RESUMEN
The two-component system GacS/A and the posttranscriptional control system Rsm constitute a genetic regulation pathway in Gammaproteobacteria; in some species of Pseudomonas, this pathway is part of a multikinase network (MKN) that regulates the activity of the Rsm system. In this network, the activity of GacS is controlled by other kinases. One of the most studied MKNs is the MKN-GacS of Pseudomonas aeruginosa, where GacS is controlled by the kinases RetS and LadS; RetS decreases the kinase activity of GacS, whereas LadS stimulates the activity of the central kinase GacS. Outside of the Pseudomonas genus, the network has been studied only in Azotobacter vinelandii. In this work, we report the study of the RetS kinase of A. vinelandii; as expected, the phenotypes affected in gacS mutants, such as production of alginates, polyhydroxybutyrate, and alkylresorcinols and swimming motility, were also affected in retS mutants. Interestingly, our data indicated that RetS in A. vinelandii acts as a positive regulator of GacA activity. Consistent with this finding, mutation in retS also negatively affected the expression of small regulatory RNAs belonging to the Rsm family. We also confirmed the interaction of RetS with GacS, as well as with the phosphotransfer protein HptB.
Asunto(s)
Alginatos , Azotobacter vinelandii , Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Azotobacter vinelandii/genética , Azotobacter vinelandii/enzimología , Azotobacter vinelandii/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Alginatos/metabolismo , Resorcinoles/metabolismo , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Poliésteres/metabolismo , Hidroxibutiratos/metabolismoRESUMEN
Non-symbiotic N2-fixation would greatly increase the versatility of N-biofertilizers for sustainable agriculture. Genetic modification of diazotrophic bacteria has successfully enhanced NH4+ release. In this study, we compared the competitive fitness of A. vinelandii mutant strains, which allowed us to analyze the burden of NH4+ release under a broad dynamic range. Long-term competition assays under regular culture conditions confirmed a large burden for NH4+ release, exclusion by the wt strain, phenotypic instability, and loss of the ability to release NH4+. In contrast, co-inoculation in mild autoclaved soil showed a much longer co-existence with the wt strain and a stable NH4+ release phenotype. All genetically modified strains increased the N content and changed its chemical speciation in the soil. This study contributes one step forward towards bridging a knowledge gap between molecular biology laboratory research and the incorporation of N from the air into the soil in a molecular species suitable for plant nutrition, a crucial requirement for developing improved bacterial inoculants for economic and environmentally sustainable agriculture. KEY POINTS: ⢠Genetic engineering for NH4+ excretion imposes a fitness burden on the culture medium ⢠Large phenotypic instability for NH4+-excreting bacteria in culture medium ⢠Lower fitness burden and phenotypic instability for NH4+-excreting bacteria in soil.
Asunto(s)
Compuestos de Amonio , Azotobacter vinelandii , Microbiología del Suelo , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Compuestos de Amonio/metabolismo , Fijación del Nitrógeno , Nitrógeno/metabolismo , Aptitud Genética , Fenotipo , Suelo/química , Medios de Cultivo/química , Ingeniería GenéticaRESUMEN
In several Gram-negative bacteria, the general stress response is mediated by the alternative sigma factor RpoS, a subunit of RNA polymerase that confers promoter specificity. In Escherichia coli, regulation of protein levels of RpoS involves the adaptor protein RssB, which binds RpoS for presenting it to the ClpXP protease for its degradation. However, in species from the Pseudomonadaceae family, RpoS is also degraded by ClpXP, but an adaptor has not been experimentally demonstrated. Here, we investigated the role of an E. coli RssB-like protein in two representative Pseudomonadaceae species such as Azotobacter vinelandii and Pseudomonas aeruginosa. In these bacteria, inactivation of the rssB gene increased the levels and stability of RpoS during exponential growth. Downstream of rssB lies a gene that encodes a protein annotated as an anti-sigma factor antagonist (rssC). However, inactivation of rssC in both A. vinelandii and P. aeruginosa also increased the RpoS protein levels, suggesting that RssB and RssC work together to control RpoS degradation. Furthermore, we identified an in vivo interaction between RssB and RpoS only in the presence of RssC using a bacterial three-hybrid system. We propose that both RssB and RssC are necessary for the ClpXP-dependent RpoS degradation during exponential growth in two species of the Pseudomonadaceae family.
Asunto(s)
Azotobacter vinelandii , Proteínas de Escherichia coli , Factor sigma/genética , Factor sigma/metabolismo , Factores de Transcripción/metabolismo , Escherichia coli/metabolismo , Proteínas de Unión al ADN/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas de Escherichia coli/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión GénicaRESUMEN
BACKGROUND: Alginates are polysaccharides used in a wide range of industrial applications, with their functional properties depending on their molecular weight. In this study, alginate production and the expression of genes involved in polymerization and depolymerization in batch cultures of Azotobacter vinelandii were evaluated under controlled and noncontrolled oxygen transfer rate (OTR) conditions. RESULTS: Using an oxygen transfer rate (OTR) control system, a constant OTR (20.3 ± 1.3 mmol L 1 h 1 ) was maintained during cell growth and stationary phases. In cultures subjected to a controlled OTR, alginate concentrations were higher (5.5 ± 0.2 g L 1 ) than in cultures under noncontrolled OTR. The molecular weight of alginate decreased from 475 to 325 kDa at the beginning of the growth phase and remained constant until the end of the cultivation period. The expression level of alyA1, which encodes an alginate lyase, was more affected by OTR control than those of other genes involved in alginate biosynthesis. The decrease in alginate molecular weight can be explained by a higher relative expression level of alyA1 under the controlled OTR condition. CONCLUSIONS: This report describes the first time that alginate production and alginate lyase (alyA1) expression levels have been evaluated in A. vinelandii cultures subjected to a controlled OTR. The results show that automatic control of OTR may be a suitable strategy for improving alginate production while maintaining a constant molecular weight.
Asunto(s)
Polisacárido Liasas/metabolismo , Transferencia de Oxígeno , Azotobacter vinelandii/metabolismo , Oxígeno/metabolismo , Expresión Génica , Reacción en Cadena de la Polimerasa , Azotobacter vinelandii/genética , Alginatos/metabolismo , Fermentación , Peso MolecularRESUMEN
There is an increasing interest in the use of N2-fixing bacteria for the sustainable biofertilization of crops. Genetically-optimized bacteria for ammonium release have an improved biofertilization capacity. Some of these strains also cross-feed ammonium into microalgae raising additional concerns on their sustainable use in agriculture due to the potential risk of producing a higher and longer-lasting eutrophication problem than synthetic N-fertilizers. Here we studied the dynamic algal cross-feeding properties of a genetically-modified Azotobacter vinelandii strain which can be tuned to over-accumulate different levels of glutamine synthetase (GS, EC 6.3.1.20) under the control of an exogenous inducer. After switching cells overaccumulating GS into a noninducing medium, they proliferated for several generations at the expense of the previously accumulated GS. Further dilution of GS by cell division slowed-down growth, promoted ammonium-excretion and cross-fed algae. The final bacterial population, and timing and magnitude of algal N-biofertlization was finely tuned in a deferred manner. This tuning was in accordance with the intensity of the previous induction of GS accumulation in the cells. This bacterial population behavior could be maintained up to about 15 bacterial cell generations, until faster-growing and nonammonium excreting cells arose at an apparent high frequency. Further improvements of this genetic engineering strategy might help to align efficiency of N-biofertilizers and safe use in an open environment. KEY POINTS: ⢠Ammonium-excreting bacteria are potential eutrophication agents ⢠GS-dependent deferred control of bacterial growth and ammonium release ⢠Strong but transient ammonium cross-feeding of microalgae.
Asunto(s)
Compuestos de Amonio , Azotobacter vinelandii , Microalgas , Azotobacter vinelandii/metabolismo , Bacterias/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Microalgas/metabolismo , Fijación del NitrógenoRESUMEN
Azotobacter vinelandii produces the linear exopolysaccharide alginate, a compound of significant biotechnological importance. The biosynthesis of alginate in A. vinelandii and Pseudomonas aeruginosa has several similarities but is regulated somewhat differently in the two microbes. Here, we show that the second messenger cyclic dimeric GMP (c-di-GMP) regulates the production and the molecular mass of alginate in A. vinelandii The hybrid protein MucG, containing conserved GGDEF and EAL domains and N-terminal HAMP and PAS domains, behaved as a c-di-GMP phosphodiesterase (PDE). This activity was found to negatively affect the amount and molecular mass of the polysaccharide formed. On the other hand, among the diguanylate cyclases (DGCs) present in A. vinelandii, AvGReg, a globin-coupled sensor (GCS) DGC that directly binds to oxygen, was identified as the main c-di-GMP-synthesizing contributor to alginate production. Overproduction of AvGReg in the parental strain phenocopied a ΔmucG strain with regard to alginate production and the molecular mass of the polymer. MucG was previously shown to prevent the synthesis of high-molecular-mass alginates in response to reduced oxygen transfer rates (OTRs). In this work, we show that cultures exposed to reduced OTRs accumulated higher levels of c-di-GMP; this finding strongly suggests that at least one of the molecular mechanisms involved in modulation of alginate production and molecular mass by oxygen depends on a c-di-GMP signaling module that includes the PAS domain-containing PDE MucG and the GCS DGC AvGReg.IMPORTANCE c-di-GMP has been widely recognized for its essential role in the production of exopolysaccharides in bacteria, such as alginate produced by Pseudomonas and Azotobacter spp. This study reveals that the levels of c-di-GMP also affect the physical properties of alginate, favoring the production of high-molecular-mass alginates in response to lower OTRs. This finding opens up new alternatives for the design of tailor-made alginates for biotechnological applications.
Asunto(s)
Alginatos/metabolismo , Azotobacter vinelandii/metabolismo , GMP Cíclico/análogos & derivados , Polisacáridos Bacterianos/biosíntesis , Alginatos/química , Azotobacter vinelandii/enzimología , Azotobacter vinelandii/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Peso Molecular , Oxígeno/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Polisacáridos Bacterianos/químicaRESUMEN
The genus Azotobacter, belonging to the Pseudomonadaceae family, is characterized by the formation of cysts, which are metabolically dormant cells produced under adverse conditions and able to resist desiccation. Although this developmental process has served as a model for the study of cell differentiation in Gram-negative bacteria, the molecular basis of its regulation is still poorly understood. Here, we report that the ubiquitous second messenger cyclic dimeric GMP (c-di-GMP) is critical for the formation of cysts in Azotobacter vinelandii Upon encystment induction, the levels of c-di-GMP increased, reaching a peak within the first 6 h. In the absence of the diguanylate cyclase MucR, however, the levels of this second messenger remained low throughout the developmental process. A. vinelandii cysts are surrounded by two alginate layers with variable proportions of guluronic residues, which are introduced into the final alginate chain by extracellular mannuronic C-5 epimerases of the AlgE1 to AlgE7 family. Unlike in Pseudomonas aeruginosa, MucR was not required for alginate polymerization in A. vinelandii Conversely, MucR was necessary for the expression of extracellular alginate C-5 epimerases; therefore, the MucR-deficient strain produced cyst-like structures devoid of the alginate capsule and unable to resist desiccation. Expression of mucR was partially dependent on the response regulator AlgR, which binds to two sites in the mucR promoter, enhancing mucR transcription. Together, these results indicate that the developmental process of A. vinelandii is controlled through a signaling module that involves activation by the response regulator AlgR and c-di-GMP accumulation that depends on MucR.IMPORTANCEA. vinelandii has served as an experimental model for the study of the differentiation processes to form metabolically dormant cells in Gram-negative bacteria. This work identifies c-di-GMP as a critical regulator for the production of alginates with specific contents of guluronic residues that are able to structure the rigid laminated layers of the cyst envelope. Although allosteric activation of the alginate polymerase complex Alg8-Alg44 by c-di-GMP has long been recognized, our results show a previously unidentified role during the polymer modification step, controlling the expression of extracellular alginate epimerases. Our results also highlight the importance of c-di-GMP in the control of the physical properties of alginate, which ultimately determine the desiccation resistance of the differentiated cell.
Asunto(s)
Azotobacter vinelandii/enzimología , Proteínas Bacterianas/metabolismo , Carbohidrato Epimerasas/metabolismo , GMP Cíclico/análogos & derivados , Alginatos/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/crecimiento & desarrollo , Azotobacter vinelandii/metabolismo , Proteínas Bacterianas/genética , Carbohidrato Epimerasas/genética , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismoRESUMEN
Azotobacter vineladii is a Gram-negative bacterium that produces alginate and poly-hydroxybutyrate (PHB), two polymers of biotechnological interest. This bacterium has the ability to form desiccation-resistant cysts. In the cyst the membrane phospholipids are replaced with a family of phenolic lipids called alkylresorcinols (ARs). The alginate, PHB, and ARs are controlled by the GacS/A two-component system and the small regulatory RNA (sRNA) RsmZ1, belonging to the Rsm (Csr) regulatory system. The Rsm (Csr) systems usually possess two or more sRNAs, in this regard A. vinelandii is the bacterium with the highest number of rsm-sRNAs. Originally, the presence of two sRNAs of the RsmY family (RsmY1 and RsmY2) was reported, but in a subsequent work it was suggested that they conformed to a single sRNA. In this work we provide genetic evidence confirming that rsmY1 and rsmY2 constitute a single gene. Also, it was established that rsmY mutation decreased alginate and ARs production, but did not affect the PHB synthesis. Transcriptional studies showed that rsmY has its higher expression during the stationary growth phase, and in the absence of RsmZ1, rsmY increases its transcription. Interestingly, rsmY expression was influenced by the carbon source, but its expression did not correlate with alginate production.
Asunto(s)
Alginatos/metabolismo , Azotobacter vinelandii/metabolismo , ARN Bacteriano/metabolismo , Resorcinoles/metabolismo , Azotobacter vinelandii/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Hidroxibutiratos/metabolismo , Mutación , ARN Bacteriano/genéticaRESUMEN
Azotobacter vinelandii OP is a bacterium that produces poly(3-hydroxybutyrate) (PHB). PHB production in a stirred bioreactor, at different oxygen transfer strategies, was evaluated. By applying different oxygen contents in the inlet gas, the oxygen transfer rate (OTR) was changed under a constant agitation rate. Batch cultures were performed without dissolved oxygen tension (DOT) control (using 9% and 21% oxygen in the inlet gas) and under DOT control (4%) using gas blending. The cultures that developed without DOT control were limited by oxygen. As result of varying the oxygen content in the inlet gas, a lower OTR (4.6 mmol L-1 h-1) and specific oxygen uptake rate (11.6 mmol g-1 h-1) were obtained using 9% oxygen in the inlet gas. The use of 9% oxygen in the inlet gas was the most suitable for improving the intracellular PHB content (56 ± 6 w w-1). For the first time, PHB accumulation in A. vinelandii OP cultures, developed with different OTRs, was compared under homogeneous mixing conditions, demonstrating that bacterial respiration affects PHB synthesis. These results can be used to design new oxygen transfer strategies to produce PHB under productive conditions.
Asunto(s)
Azotobacter vinelandii/metabolismo , Hidroxibutiratos/metabolismo , Oxígeno/metabolismo , Poliésteres/metabolismo , Reactores Biológicos , Medios de Cultivo , FermentaciónRESUMEN
In bacteria, the 5'-end-dependent RNA degradation is triggered by the RNA pyrophosphohydrolase RppH converting tri/diphosphate to monophosphate transcripts. This study shows that in the soil bacterium Azotobacter vinelandii, inactivation of rppH gene negatively affected the production of bioplastic poly-ß-hydroxybutyrate (PHB) by reducing the expression at the translational level of PhbR, the specific transcriptional activator of the phbBAC biosynthetic operon. The effect of RppH on the translation of phbR seemed to be exerted through the translational repressor RsmA, as the inactivation of rsmA in the rppH mutant restored the phbR expression. Interestingly, in Escherichia coli inactivation of rppH also affected the expression of CsrA, the RsmA homolog. The level of the csrA transcript was higher and more stable in the E. coli rppH mutant than in the wild type strain. Additionally, and in contrast to the csrA mutants that are known to have a defective swimming phenotype, the E. coli rppH mutant showed a hyper-swimming phenotype that was suppressed by a csrA mutation, and the AvRppH restored to wild type level the swimming phenotype to the E. coli rppH mutant. We propose that in both A. vinelandii and E. coli, RppH activity plays a role in the expression of the translational regulator protein RsmA/CsrA.
Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Unión al ARN/biosíntesis , Proteínas Represoras/biosíntesis , Eliminación de Gen , Biosíntesis de ProteínasRESUMEN
BACKGROUND: Azotobacter vinelandii is a bacterium that produces alginate and polyhydroxybutyrate (P3HB); however, the role of NAD(P)H/NAD(P)+ ratios on the metabolic fluxes through biosynthesis pathways of these biopolymers remains unknown. The aim of this study was to evaluate the NAD(P)H/NAD(P) + ratios and the metabolic fluxes involved in alginate and P3HB biosynthesis, under oxygen-limiting and non-limiting oxygen conditions. RESULTS: The results reveal that changes in the oxygen availability have an important effect on the metabolic fluxes and intracellular NADPH/NADP+ ratio, showing that at the lowest OTR (2.4 mmol L-1 h-1), the flux through the tricarboxylic acid (TCA) cycle decreased 27.6-fold, but the flux through the P3HB biosynthesis increased 6.6-fold in contrast to the cultures without oxygen limitation (OTR = 14.6 mmol L-1 h-1). This was consistent with the increase in the level of transcription of phbB and the P3HB biosynthesis. In addition, under conditions without oxygen limitation, there was an increase in the carbon uptake rate (twofold), as well as in the flux through the pentose phosphate (PP) pathway (4.8-fold), compared to the condition of 2.4 mmol L-1 h-1. At the highest OTR condition, a decrease in the NADPH/NADP+ ratio of threefold was observed, probably as a response to the high respiration rate induced by the respiratory protection of the nitrogenase under diazotrophic conditions, correlating with a high expression of the uncoupled respiratory chain genes (ndhII and cydA) and induction of the expression of the genes encoding the nitrogenase complex (nifH). CONCLUSIONS: We have demonstrated that changes in oxygen availability affect the internal redox state of the cell and carbon metabolic fluxes. This also has a strong impact on the TCA cycle and PP pathway as well as on alginate and P3HB biosynthetic fluxes.
Asunto(s)
Azotobacter vinelandii/metabolismo , Análisis de Flujos Metabólicos , NADP/análisis , NAD/análisis , Oxígeno/metabolismo , Alginatos/metabolismo , Biomasa , Vías Biosintéticas/efectos de los fármacos , Carbono/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Medios de Cultivo/química , NAD/efectos de los fármacos , NAD/metabolismo , NADP/efectos de los fármacos , NADP/metabolismo , Oxidación-Reducción , Oxígeno/farmacología , Vía de Pentosa Fosfato/efectos de los fármacosRESUMEN
Alginate is a linear polysaccharide that can be used for different applications in the food and pharmaceutical industries. These polysaccharides have a chemical structure composed of subunits of (1-4)-ß-D-mannuronic acid (M) and its C-5 epimer α-L-guluronic acid (G). The monomer composition and molecular weight of alginates are known to have effects on their properties. Currently, these polysaccharides are commercially extracted from seaweed but can also be produced by Azotobacter vinelandii and Pseudomonas spp. as an extracellular polymer. One strategy to produce alginates with different molecular weights and with reproducible physicochemical characteristics is through the manipulation of the culture conditions during fermentation. This mini-review provides a comparative analysis of the metabolic pathways and molecular mechanisms involved in alginate polymerization from A. vinelandii and Pseudomonas spp. Different fermentation strategies used to produce alginates at a bioreactor laboratory scale are described.
Asunto(s)
Alginatos/metabolismo , Azotobacter vinelandii/crecimiento & desarrollo , Pseudomonas/crecimiento & desarrollo , Alginatos/química , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Reactores Biológicos , Fermentación , Ácido Glucurónico/química , Ácido Glucurónico/metabolismo , Ácidos Hexurónicos/química , Ácidos Hexurónicos/metabolismo , Redes y Vías Metabólicas , Peso Molecular , Pseudomonas/genética , Pseudomonas/metabolismoRESUMEN
Alginate production and gene expression of genes involved in alginate biosynthesis were evaluated in continuous cultures under dissolved oxygen tension (DOT) controlled conditions. Chemostat at 8% DOT showed an increase in the specific oxygen uptake rate [Formula: see text] from 10.9 to 45.3 mmol g-1 h-1 by changes in the dilution rate (D) from 0.06 to 0.10 h-1, whereas under 1% DOT the [Formula: see text] was not affected. Alginate molecular weight was not affected by DOT. However, chemostat at 1% DOT showed a downregulation up to 20-fold in genes encoding both the alginate polymerase (alg8, alg44), alginate acetylases (algV, algI) and alginate lyase AlgL. alyA1 and algE7 lyases gene expressions presented an opposite behavior by changing the DOT, suggesting that A. vinelandii can use specific depolymerases depending on the oxygen level. Overall, the DOT level have a differential effect on genes involved in alginate synthesis, thus a gene expression equilibrium determines the production of alginates of similar molecular weight under DOT controlled.
Asunto(s)
Azotobacter vinelandii/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Polisacárido Liasas/metabolismo , Acetilación , Alginatos , Azotobacter vinelandii/metabolismo , Proteínas Bacterianas/genética , Medios de Cultivo/química , Fermentación , Ácido Glucurónico/biosíntesis , Ácidos Hexurónicos , Peso Molecular , Oxígeno/metabolismo , Polisacárido Liasas/genéticaRESUMEN
Late embryogenesis abundant (LEA) proteins constitute a large protein family that is closely associated with resistance to abiotic stresses in multiple organisms and protect cells against drought and other stresses. Azotobacter vinelandii is a soil bacterium that forms desiccation-resistant cysts. This bacterium possesses two genes, here named lea1 and lea2, coding for avLEA1 and avLEA2 proteins, both containing 20-mer motifs characteristic of eukaryotic plant LEA proteins. In this study, we found that disruption of the lea1 gene caused a loss of the cysts' viability after 3 months of desiccation, whereas at 6 months, wild-type or lea2 mutant strain cysts remained viable. Vegetative cells of the lea1 mutant were more sensitive to osmotic stress; cysts developed by this mutant were also more sensitive to high temperatures than cysts or vegetative cells of the wild type or of the lea2 mutant. Expression of lea1 was induced several fold during encystment. In addition, the protective effects of these proteins were assessed in Escherichia coli cells. We found that E. coli cells overexpressing avLEA1 were more tolerant to salt stress than control cells; finally, in vitro analysis showed that avLEA1 protein was able to prevent the freeze thaw-induced inactivation of lactate dehydrogenase. In conclusion, avLEA1 is essential for the survival of A. vinelandii in dry conditions and for protection against hyper-osmolarity, two major stress factors that bacteria must cope with for survival in the environment. This is the first report on the role of bacterial LEA proteins on the resistance of cysts to desiccation.
Asunto(s)
Azotobacter vinelandii/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas Bacterianas/genética , Bases de Datos Genéticas , Escherichia coli/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Mutagénesis , Presión Osmótica , Proteínas de Plantas/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Estrés Fisiológico , Temperatura , TermotoleranciaRESUMEN
In this study, the respiratory activity and carbon usage of the mutant strain of A. vinelandii AT6, impaired in poly-ß-hydroxybutyrate (PHB) production, and their relationship with the synthesis of alginate were evaluated. The alginate yield and the specific oxygen uptake rate were higher (2.5-fold and 62 %, respectively) for the AT6 strain, compared to the control strain (ATCC 9046), both in shake flasks cultures and in bioreactor, under fixed dissolved oxygen tension (1 %). In contrast, the degree of acetylation was similar in both strains. These results, together with the analysis of carbon usage (% C-mol), suggest that in the case of the AT6 strain, the flux of acetyl-CoA (precursor molecule for PHB biosynthesis and alginate acetylation) was diverted to the respiratory chain passing through the tricarboxylic acids cycle, and an important % C-mol was directed through alginate biosynthesis, up to 25.9 % and to a lesser extent, to biomass production (19.7 %).
Asunto(s)
Azotobacter vinelandii/metabolismo , Carbono/metabolismo , Acetilcoenzima A/metabolismo , Alginatos , Azotobacter vinelandii/genética , Ácido Glucurónico/biosíntesis , Ácidos Hexurónicos , Hidroxibutiratos/metabolismo , Mutación , Oxígeno/metabolismo , Poliésteres/metabolismoRESUMEN
Alginates are polysaccharides used as food additives and encapsulation agents in biotechnology, and their functional properties depend on its molecular weight. In this study, different steady-states in continuous cultures of A. vinelandii were established to determine the effect of the dilution rate (D) and the agitation rate on alginate production and expression of genes involved in alginate polymerization and depolymerization. Both, the agitation and dilution rates, determined the partitioning of the carbon utilization from sucrose into alginate and CO2 under oxygen-limiting conditions. A low D (0.07 h(-1)) and 500 rpm resulted in the highest carbon utilization into alginate (25%). Quantitative real-time polymerase chain reaction was used to determine the transcription level of six genes involved in alginate polymerization and depolymerization. In chemostat cultures at 0.07 h(-1), the gene expression was affected by changes in the agitation rate. By increasing the agitation rate from 400 to 600 rpm, the algE7 gene expression decreased tenfold, whereas alyA1, algL and alyA2 gene expression increased between 1.5 and 2.8 times under similar conditions evaluated. Chemostat at 0.07 h(-1) showed a highest alginate molecular weight (580 kDa) at 500 rpm whereas similar molecular weights (480 kDa) were obtained at 400 and 600 rpm. The highest molecular weight was not explained by changes in the expression of alg8 and alg44 (genes involved in alginate polymerization). Nonetheless, a different expression pattern observed for lyases could explain the highest alginate molecular weight obtained. Overall, the results suggest that the control of alginate molecular weight in A. vinelandii cells growing in continuous mode is determined by a balance between the gene expression of intracellular and extracellular lyases in response to oxygen availability. These findings better our understanding of the biosynthesis of bacterial alginate and help us progress toward obtain tailor-made alginates.
Asunto(s)
Azotobacter vinelandii/metabolismo , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Microbiología Industrial , Oxígeno/metabolismo , Alginatos , Azotobacter vinelandii/genética , Biomasa , Carbono/metabolismo , Medios de Cultivo/química , Fermentación , Ácido Glucurónico/biosíntesis , Ácidos Hexurónicos , Peso Molecular , Sacarosa/metabolismoRESUMEN
In Azotobacter vinelandii, a cyst-forming bacterium, the alternative sigma factor RpoS is essential to the formation of cysts resistant to desiccation and to synthesis of the cyst-specific lipids, alkylresorcinols. In this study, we carried out a proteome analysis of vegetative cells and cysts of A. vinelandii strain AEIV and its rpoS mutant derivative AErpoS. This analysis allowed us to identify a small heat-shock protein, Hsp20, as one of the most abundant proteins of cysts regulated by RpoS. Inactivation of hsp20 did not affect the synthesis of alkylresorcinols or the formation of cysts with WT morphology; however, the cysts formed by the hsp20 mutant strain were unable to resist desiccation. We also demonstrated that expression of hsp20 from an RpoS-independent promoter in the AErpoS mutant strain is not enough to restore the phenotype of resistance to desiccation. These results indicate that Hsp20 is essential for the resistance to desiccation of A. vinelandii cysts, probably by preventing the aggregation of proteins caused by the lack of water. To our knowledge, this is the first report of a small heat-shock protein that is essential for desiccation resistance in bacteria.
Asunto(s)
Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas del Choque Térmico HSP20/genética , Proteínas del Choque Térmico HSP20/metabolismo , Factor sigma/genética , Factor sigma/metabolismo , Secuencia de Bases , Desecación , Silenciador del Gen , Proteínas del Choque Térmico HSP20/química , Metabolismo de los Lípidos , Datos de Secuencia Molecular , Mutación , Regiones Promotoras Genéticas , Proteoma , Proteómica , Procesamiento Postranscripcional del ARN , Transcripción GenéticaRESUMEN
The transcription of genes involved in alginate polymerization and depolymerization, as well as the alginase activity (extracellular and intracellular) under oxygen-limited and non oxygen-limited conditions in cultures of A. vinelandii, was studied. Two levels of dissolved oxygen tension (DOT) (1% and 5%, oxygen-limited and non-oxygen-limited, respectively) strictly controlled by gas blending, were evaluated in a wild type strain. In cultures at low DOT (1%), in which a high molecular weight alginate (1200 kDa) was synthesized, the transcription levels of alg8 and alg44 (genes encoding alginate polymerase complex), and algX (encoding a protein involved in polymer transport through periplasmic space) were considerably higher as compared to cultures conducted at 5% DOT, under which an alginate with a low MW (42 kDa) was produced. In the case of genes encoding for intracellular and extracellular alginases, the levels of these transcripts were higher at 1% DOT. However, intracellular and extracellular alginase activity were lower (0.017 and 0.01 U/mg protein, respectively) in cultures at 1% DOT, as compared with the activities measured at 5% DOT (0.027 and 0.052 U/mg protein for intracellular and extracellular maximum activity, respectively). The low alginase activity measured in cultures at 1% DOT and the high level of transcription of genes constituting alginate polymerase complex might be mechanisms by which oxygen regulates the production of alginates with a high MW.
Asunto(s)
Alginatos/metabolismo , Azotobacter vinelandii/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Consumo de Oxígeno , Polisacárido Liasas/metabolismo , Alginatos/química , Azotobacter vinelandii/efectos de los fármacos , Azotobacter vinelandii/genética , Azotobacter vinelandii/crecimiento & desarrollo , Proteínas Bacterianas/efectos de los fármacos , Proteínas Bacterianas/genética , Biomasa , Microbiología Industrial , Peso Molecular , Oxígeno/farmacología , Polimerizacion , Polisacárido Liasas/efectos de los fármacos , Polisacárido Liasas/genética , Transcripción GenéticaRESUMEN
Alginates are polysaccharides that may be used as viscosifiers and gel or film-forming agents with a great diversity of applications. The alginates produced by bacteria such as Azotobacter vinelandii are acetylated. The presence of acetyl groups in this type of alginate increases its solubility, viscosity, and swelling capability. The aim of this study was to evaluate, in glucose-limited chemostat cultivations of A. vinelandii ATCC9046, the influence of dissolved oxygen tension (DO) and specific growth rate (µ) on the degree of acetylation of alginates produced by this bacterium. In glucose-limited chemostat cultivations, the degree of alginate acetylation was evaluated under two conditions of DO (1 and 9 %) and for a range of specific growth rates (0.02-0.15 h⻹). In addition, the alginate yields and PHB production were evaluated. High DO in the culture resulted in a high degree of alginate acetylation, reaching a maximum acetylation degree of 6.88 % at 9 % DO. In contrast, the increment of µ had a negative effect on the production and acetylation of the polymer. It was found that at high DO (9 %) and low µ, there was a reduction of the respiration rate, and the PHB accumulation was negligible, suggesting that the flux of acetyl-CoA (the acetyl donor) was diverted to alginate acetylation.
Asunto(s)
Alginatos/química , Alginatos/metabolismo , Azotobacter vinelandii/crecimiento & desarrollo , Azotobacter vinelandii/metabolismo , Glucosa/metabolismo , Oxígeno/metabolismo , Acetilación , Azotobacter vinelandii/efectos de los fármacos , Biomasa , Glucosa/farmacología , Hidroxibutiratos/metabolismo , Oxígeno/farmacología , Consumo de Oxígeno/efectos de los fármacos , Poliésteres/metabolismo , Solubilidad , ViscosidadRESUMEN
Alginates are polysaccharides that are used as thickening agents, stabilizers, and emulsifiers in various industries. These biopolymers are produced by fermentation with a limited understanding of the processes occurring at the cellular level. The objective of this study was to evaluate the effects of agitation rate and inlet sucrose concentrations (ISC) on alginate production and the expression of the genes encoding for alginate-lyases (algL) and the catalytic subunit of the alginate polymerase complex (alg8) in chemostat cultures of Azotobacter vinelandii ATCC 9046. Increased alginate production (2.4 g l⻹) and a higher specific alginate production rate (0.1 g g⻹ h⻹) were obtained at an ISC of 15 g l⻹. Carbon recovery of about 100% was obtained at an ISC of 10 g l⻹, whereas it was close to 50% at higher ISCs, suggesting that cells growing at lower sucrose feed rates utilize the carbon source more efficiently. In each of the steady states evaluated, an increase in algL gene expression was not related to a decrease in alginate molecular weight, whereas an increase in the molecular weight of alginate was linked to higher alg8 gene expression, demonstrating a relationship between the alg8 gene and alginate polymerization in A. vinelandii for the first time. The results obtained provide a possible explanation for changes observed in the molecular weight of alginate synthesized and this knowledge can be used to build a recombinant strain able to overexpress alg8 in order to produce alginates with higher molecular weights.