Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 618(7965): 625-633, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258679

RESUMEN

Motile cilia and flagella beat rhythmically on the surface of cells to power the flow of fluid and to enable spermatozoa and unicellular eukaryotes to swim. In humans, defective ciliary motility can lead to male infertility and a congenital disorder called primary ciliary dyskinesia (PCD), in which impaired clearance of mucus by the cilia causes chronic respiratory infections1. Ciliary movement is generated by the axoneme, a molecular machine consisting of microtubules, ATP-powered dynein motors and regulatory complexes2. The size and complexity of the axoneme has so far prevented the development of an atomic model, hindering efforts to understand how it functions. Here we capitalize on recent developments in artificial intelligence-enabled structure prediction and cryo-electron microscopy (cryo-EM) to determine the structure of the 96-nm modular repeats of axonemes from the flagella of the alga Chlamydomonas reinhardtii and human respiratory cilia. Our atomic models provide insights into the conservation and specialization of axonemes, the interconnectivity between dyneins and their regulators, and the mechanisms that maintain axonemal periodicity. Correlated conformational changes in mechanoregulatory complexes with their associated axonemal dynein motors provide a mechanism for the long-hypothesized mechanotransduction pathway to regulate ciliary motility. Structures of respiratory-cilia doublet microtubules from four individuals with PCD reveal how the loss of individual docking factors can selectively eradicate periodically repeating structures.


Asunto(s)
Axonema , Cilios , Trastornos de la Motilidad Ciliar , Flagelos , Mecanotransducción Celular , Humanos , Masculino , Inteligencia Artificial , Dineínas Axonemales/química , Dineínas Axonemales/metabolismo , Dineínas Axonemales/ultraestructura , Axonema/química , Axonema/metabolismo , Axonema/ultraestructura , Cilios/química , Cilios/metabolismo , Cilios/ultraestructura , Microscopía por Crioelectrón , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestructura , Microtúbulos/metabolismo , Chlamydomonas reinhardtii , Trastornos de la Motilidad Ciliar/metabolismo , Trastornos de la Motilidad Ciliar/patología , Trastornos de la Motilidad Ciliar/fisiopatología , Movimiento , Conformación Proteica
2.
PLoS Genet ; 17(2): e1009306, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33635866

RESUMEN

Axonemal protein complexes, such as outer (ODA) and inner (IDA) dynein arms, are responsible for the generation and regulation of flagellar and ciliary beating. Studies in various ciliated model organisms have shown that axonemal dynein arms are first assembled in the cell cytoplasm and then delivered into axonemes during ciliogenesis. In humans, mutations in genes encoding for factors involved in this process cause structural and functional defects of motile cilia in various organs such as the airways and result in the hereditary disorder primary ciliary dyskinesia (PCD). Despite extensive knowledge about the cytoplasmic assembly of axonemal dynein arms in respiratory cilia, this process is still poorly understood in sperm flagella. To better define its clinical relevance on sperm structure and function, and thus male fertility, further investigations are required. Here we report the fertility status in different axonemal dynein preassembly mutant males (DNAAF2/ KTU, DNAAF4/ DYX1C1, DNAAF6/ PIH1D3, DNAAF7/ZMYND10, CFAP300/C11orf70 and LRRC6). Besides andrological examinations, we functionally and structurally analyzed sperm flagella of affected individuals by high-speed video- and transmission electron microscopy as well as systematically compared the composition of dynein arms in sperm flagella and respiratory cilia by immunofluorescence microscopy. Furthermore, we analyzed the flagellar length in dynein preassembly mutant sperm. We found that the process of axonemal dynein preassembly is also critical in sperm, by identifying defects of ODAs and IDAs in dysmotile sperm of these individuals. Interestingly, these mutant sperm consistently show a complete loss of ODAs, while some respiratory cilia from the same individual can retain ODAs in the proximal ciliary compartment. This agrees with reports of solely one distinct ODA type in sperm, compared to two different ODA types in proximal and distal respiratory ciliary axonemes. Consistent with observations in model organisms, we also determined a significant reduction of sperm flagellar length in these individuals. These findings are relevant to subsequent studies on the function and composition of sperm flagella in PCD patients and non-syndromic infertile males. Our study contributes to a better understanding of the fertility status in PCD-affected males and should help guide genetic and andrological counselling for affected males and their families.


Asunto(s)
Dineínas Axonemales/metabolismo , Axonema/metabolismo , Cilios/metabolismo , Flagelos/metabolismo , Infertilidad Masculina/metabolismo , Espermatozoides/metabolismo , Dineínas Axonemales/genética , Dineínas Axonemales/ultraestructura , Axonema/genética , Axonema/ultraestructura , Cilios/genética , Estudios de Cohortes , Citoplasma/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Flagelos/genética , Flagelos/ultraestructura , Humanos , Infertilidad Masculina/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Microscopía Electrónica de Transmisión , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Espermatozoides/ultraestructura
3.
Zoolog Sci ; 37(6): 512-518, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33269866

RESUMEN

A mucous secreting organ in ascidians, the endostyle, consists of several epithelial zones with different ciliary length, density, and beating direction. Here we found by transmission electron microscopy that long cilia in endostyle zone 1 showed 9 + 2 axonemal structures but completely lacked the outer arm dynein. In contrast, cilia in other zones bore both outer and inner dynein arms. Western blotting and immunofluorescence microscopy further revealed that zone 1 appeared to lack not only outer arm dynein but also two-headed inner arm dynein. These results suggest a mechanism for a region-specific gene suppression that causes the limited loss of two-headed axonemal dyneins in the endostyle epithelium. The loss of these dyneins in zone 1 is considered to contribute to the generation of undulating ciliary movement that is essential for a unique circuit of mucus flow in the endostyle.


Asunto(s)
Cilios/ultraestructura , Ciona intestinalis/ultraestructura , Animales , Dineínas Axonemales/genética , Dineínas Axonemales/ultraestructura , Ciona intestinalis/citología , Ciona intestinalis/genética , Flagelos/ultraestructura , Masculino , Microscopía Electrónica de Transmisión , Espermatozoides/ultraestructura
4.
Int J Mol Sci ; 21(8)2020 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-32325779

RESUMEN

In eukaryotic cilia and flagella, various types of axonemal dyneins orchestrate their distinct functions to generate oscillatory bending of axonemes. The force-generating mechanism of dyneins has recently been well elucidated, mainly in cytoplasmic dyneins, thanks to progress in single-molecule measurements, X-ray crystallography, and advanced electron microscopy. These techniques have shed light on several important questions concerning what conformational changes accompany ATP hydrolysis and whether multiple motor domains are coordinated in the movements of dynein. However, due to the lack of a proper expression system for axonemal dyneins, no atomic coordinates of the entire motor domain of axonemal dynein have been reported. Therefore, a substantial amount of knowledge on the molecular architecture of axonemal dynein has been derived from electron microscopic observations on dynein arms in axonemes or on isolated axonemal dynein molecules. This review describes our current knowledge and perspectives of the force-generating mechanism of axonemal dyneins in solo and in ensemble.


Asunto(s)
Adenosina Trifosfato/metabolismo , Dineínas Axonemales/química , Flagelos/metabolismo , Microtúbulos/metabolismo , Animales , Dineínas Axonemales/metabolismo , Dineínas Axonemales/ultraestructura , Axonema/química , Axonema/metabolismo , Cilios/metabolismo , Cristalografía por Rayos X , Dineínas Citoplasmáticas/metabolismo , Flagelos/ultraestructura
5.
Elife ; 82019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31264960

RESUMEN

Dyneins are motor proteins responsible for transport in the cytoplasm and the beating of axonemes in cilia and flagella. They bind and release microtubules via a compact microtubule-binding domain (MTBD) at the end of a coiled-coil stalk. We address how cytoplasmic and axonemal dynein MTBDs bind microtubules at near atomic resolution. We decorated microtubules with MTBDs of cytoplasmic dynein-1 and axonemal dynein DNAH7 and determined their cryo-EM structures using helical Relion. The majority of the MTBD is rigid upon binding, with the transition to the high-affinity state controlled by the movement of a single helix at the MTBD interface. DNAH7 contains an 18-residue insertion, found in many axonemal dyneins, that contacts the adjacent protofilament. Unexpectedly, we observe that DNAH7, but not dynein-1, induces large distortions in the microtubule cross-sectional curvature. This raises the possibility that dynein coordination in axonemes is mediated via conformational changes in the microtubule.


Asunto(s)
Dineínas Axonemales/química , Dineínas Axonemales/metabolismo , Microscopía por Crioelectrón , Microtúbulos/química , Microtúbulos/ultraestructura , Secuencia de Aminoácidos , Animales , Dineínas Axonemales/ultraestructura , Humanos , Ratones , Microtúbulos/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Tubulina (Proteína)/metabolismo
6.
Elife ; 72018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29741156

RESUMEN

Construction of motile cilia/flagella requires cytoplasmic preassembly of axonemal dyneins before transport into cilia. Axonemal dyneins have various subtypes, but the roles of each dynein subtype and their assembly processes remain elusive in vertebrates. The PIH protein family, consisting of four members, has been implicated in the assembly of different dynein subtypes, although evidence for this idea is sparse. Here, we established zebrafish mutants of all four PIH-protein genes: pih1d1, pih1d2, ktu, and twister, and analyzed the structures of axonemal dyneins in mutant spermatozoa by cryo-electron tomography. Mutations caused the loss of specific dynein subtypes, which was correlated with abnormal sperm motility. We also found organ-specific compositions of dynein subtypes, which could explain the severe motility defects of mutant Kupffer's vesicle cilia. Our data demonstrate that all vertebrate PIH proteins are differently required for cilia/flagella motions and the assembly of axonemal dyneins, assigning specific dynein subtypes to each PIH protein.


Asunto(s)
Dineínas Axonemales/metabolismo , Multimerización de Proteína , Espermatozoides/química , Espermatozoides/fisiología , Proteínas de Pez Cebra/metabolismo , Animales , Dineínas Axonemales/ultraestructura , Movimiento Celular , Cilios/química , Cilios/fisiología , Microscopía por Crioelectrón , Flagelos/química , Flagelos/fisiología , Masculino , Movimiento (Física) , Pez Cebra , Proteínas de Pez Cebra/genética
7.
Am J Hum Genet ; 102(5): 956-972, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727692

RESUMEN

Primary ciliary dyskinesia (PCD) is a genetically and phenotypically heterogeneous disorder characterized by destructive respiratory disease and laterality abnormalities due to randomized left-right body asymmetry. PCD is mostly caused by mutations affecting the core axoneme structure of motile cilia that is essential for movement. Genes that cause PCD when mutated include a group that encode proteins essential for the assembly of the ciliary dynein motors and the active transport process that delivers them from their cytoplasmic assembly site into the axoneme. We screened a cohort of affected individuals for disease-causing mutations using a targeted next generation sequencing panel and identified two unrelated families (three affected children) with mutations in the uncharacterized C11orf70 gene (official gene name CFAP300). The affected children share a consistent PCD phenotype from early life with laterality defects and immotile respiratory cilia displaying combined loss of inner and outer dynein arms (IDA+ODA). Phylogenetic analysis shows C11orf70 is highly conserved, distributed across species similarly to proteins involved in the intraflagellar transport (IFT)-dependant assembly of axonemal dyneins. Paramecium C11orf70 RNAi knockdown led to combined loss of ciliary IDA+ODA with reduced cilia beating and swim velocity. Tagged C11orf70 in Paramecium and Chlamydomonas localizes mainly in the cytoplasm with a small amount in the ciliary component. IFT139/TTC21B (IFT-A protein) and FLA10 (IFT kinesin) depletion experiments show that its transport within cilia is IFT dependent. During ciliogenesis, C11orf70 accumulates at the ciliary tips in a similar distribution to the IFT-B protein IFT46. In summary, C11orf70 is essential for assembly of dynein arms and C11orf70 mutations cause defective cilia motility and PCD.


Asunto(s)
Dineínas Axonemales/metabolismo , Trastornos de la Motilidad Ciliar/genética , Proteínas del Citoesqueleto/genética , Flagelos/metabolismo , Mutación/genética , Proteínas Nucleares/genética , Alelos , Secuencia de Aminoácidos , Dineínas Axonemales/ultraestructura , Secuencia de Bases , Transporte Biológico , Diferenciación Celular/genética , Chlamydomonas/metabolismo , Secuencia Conservada/genética , Flagelos/ultraestructura , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Proteínas Nucleares/química , Paramecium/metabolismo , Paramecium/ultraestructura , Transcripción Genética
8.
J Biophotonics ; 10(4): 503-510, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27274004

RESUMEN

Label-free optical nano-imaging of dendritic structures and intracellular granules in biological cells is demonstrated using a bright and homogeneous nanometric light source. The optical nanometric light source is excited using a focused electron beam. A zinc oxide (ZnO) luminescent thin film was fabricated by atomic layer deposition (ALD) to produce the nanoscale light source. The ZnO film formed by ALD emitted the bright, homogeneous light, unlike that deposited by another method. The dendritic structures of label-free macrophage receptor with collagenous structure-expressing CHO cells were clearly visualized below the diffraction limit. The inner fiber structure was observed with 120 nm spatial resolution. Because the bright homogeneous emission from the ZnO film suppresses the background noise, the signal-to-noise ratio (SNR) for the imaging results was greater than 10. The ALD method helps achieve an electron beam excitation assisted microscope with high spatial resolution and high SNR.


Asunto(s)
Microscopía , Imagen Óptica , Estimulación Luminosa , Animales , Dineínas Axonemales/ultraestructura , Células CHO , Cricetulus , Diseño de Equipo , Oro , Nanopartículas del Metal , Microscopía/instrumentación , Imagen Óptica/instrumentación , Estimulación Luminosa/instrumentación , Receptores Inmunológicos/metabolismo , Óxido de Zinc
9.
Science ; 346(6211): 857-60, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25395538

RESUMEN

Existence of cellular structures with specific size raises a fundamental question in biology: How do cells measure length? One conceptual answer to this question is by a molecular ruler, but examples of such rulers in eukaryotes are lacking. In this work, we identified a molecular ruler in eukaryotic cilia and flagella. Using cryo-electron tomography, we found that FAP59 and FAP172 form a 96-nanometer (nm)-long complex in Chlamydomonas flagella and that the absence of the complex disrupted 96-nm repeats of axonemes. Furthermore, lengthening of the FAP59/172 complex by domain duplication resulted in extension of the repeats up to 128 nm, as well as duplication of specific axonemal components. Thus, the FAP59/172 complex is the molecular ruler that determines the 96-nm repeat length and arrangements of components in cilia and flagella.


Asunto(s)
Dineínas Axonemales/química , Chlamydomonas/fisiología , Flagelos/fisiología , Dineínas Axonemales/genética , Dineínas Axonemales/ultraestructura , Chlamydomonas/ultraestructura , Cilios/fisiología , Cilios/ultraestructura , Células Eucariotas/fisiología , Células Eucariotas/ultraestructura , Flagelos/ultraestructura , Conformación Proteica
10.
Ultrastruct Pathol ; 38(4): 248-55, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23957500

RESUMEN

Abstract Diagnosis of primary ciliary dyskinesia (PCD) by identification of dynein arm loss in transmission electron microscopy (TEM) images can be confounded by high background noise due to random electron-dense material within the ciliary matrix, leading to diagnostic uncertainty even for experienced morphologists. The authors developed a novel image analysis tool to average the axonemal peripheral microtubular doublets, thereby increasing microtubular signal and reducing random background noise. In a randomized, double-blinded study that compared two experienced morphologists and three different diagnostic approaches, they found that use of this tool led to improvement in diagnostic TEM test performance.


Asunto(s)
Dineínas Axonemales/ultraestructura , Interpretación de Imagen Asistida por Computador/métodos , Síndrome de Kartagener/diagnóstico , Microscopía Electrónica de Transmisión/métodos , Método Doble Ciego , Humanos , Reproducibilidad de los Resultados
11.
Nat Genet ; 45(3): 262-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23354437

RESUMEN

Primary ciliary dyskinesia (PCD) is characterized by dysfunction of respiratory cilia and sperm flagella and random determination of visceral asymmetry. Here, we identify the DRC1 subunit of the nexin-dynein regulatory complex (N-DRC), an axonemal structure critical for the regulation of dynein motors, and show that mutations in the gene encoding DRC1, CCDC164, are involved in PCD pathogenesis. Loss-of-function mutations disrupting DRC1 result in severe defects in assembly of the N-DRC structure and defective ciliary movement in Chlamydomonas reinhardtii and humans. Our results highlight a role for N-DRC integrity in regulating ciliary beating and provide the first direct evidence that mutations in DRC genes cause human disease.


Asunto(s)
Proteínas Algáceas/genética , Proteínas Portadoras/genética , Chlamydomonas , Cilios , Trastornos de la Motilidad Ciliar , Síndrome de Kartagener , Proteínas Asociadas a Microtúbulos/genética , Secuencia de Aminoácidos , Dineínas Axonemales/genética , Dineínas Axonemales/metabolismo , Dineínas Axonemales/ultraestructura , Axonema/genética , Axonema/metabolismo , Axonema/ultraestructura , Chlamydomonas/genética , Chlamydomonas/metabolismo , Chlamydomonas/ultraestructura , Cilios/genética , Cilios/metabolismo , Cilios/ultraestructura , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/patología , Citoesqueleto/genética , Citoesqueleto/metabolismo , Humanos , Síndrome de Kartagener/genética , Síndrome de Kartagener/metabolismo , Síndrome de Kartagener/fisiopatología , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Mutación , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Cola del Espermatozoide/metabolismo , Cola del Espermatozoide/ultraestructura
12.
Structure ; 20(10): 1670-80, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-22863569

RESUMEN

Dynein ATPases are the largest known cytoskeletal motors and perform critical functions in cells: carrying cargo along microtubules in the cytoplasm and powering flagellar beating. Dyneins are members of the AAA+ superfamily of ring-shaped enzymes, but how they harness this architecture to produce movement is poorly understood. Here, we have used cryo-EM to determine 3D maps of native flagellar dynein-c and a cytoplasmic dynein motor domain in different nucleotide states. The structures show key sites of conformational change within the AAA+ ring and a large rearrangement of the "linker" domain, involving a hinge near its middle. Analysis of a mutant in which the linker "undocks" from the ring indicates that linker remodeling requires energy that is supplied by interactions with the AAA+ modules. Fitting the dynein-c structures into flagellar tomograms suggests how this mechanism could drive sliding between microtubules, and also has implications for cytoplasmic cargo transport.


Asunto(s)
Adenosina Trifosfato/química , Dineínas Axonemales/química , Chlamydomonas reinhardtii/enzimología , Dictyostelium/enzimología , Adenosina Difosfato/química , Dineínas Axonemales/ultraestructura , Axonema/ultraestructura , Microscopía por Crioelectrón , Microscopía por Video , Microtúbulos/química , Microtúbulos/ultraestructura , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/ultraestructura , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/ultraestructura , Homología Estructural de Proteína
13.
Cytoskeleton (Hoboken) ; 67(6): 365-72, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20517924

RESUMEN

Chlamydomonas axonemal extracts containing outer-arm dynein bundle microtubules when added in the absence of ATP. The bundles dissociate after addition of ATP (Haimo et al., Proc Natl Acad Sci USA 76:5759-5768, 1979). In the present study, we investigated the ATP-induced bundle dissociation process using caged ATP. Application of approximately 0.5 mM ATP induced microtubule sliding at approximately 30 microm.s(-1), which was 1.5 times faster than the microtubule sliding observed in protease-treated axonemes and five times faster than microtubule gliding on glass surfaces coated with outer-arm dynein. Bundles formed by mutant dynein molecules that lack one of the three heavy chains (HCs) displayed similar high-speed intermicrotubule sliding. These results suggest that Chlamydomonas outer-arm dynein molecules, when aligned, can translocate microtubules at high speed and that the high-speed sliding under load-free conditions does not require the complete set of the three HCs. It is likely that each of the three HCs has the ability to produce high-speed sliding, which should be an important property for their cooperation.


Asunto(s)
Dineínas Axonemales/metabolismo , Chlamydomonas/metabolismo , Adenosina Trifosfato/metabolismo , Dineínas Axonemales/ultraestructura , Extractos Celulares , Chlamydomonas/ultraestructura , Electroforesis en Gel de Poliacrilamida , Cinética , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Mutación/genética , Fotólisis
14.
J Cell Biol ; 187(6): 921-33, 2009 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-20008568

RESUMEN

Cilia and flagella are highly conserved microtubule (MT)-based organelles with motile and sensory functions, and ciliary defects have been linked to several human diseases. The 9 + 2 structure of motile axonemes contains nine MT doublets interconnected by nexin links, which surround a central pair of singlet MTs. Motility is generated by the orchestrated activity of thousands of dynein motors, which drive interdoublet sliding. A key regulator of motor activity is the dynein regulatory complex (DRC), but detailed structural information is lacking. Using cryoelectron tomography of wild-type and mutant axonemes from Chlamydomonas reinhardtii, we visualized the DRC in situ at molecular resolution. We present the three-dimensional structure of the DRC, including a model for its subunit organization and intermolecular connections that establish the DRC as a major regulatory node. We further demonstrate that the DRC is the nexin link, which is thought to be critical for the generation of axonemal bending.


Asunto(s)
Dineínas Axonemales/ultraestructura , Movimiento Celular , Chlamydomonas reinhardtii/ultraestructura , Cilios/ultraestructura , Flagelos/ultraestructura , Proteínas Asociadas a Microtúbulos/ultraestructura , Transducción de Señal , Dineínas Axonemales/química , Dineínas Axonemales/genética , Sitios de Unión , Movimiento Celular/genética , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Cilios/química , Microscopía por Crioelectrón , Flagelos/química , Genotipo , Imagenología Tridimensional , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Modelos Moleculares , Mutación , Fenotipo , Conformación Proteica , Estructura Terciaria de Proteína , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA