-132-3p and ATG12 was confirmed using a dual-luciferase assay. The miR-132-3p mimics and inhibitors were transfected into PC12 cells subjected to oxygen-glucose deprivation (OGD) in vitro and MCAO model rats in vivo. RESULTS: DHI significantly altered the miRNA expression profile in rat brain tissues. The pathological changes in the brain tissues were improved, and the autophagic hippocampal cell vehicles were significantly reduced after DHI treatment. miRNA-132-3p, one of the miRNAs with a significantly different expression, was screened. Kyoto Encyclopedia of Genes and Genomes signal pathway analysis showed that its target genes were closely related to autophagy. Western blotting revealed that the p-PI3K, p-AKT, and mTOR expression increased significantly; AMPK, ULK1, ATG12, ATG16L1, and LC3II/I were downregulated in the DHI group. Dual-luciferase reporter gene experiments showed that miRNA-132-3p could target the ATG12 3'-UTR region directly. In vitro, miRNA-132-3p had a protective effect on OGD/R-induced oxidative stress injury in PC12 cells, improving cell viability, and affecting the expression of autophagy pathway-related proteins. In vivo transfection experiments showed that miR-132-3p could regulate ATG12 expression in CIRI rats' lateral brain tissue, affecting the autophagy signaling pathway. miR-132-3p overexpression reduces CIRI-induced autophagy and protects neurons. CONCLUSION: This study showed that DHI inhibits neuronal autophagy after cerebral ischemia-reperfusion. This may have resulted from miR-132-3p targeting ATG12 and regulating the autophagy signaling pathway protein expression.


Asunto(s)
Isquemia Encefálica , MicroARNs , Daño por Reperfusión , Proteínas Quinasas Activadas por AMP , Animales , Apoptosis , Autofagia , Proteína 12 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Isquemia Encefálica/metabolismo , Cloruros , Medicamentos Herbarios Chinos , Eosina Amarillenta-(YS)/farmacología , Eosina Amarillenta-(YS)/uso terapéutico , Glucosa/farmacología , Hematoxilina/farmacología , Hematoxilina/uso terapéutico , Infarto de la Arteria Cerebral Media/patología , MicroARNs/metabolismo , Oxígeno/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Ratas , Daño por Reperfusión/metabolismo , Serina-Treonina Quinasas TOR
7.
Cell Biochem Funct ; 40(7): 650-667, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36062813

RESUMEN

Autophagy, an intracellular conserved degradative process, plays a central role in the renewal/recycling of a cell to maintain the homeostasis of nutrients and energy within the cell. ATG5, a key component of autophagy, regulates the formation of the autophagosome, a hallmark of autophagy. ATG5 binds with ATG12 and ATG16L1 resulting in E3 like ligase complex, which is necessary for autophagosome expansion. Available data suggest that ATG5 is indispensable for autophagy and has an imperative role in several essential biological processes. Moreover, ATG5 has also been demonstrated to possess autophagy-independent functions that magnify its significance and therapeutic potential. ATG5 interacts with various molecules for the execution of different processes implicated during physiological and pathological conditions. Furthermore, ATG5 genetic variants are associated with various ailments. This review discusses various autophagy-dependent and autophagy-independent roles of ATG5, highlights its various deleterious genetic variants reported until now, and various studies supporting it as a potential drug target.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos , Proteína 12 Relacionada con la Autofagia/genética , Proteína 12 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Humanos , Ligasas , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo
8.
Environ Toxicol ; 37(9): 2302-2313, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35657166

RESUMEN

Paraquat (PQ), as a widely used herbicide, is highly toxic to human. PQ-induced pulmonary fibrosis is the main reason for respiratory failure and death. In PQ-poisoned mice, we find abundant senescent epithelial cells in the lung tissues, which can contribute to the activation of pulmonary fibroblasts. Ginsenoside Rg1 (Rg1), the main active component of ginseng, possess beneficial properties against aging. In our work, we aimed to investigate the potential protective effects of Rg1 on PQ-induced pulmonary fibrosis and the underlying mechanism. In vivo, the treatment of Rg1 can attenuate PQ-induced pulmonary fibrosis and decrease senescence and senescence associated secretory phenotype (SASP) expression. In vitro, Rg1 can effectively eliminate senescent cells via apoptosis, but not normal cells. In addition, we demonstrate that Rg1 can enhance autophagy activity via inducing the expression of ATG12. Inhibition of autophagy via 3-MA or transfection of the siRNA targeting ATG12 can impair the antiaging effect of Rg1. Taken together, our data implicates that Rg1 can protect pulmonary epithelial cells from PQ-induced cellular senescence in an ATG12 dependent manner, which may provide a preventive and therapeutic strategy for PQ poisoning-induced pulmonary fibrosis.


Asunto(s)
Proteína 12 Relacionada con la Autofagia , Ginsenósidos , Paraquat , Fibrosis Pulmonar , Animales , Autofagia , Proteína 12 Relacionada con la Autofagia/metabolismo , Senescencia Celular , Células Epiteliales/efectos de los fármacos , Ginsenósidos/farmacología , Ratones , Paraquat/toxicidad , Fibrosis Pulmonar/metabolismo
9.
Dev Comp Immunol ; 132: 104406, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35364136

RESUMEN

In innate immunity, autophagy is an important molecular mechanism that plays a critical role in the animal defense system. Given the importance of anti-microbial autophagy in the innate immune processes, the relationship between anti-microbial autophagy and LPS-induced innate immunity in A. pernyi was investigated. Quantitative RT-PCR analysis revealed that autophagy-related genes (ATG6, ATG5, and ATG12) were induced following LPS injection. LPS treatment in the Relish knockdown larvae reduced the expression of autophagy-related genes, especially ATG5. Furthermore, ATG5 depletion decreased the innate immune effect, while its over-expression with ATG12 was induced after the LPS challenge. The dual-luciferase assay revealed that Relish could regulate ATG5 expression by binding directly to the promoter of the ATG5 gene. Overall, our findings show that Relish regulates the ATG5 transcription to eliminate Gram-negative bacteria by anti-microbial autophagy, implying a strong connection between autophagy and innate immunity in immunologic homeostasis.


Asunto(s)
Lipopolisacáridos , Mariposas Nocturnas , Animales , Autofagia/fisiología , Proteína 12 Relacionada con la Autofagia/genética , Proteína 12 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Inmunidad Innata
10.
Autophagy ; 18(8): 1822-1840, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34870550

RESUMEN

Acquired chemotherapy resistance is one of the main culprits in the relapse of breast cancer. But the underlying mechanism of chemotherapy resistance remains elusive. Here, we demonstrate that a small adaptor protein, SH3BGRL, is not only elevated in the majority of breast cancer patients but also has relevance with the relapse and poor prognosis of breast cancer patients. Functionally, SH3BGRL upregulation enhances the chemoresistance of breast cancer cells to the first-line doxorubicin treatment through macroautophagic/autophagic protection. Mechanistically, SH3BGRL can unexpectedly bind to ribosomal subunits to enhance PIK3C3 translation efficiency and sustain ATG12 stability. Therefore, inhibition of autophagy or silence of PIK3C3 or ATG12 can effectively block the driving effect of SH3BGRL on doxorubicin resistance of breast cancer cells in vitro and in vivo. We also validate that SH3BGRL expression is positively correlated with that of PIK3C3 or ATG12, as well as the constitutive occurrence of autophagy in clinical breast cancer tissues. Taken together, our data reveal that SH3BGRL upregulation would be a key driver to the acquired chemotherapy resistance through autophagy enhancement in breast cancer while targeting SH3BGRL could be a potential therapeutic strategy against breast cancer.Abbreviations: ABCs: ATP-binding cassette transporters; Act D: actinomycin D; ACTB/ß-actin: actin beta; ATG: autophagy-related; Baf A1: bafilomycin A1; CASP3: caspase 3; CHX: cycloheximide; CQ: chloroquine; Dox: doxorubicin; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GEO: gene expression omnibus; GFP: green fluorescent protein; G6PD: glucose-6-phosphate dehydrogenase; GSEA: gene set enrichment analysis; IHC: immunochemistry; KEGG: Kyoto Encyclopedia of Genes and Genomes; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; 3-MA: 3-methyladenine; mRNA: messenger RNA; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; SH3BGRL: SH3 domain binding glutamate-rich protein-like; SQSTM1/p62: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1.


Asunto(s)
Proteína 12 Relacionada con la Autofagia , Autofagia , Neoplasias de la Mama , Fosfatidilinositol 3-Quinasas Clase III , Autofagia/fisiología , Proteína 12 Relacionada con la Autofagia/genética , Proteína 12 Relacionada con la Autofagia/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Recurrencia Local de Neoplasia , Proteínas
11.
Mol Cell ; 81(24): 5082-5098.e11, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34699746

RESUMEN

Cell state changes are associated with proteome remodeling to serve newly emergent cell functions. Here, we show that NGN2-driven conversion of human embryonic stem cells to induced neurons (iNeurons) is associated with increased PINK1-independent mitophagic flux that is temporally correlated with metabolic reprogramming to support oxidative phosphorylation. Global multiplex proteomics during neurogenesis revealed large-scale remodeling of functional modules linked with pluripotency, mitochondrial metabolism, and proteostasis. Differentiation-dependent mitophagic flux required BNIP3L and its LC3-interacting region (LIR) motif, and BNIP3L also promoted mitophagy in dopaminergic neurons. Proteomic analysis of ATG12-/- iNeurons revealed accumulation of endoplasmic reticulum, Golgi, and mitochondria during differentiation, indicative of widespread organelle remodeling during neurogenesis. This work reveals broad organelle remodeling of membrane-bound organelles during NGN2-driven neurogenesis via autophagy, identifies BNIP3L's central role in programmed mitophagic flux, and provides a proteomic resource for elucidating how organelle remodeling and autophagy alter the proteome during changes in cell state.


Asunto(s)
Células Madre Embrionarias Humanas/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/enzimología , Mitofagia , Células-Madre Neurales/enzimología , Neurogénesis , Neuronas/enzimología , Proteoma , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína 12 Relacionada con la Autofagia/genética , Proteína 12 Relacionada con la Autofagia/metabolismo , Línea Celular , Humanos , Proteínas de la Membrana/genética , Mitocondrias/genética , Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteostasis , Proteínas Proto-Oncogénicas/genética , Factores de Tiempo , Proteínas Supresoras de Tumor/genética
12.
Mol Biol Rep ; 48(10): 7041-7047, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34453672

RESUMEN

BACKGROUND: Autophagy process is an important defense mechanism against intracellular infection. This process plays a critical role in limiting the development of Toxoplasma gondii. This study aimed to investigate the effects of T. gondii profilin and tachyzoites on the expression of autophagy genes. METHODS AND RESULTS: PMA-activated THP-1 cell line was incubated with T. gondii profilin and tachyzoites for 6 h. After RNA extraction and cDNA synthesis, the expression of Atg5, Atg7, Atg12, and LC3b was evaluated using real-time PCR. The results revealed statistically significant downregulation of Atg5 for 1.43 (P-value = 0.0062) and 4.15 (P-value = 0.0178) folds after treatment with T. gondii profilin and tachyzoites, respectively. Similar to Atg 5, Atg 12 revealed a statistically significant downregulation for profilin (1.41 fold; P-value = 0.0047) and T. gondii tachyzoites (3.25 fold; P-value = 0.011). The expression of Atg7 elevated in both T. gondii profilin (2.083 fold; P-value = 0.0087) and tachyzoites (1.64 fold; P-value = 0.206). T. gondii profilin and tachyzoites downregulated (1.04 fold; P-value = 0.0028) and upregulated (twofold; P-value = 0.091) the expression of LC3b, respectively. CONCLUSIONS: Our findings suggest that T. gondii and profilin may manipulate autophagy via preventing from the formation of Atg5-12-16L complex to facilitate replication of T. gondii and development of toxoplasmosis.


Asunto(s)
Proteína 12 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/genética , Autofagia , Regulación hacia Abajo , Profilinas/metabolismo , Toxoplasma/metabolismo , Regulación hacia Arriba , Autofagia/genética , Proteína 12 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 7 Relacionada con la Autofagia/metabolismo , Regulación hacia Abajo/genética , Interacciones Huésped-Parásitos/genética , Humanos , Modelos Biológicos , Células THP-1 , Regulación hacia Arriba/genética
14.
Biol Pharm Bull ; 44(9): 1337-1343, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34193767

RESUMEN

Autophagy is an intracellular degradation system regulating cellular homeostasis. The two ubiquitin-like modification systems named the Atg8 system and the Atg12 system are essential for autophagy. Atg8 and Atg12 are ubiquitin-like proteins covalently conjugated with a phosphatidylethanolamine (PE) and Atg5, respectively, via enzymatic reactions. The Atg8-PE conjugate binds to autophagic membranes and recruits various proteins through direct interaction, whereas the Atg12-Atg5 conjugate recognizes Atg3, the E2 enzyme for Atg8, and facilitates Atg8-PE conjugation by functioning as the E3 enzyme. Although structural and biochemical analyses have well established the Atg8-family interacting motif (AIM), studies on the interacting sequence for Atg12 are rare (only one example for human ATG12-ATG3), thereby making it challenging to define a binding motif. Here we determined the crystal structure of the plant ATG12b as a complex with the ATG12b-binding region of ATG3 and revealed that ATG12b recognizes the aspartic acid (Asp)-methionine (Met) motif in ATG3 via a hydrophobic pocket and a basic residue, which we confirmed critical for the complex formation by mutational analysis. This recognition mode is similar to that reported between human ATG12 and ATG3, suggesting that the Asp-Met sequence is a conserved Atg12-interacting motif (AIM12). These data suggest that AIM12 mediates E2-E3 interaction during Atg8 lipidation and provide structural basis for developing chemicals that regulate autophagy by targeting Atg12-family proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteína 12 Relacionada con la Autofagia/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas de Plantas/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Secuencias de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/ultraestructura , Proteína 12 Relacionada con la Autofagia/genética , Proteína 12 Relacionada con la Autofagia/ultraestructura , Proteína 5 Relacionada con la Autofagia/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/ultraestructura , Cristalografía por Rayos X , Mutagénesis Sitio-Dirigida , Fosfatidiletanolaminas/metabolismo , Proteínas de Plantas/ultraestructura
15.
Int J Mol Sci ; 22(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066497

RESUMEN

Autophagy is an intracellular process in all eukaryotes which is responsible for the degradation of cytoplasmic constituents, recycling of organelles, and recycling of proteins. It is an important cellular process responsible for the effective virulence of several pathogenic plant fungal strains, having critical impacts on important crop plants including potatoes. However, the detailed physiological mechanisms of autophagy involved in the infection biology of soil-borne pathogens in the potato crop needs to be investigated further. In this study, the autophagy-related gene, FoATG12, in potato dry rot fungus Fusarium oxysporum was investigated by means of target gene replacement and overexpression. The deletion mutant ∆FoATG12 showed reduction in conidial formation and exhibited impaired aerial hyphae. The FoATG12 affected the expression of genes involved in pathogenicity and vegetative growth, as well as on morphology features of the colony under stressors. It was found that the disease symptoms were delayed upon being inoculated by the deletion mutant of FoATG12 compared to the wild-type (WT) and overexpression (OE), while the deletion mutant showed the disease symptoms on tomato plants. The results confirmed the significant role of the autophagy-related ATG12 gene in the production of aerial hyphae and the effective virulence of F. oxysporum in the potato crop. The current findings provid an enhanced gene-level understanding of the autophagy-related virulence of F. oxysporum, which could be helpful in pathogen control research and could have vital impacts on the potato crop.


Asunto(s)
Proteína 12 Relacionada con la Autofagia/genética , Autofagia/genética , Proteínas Fúngicas/genética , Fusarium/citología , Fusarium/genética , Genes Fúngicos , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Proteína 12 Relacionada con la Autofagia/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/patogenicidad , Regulación Fúngica de la Expresión Génica , Hifa/crecimiento & desarrollo , Mutación/genética , Fenotipo , Enfermedades de las Plantas/genética , Esporas Fúngicas/crecimiento & desarrollo , Estrés Fisiológico/genética
16.
Int J Mol Med ; 47(6)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33907824

RESUMEN

Circular (circ)RNA has been demonstrated to serve crucial roles in cell proliferation, differentiation and autophagy. However, to date, the function and mechanism of action of circRNA in preeclampsia have not been reported. The present study aimed to analyze the roles of circRNA­0004904 in preeclampsia and to clarify its underlying pathogenic mechanism. The expression levels of circ­0004904, microRNA (miR)­570 and autophagy­related 12 (ATG12) were detected by reverse transcription­quantitative (RT­q)PCR. In addition, the protein levels of ATG12, vascular endothelial growth factor (VEGF) and fused in sarcoma (FUS) were determined by western blot assay. The distribution of mRFP­GFP­LC3 in HTR8 and JEG3 cells was analyzed by confocal microscopy. Fluorescence in situ hybridization assay was utilized to identify the colocalization of circ­0004904 and miR­570. Cell proliferation was determined by 5­ethynyl­2'­deoxyuridine assay, and invasion was evaluated by Matrigel invasion assay. The results of the present study demonstrated that the expression levels of circ­0004904 were elevated in the placental tissues and plasma samples of patients with preeclampsia compared with those in the control group samples. Ectopic expression of circ­0004904 promoted autophagy, but inhibited migration and proliferation of HTR8 cells compared with those in the negative control group. Silencing of circ­0004904 inhibited autophagy, and induced migration and proliferation in JEG3 cells compared with those in the negative control group. In addition, circ­0004904 regulated the levels of ATG12 via interaction with miR­570. Furthermore, circ­0004904 regulated the FUS/VEGF axis in HTR8 and JEG3 cells. In conclusion, circ­0004904 was abnormally expressed in the plasma and placental tissues of patients with preeclampsia. In addition, circ­0004904 was involved in the regulation of proliferation, invasion and autophagy in HTR8 and JEG3 cells. Thus, circ­0004904 may be used as a potential diagnostic biomarker and therapeutic target for preeclampsia.


Asunto(s)
Autofagia/genética , Preeclampsia/genética , ARN Circular/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Transducción de Señal , Factores de Crecimiento Endotelial Vascular/metabolismo , Adulto , Proteína 12 Relacionada con la Autofagia/genética , Proteína 12 Relacionada con la Autofagia/metabolismo , Secuencia de Bases , Línea Celular , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Regulación de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Embarazo , ARN Circular/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Adulto Joven
17.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673233

RESUMEN

Autophagy is an intracellular self-devouring system that plays a central role in cellular recycling. The formation of functional autophagosomes depends on several autophagy-related proteins, including the microtubule-associated proteins 1A/1B light chain 3 (LC3) and the conserved autophagy-related gene 12 (Atg12). We have recently developed a novel scanning electron-assisted dielectric microscope (SE-ADM) for nanoscale observations of intact cells. Here, we used the SE-ADM system to observe LC3- and Atg12-containing autophagosomes in cells labelled in the culture medium with antibodies conjugated to colloidal gold particles. We observed that, during autophagosome formation, Atg12 localized along the actin meshwork structure, whereas LC3 formed arcuate or circular alignments. Our system also showed a difference in the distribution of LC3 and Atg12; Atg12 was broadly distributed while LC3 was more localized. The difference in the spatial distribution demonstrated by our system explains the difference in the size of fluorescent spots due to the fluorescently labelled antibodies observed using optical microscopy. The direct SE-ADM observation of cells should thus be effective in analyses of autophagosome formation.


Asunto(s)
Autofagosomas , Proteína 12 Relacionada con la Autofagia/metabolismo , Microscopía Electrónica de Rastreo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Línea Celular Tumoral , Ratones , Ratas
18.
PLoS Genet ; 17(3): e1009415, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33730050

RESUMEN

Neurodegenerative diseases are characterized by neuron loss and accumulation of undegraded protein aggregates. These phenotypes are partially due to defective protein degradation in neuronal cells. Autophagic clearance of aggregated proteins is critical to protein quality control, but the underlying mechanisms are still poorly understood. Here we report the essential role of WDR81 in autophagic clearance of protein aggregates in models of Huntington's disease (HD), Parkinson's disease (PD) and Alzheimer's disease (AD). In hippocampus and cortex of patients with HD, PD and AD, protein level of endogenous WDR81 is decreased but autophagic receptor p62 accumulates significantly. WDR81 facilitates the recruitment of autophagic proteins onto Htt polyQ aggregates and promotes autophagic clearance of Htt polyQ subsequently. The BEACH and MFS domains of WDR81 are sufficient for its recruitment onto Htt polyQ aggregates, and its WD40 repeats are essential for WDR81 interaction with covalent bound ATG5-ATG12. Reduction of WDR81 impairs the viability of mouse primary neurons, while overexpression of WDR81 restores the viability of fibroblasts from HD patients. Notably, in Caenorhabditis elegans, deletion of the WDR81 homolog (SORF-2) causes accumulation of p62 bodies and exacerbates neuron loss induced by overexpressed α-synuclein. As expected, overexpression of SORF-2 or human WDR81 restores neuron viability in worms. These results demonstrate that WDR81 has crucial evolutionarily conserved roles in autophagic clearance of protein aggregates and maintenance of cell viability under pathological conditions, and its reduction provides mechanistic insights into the pathogenesis of HD, PD, AD and brain disorders related to WDR81 mutations.


Asunto(s)
Autofagia/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Agregado de Proteínas , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Proteína 12 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteínas Portadoras , Supervivencia Celular/genética , Susceptibilidad a Enfermedades , Técnica del Anticuerpo Fluorescente , Expresión Génica , Humanos , Modelos Biológicos , Mutación , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Unión Proteica
19.
Commun Biol ; 4(1): 1, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33398033

RESUMEN

Disorders of autophagy, a key regulator of cellular homeostasis, cause a number of human diseases. Due to the role of autophagy in metabolic dysregulation, there is a need to identify autophagy regulators as therapeutic targets. To address this need, we conducted an autophagy phenotype-based screen and identified the natural compound kaempferide (Kaem) as an autophagy enhancer. Kaem promoted autophagy through translocation of transcription factor EB (TFEB) without MTOR perturbation, suggesting it is safe for administration. Moreover, Kaem accelerated lipid droplet degradation in a lysosomal activity-dependent manner in vitro and ameliorated metabolic dysregulation in a diet-induced obesity mouse model. To elucidate the mechanism underlying Kaem's biological activity, the target protein was identified via combined drug affinity responsive target stability and LC-MS/MS analyses. Kaem directly interacted with the mitochondrial elongation factor TUFM, and TUFM absence reversed Kaem-induced autophagy and lipid degradation. Kaem also induced mitochondrial reactive oxygen species (mtROS) to sequentially promote lysosomal Ca2+ efflux, TFEB translocation and autophagy induction, suggesting a role of TUFM in mtROS regulation. Collectively, these results demonstrate that Kaem is a potential therapeutic candidate/chemical tool for treating metabolic dysregulation and reveal a role for TUFM in autophagy for metabolic regulation with lipid overload.


Asunto(s)
Autofagia/efectos de los fármacos , Quempferoles/uso terapéutico , Metabolismo de los Lípidos/efectos de los fármacos , Síndrome Metabólico/tratamiento farmacológico , Proteínas Mitocondriales/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Animales , Proteína 12 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Evaluación Preclínica de Medicamentos , Células HeLa , Humanos , Quempferoles/farmacología , Ratones , Ratones Endogámicos C57BL
20.
J Mol Biol ; 433(5): 166809, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33484718

RESUMEN

Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12-Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12-Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113-131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64-99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.


Asunto(s)
Proteína 12 Relacionada con la Autofagia/química , Proteína 5 Relacionada con la Autofagia/química , Familia de las Proteínas 8 Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/química , Membrana Celular/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Autofagia/genética , Proteína 12 Relacionada con la Autofagia/genética , Proteína 12 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/deficiencia , Proteínas Relacionadas con la Autofagia/genética , Sitios de Unión , Membrana Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas/química , Liposomas/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA