Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21.648
1.
Cell Host Microbe ; 32(5): 623-624, 2024 May 08.
Article En | MEDLINE | ID: mdl-38723597

Common nutrients in our diet often affect our health through unexpected mechanisms. In a recent issue of Nature, Scott et al. show gut microbes convert dietary tryptophan into metabolites activating intestinal dopamine receptors, which can block attachment of bacterial pathogens to host cells.


Dopamine , Gastrointestinal Microbiome , Gastrointestinal Microbiome/physiology , Dopamine/metabolism , Humans , Receptors, Dopamine/metabolism , Animals , Tryptophan/metabolism , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism , Bacteria/metabolism , Host-Pathogen Interactions , Bacterial Adhesion
2.
Water Sci Technol ; 89(9): 2457-2467, 2024 May.
Article En | MEDLINE | ID: mdl-38747960

To investigate the physicochemical conditions necessary to stably remove antibiotic-resistant bacteria (ARB) via contact with activated sludge (AS), the adhesion of ciprofloxacin (CIP)-resistant and -susceptible Escherichia coli to AS was simulated by contact tests in the laboratory. The CIP-resistant E. coli and susceptible E. coli were removed by a 3 log smaller concentration by a 5 h contact test at maximum. Considering the hydraulic retention time of a reaction tank (∼5 h) and step-feeding operation, we considered the removal rate of E. coli in the current simulated contact test to be in agreement with the actual situation where 1-2 log concentrations of E. coli were reported to be removed from an AS reaction tank. With the increase in the AS concentration and/or dissolved oxygen, the removal rate of E. coli increased. The removal rate of CIP-resistant E. coli was greater than that of susceptible E. coli under all experimental conditions. Although the mechanism by which CIP-resistant E. coli preferably adhered to AS was not clearly understood in detail, finding optimum conditions under which bacteria, including ARB, were efficiently removed by the AS process may be possible.


Bacterial Adhesion , Ciprofloxacin , Drug Resistance, Bacterial , Escherichia coli , Sewage , Ciprofloxacin/pharmacology , Escherichia coli/drug effects , Sewage/microbiology , Bacterial Adhesion/drug effects , Anti-Bacterial Agents/pharmacology
3.
Front Immunol ; 15: 1390468, 2024.
Article En | MEDLINE | ID: mdl-38726006

Introduction: Relapsing fever (RF) remains a neglected human disease that is caused by a number of diverse pathogenic Borrelia (B.) species. Characterized by high cell densities in human blood, relapsing fever spirochetes have developed plentiful strategies to avoid recognition by the host defense mechanisms. In this scenario, spirochetal lipoproteins exhibiting multifunctional binding properties in the interaction with host-derived molecules are known to play a key role in adhesion, fibrinolysis and complement activation. Methods: Binding of CihC/FbpC orthologs to different human proteins and conversion of protein-bound plasminogen to proteolytic active plasmin were examined by ELISA. To analyze the inhibitory capacity of CihC/FbpC orthologs on complement activation, a microtiter-based approach was performed. Finally, AlphaFold predictions were utilized to identified the complement-interacting residues. Results and discussion: Here, we elucidate the binding properties of CihC/FbpC-orthologs from distinct RF spirochetes including B. parkeri, B. hermsii, B. turicatae, and B. recurrentis to human fibronectin, plasminogen, and complement component C1r. All CihC/FbpC-orthologs displayed similar binding properties to fibronectin, plasminogen, and C1r, respectively. Functional studies revealed a dose dependent binding of plasminogen to all borrelial proteins and conversion to active plasmin. The proteolytic activity of plasmin was almost completely abrogated by tranexamic acid, indicating that lysine residues are involved in the interaction with this serine protease. In addition, a strong inactivation capacity toward the classical pathway could be demonstrated for the wild-type CihC/FbpC-orthologs as well as for the C-terminal CihC fragment of B. recurrentis. Pre-incubation of human serum with borrelial molecules except CihC/FbpC variants lacking the C-terminal region protected serum-susceptible Borrelia cells from complement-mediated lysis. Utilizing AlphaFold2 predictions and existing crystal structures, we mapped the putative key residues involved in C1r binding on the CihC/FbpC orthologs attempting to explain the relatively small differences in C1r binding affinity despite the substitutions of key residues. Collectively, our data advance the understanding of the multiple binding properties of structural and functional highly similar molecules of relapsing fever spirochetes proposed to be involved in pathogenesis and virulence.


Bacterial Proteins , Borrelia , Fibrinolysis , Plasminogen , Protein Binding , Relapsing Fever , Humans , Borrelia/immunology , Borrelia/metabolism , Relapsing Fever/microbiology , Relapsing Fever/immunology , Relapsing Fever/metabolism , Plasminogen/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Complement Activation , Immune Evasion , Bacterial Adhesion , Host-Pathogen Interactions/immunology , Fibronectins/metabolism , Fibrinolysin/metabolism , Complement System Proteins/immunology , Complement System Proteins/metabolism
4.
Gut Microbes ; 16(1): 2356642, 2024.
Article En | MEDLINE | ID: mdl-38769708

Adherent-invasive Escherichia coli (AIEC) strain LF82, isolated from patients with Crohn's disease, invades gut epithelial cells, and replicates in macrophages contributing to chronic inflammation. In this study, we found that RstAB contributing to the colonization of LF82 in a mouse model of chronic colitis by promoting bacterial replication in macrophages. By comparing the transcriptomes of rstAB mutant- and wild-type when infected macrophages, 83 significant differentially expressed genes in LF82 were identified. And we identified two possible RstA target genes (csgD and asr) among the differentially expressed genes. The electrophoretic mobility shift assay and quantitative real-time PCR confirmed that RstA binds to the promoters of csgD and asr and activates their expression. csgD deletion attenuated LF82 intracellular biofilm formation, and asr deletion reduced acid tolerance compared with the wild-type. Acidic pH was shown by quantitative real-time PCR to be the signal sensed by RstAB to activate the expression of csgD and asr. We uncovered a signal transduction pathway whereby LF82, in response to the acidic environment within macrophages, activates transcription of the csgD to promote biofilm formation, and activates transcription of the asr to promote acid tolerance, promoting its replication within macrophages and colonization of the intestine. This finding deepens our understanding of the LF82 replication regulation mechanism in macrophages and offers new perspectives for further studies on AIEC virulence mechanisms.


Bacterial Adhesion , Biofilms , Escherichia coli Infections , Escherichia coli Proteins , Escherichia coli , Gene Expression Regulation, Bacterial , Macrophages , Macrophages/microbiology , Animals , Mice , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Biofilms/growth & development , Escherichia coli Infections/microbiology , Humans , Hydrogen-Ion Concentration , Virulence , Colitis/microbiology , Crohn Disease/microbiology , Disease Models, Animal , Signal Transduction , Acids/metabolism
5.
Int J Mol Sci ; 25(9)2024 May 06.
Article En | MEDLINE | ID: mdl-38732269

New antimicrobial molecules effective against Pseudomonas aeruginosa, known as an antibiotic-resistant "high-priority pathogen", are urgently required because of its ability to develop biofilms related to healthcare-acquired infections. In this study, for the first time, the anti-biofilm and anti-virulence activities of a polyphenolic extract of extra-virgin olive oil as well as purified oleocanthal and oleacein, toward P. aeruginosa clinical isolates were investigated. The main result of our study was the anti-virulence activity of the mixture of oleacein and oleocanthal toward multidrug-resistant and intermediately resistant strains of P. aeruginosa isolated from patients with ventilator-associated pneumonia or surgical site infection. Specifically, the mixture of oleacein (2.5 mM)/oleocanthal (2.5 mM) significantly inhibited biofilm formation, alginate and pyocyanin production, and motility in both P. aeruginosa strains (p < 0.05); scanning electron microscopy analysis further evidenced its ability to inhibit bacterial cell adhesion as well as the production of the extracellular matrix. In conclusion, our results suggest the potential application of the oleacein/oleocanthal mixture in the management of healthcare-associated P. aeruginosa infections, particularly in the era of increasing antimicrobial resistance.


Aldehydes , Anti-Bacterial Agents , Biofilms , Cyclopentane Monoterpenes , Olive Oil , Phenols , Pseudomonas aeruginosa , Biofilms/drug effects , Biofilms/growth & development , Pseudomonas aeruginosa/drug effects , Olive Oil/chemistry , Olive Oil/pharmacology , Phenols/pharmacology , Phenols/chemistry , Aldehydes/pharmacology , Aldehydes/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Microbial Sensitivity Tests , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Bacterial Adhesion/drug effects
6.
Gut Microbes ; 16(1): 2350778, 2024.
Article En | MEDLINE | ID: mdl-38717446

Ethanolamine is an abundant compound in the gastrointestinal tract and a valuable source of carbon and nitrogen for pathogenic bacteria harboring ethanolamine utilization (eut) genes. Eut-positive pathogens can consume free ethanolamine to outcompete commensal microbes, which often lack eut genes, and establish infection. Ethanolamine can also act as a host recognition signal for eut-positive pathogens to upregulate virulence genes during colonization. Therefore, reducing free ethanolamine titers may represent a novel approach to preventing infection by eut-positive pathogens. Interestingly, the commensal microorganism Levilactobacillus brevis ATCC 14869 was found to encode over 18 eut genes within its genome. This led us to hypothesize that L. brevis can compete with eut-positive pathogens by clearing free ethanolamine from the environment. Our results demonstrate that despite being unable to metabolize ethanolamine under most conditions, L. brevis ATCC 14869 responds to the compound by increasing the expression of genes encoding proteins involved in microcompartment formation and adhesion to the intestinal epithelial barrier. The improved intestinal adhesion of L. brevis in the presence of ethanolamine also enhanced the exclusion of eut-positive pathogens from adhering to intestinal epithelial cells. These findings support further studies to test whether L. brevis ATCC 14869 can counter enteric pathogens and prevent or reduce the severity of infections. Overall, the metabolic capabilities of L. brevis ATCC 14869 offer a unique opportunity to add to the armamentarium of antimicrobial therapies as well as our understanding of the mechanisms used by beneficial microbes to sense and adapt to host microenvironments.


Bacterial Adhesion , Ethanolamine , Gene Expression Regulation, Bacterial , Levilactobacillus brevis , Ethanolamine/metabolism , Bacterial Adhesion/drug effects , Levilactobacillus brevis/genetics , Levilactobacillus brevis/metabolism , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gastrointestinal Microbiome , Animals , Virulence/genetics
7.
Appl Microbiol Biotechnol ; 108(1): 336, 2024 May 18.
Article En | MEDLINE | ID: mdl-38761182

To investigate the cell-cell interactions of intergeneric bacterial species, the study detected the survival of Enterococcus faecalis (Ef) under monospecies or coaggregation state with Fusobacterium nucleatum subsp. polymorphum (Fnp) in environmental stress. Ef and Fnp infected the human macrophages with different forms (Ef and Fnp monospecies, Ef-Fnp coaggregates, Ef + Fnp cocultures) for exploring the immunoregulatory effects and the relevant molecular mechanisms. Meanwhile, the transcriptomic profiles of coaggregated Ef and Fnp were analyzed. Ef was shown to coaggregate with Fnp strongly in CAB within 90 min by forming multiplexes clumps. Coaggregation with Fnp reinforced Ef resistance against unfavorable conditions including alkaline, hypertonic, nutrient-starvation, and antibiotic challenges. Compared with monospecies and coculture species, the coaggregation of Ef and Fnp significantly facilitates both species to invade dTHP-1 cells and aid Ef to survive within the cells. Compared with coculture species, dual-species interaction of Ef and Fnp significantly decreased the levels of pro-inflammatory cytokines IL-6, TNF-α, and chemokines MCP-1 secreted by dTHP-1 cells and lessened the phosphorylation of p38, JNK, and p65 signaling pathways. The transcriptome sequencing results showed that 111 genes were differentially expressed or Ef-Fnp coaggregated species compared to Ef monospecies; 651 genes were differentially expressed for Fnp when coaggregation with Ef. The analysis of KEGG pathway showed that Ef differentially expressed genes (DEGs) were enriched in quorum sensing and arginine biosynthesis pathway; Fnp DEGs were differentially concentrated in lipopolysaccharide (LPS) biosynthesis, biofilm formation, and lysine degradation pathway compared to monospecies. KEY POINTS: • Coaggregated with Fnp aids Ef's survival in environmental stress, especially in root canals after endodontic treatment. • The coaggregation of Ef and Fnp may weaken the pro-inflammatory response and facilitate Ef to evade killed by macrophages. • The coaggregation between Ef and Fnp altered interspecies transcriptional profiles.


Enterococcus faecalis , Fusobacterium nucleatum , Macrophages , Stress, Physiological , Fusobacterium nucleatum/physiology , Fusobacterium nucleatum/genetics , Enterococcus faecalis/genetics , Enterococcus faecalis/physiology , Humans , Macrophages/microbiology , Macrophages/immunology , Cytokines/metabolism , Cytokines/genetics , Bacterial Adhesion , Coculture Techniques , Gene Expression Profiling , Transcriptome , Cell Line , Interleukin-6/genetics , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Inflammation
8.
Clin Oral Investig ; 28(6): 323, 2024 May 18.
Article En | MEDLINE | ID: mdl-38761310

OBJECTIVES: White spot lesions are the most common iatrogenic effect observed during orthodontic treatment. This study aimed to compare the surface characteristics and antibacterial action of uncoated and coated orthodontic brackets. MATERIALS AND METHODS: Sixty commercially available stainless steel brackets were coated with TiO2 nanotubes and methacryloyloxyethylphosphorylcholine. The sample was divided into Group 1: uncoated orthodontic brackets, Group 2: Stainless steel brackets with TiO2 nanotubes coating, Group 3: Stainless steel brackets with methacryloyloxyethylphosphorylcholine coating, and Group 4: Stainless steel brackets with TiO2 nanotubes combined with methacryloyloxyethylphosphorylcholine coating. Surface characterization was assessed using atomic force microscopy and scanning electron microscopy. Streptococcus mutans was selected to test the antibacterial ability of the orthodontic brackets, total bacterial adhesion and bacterial viability were assessed. The brackets were subjected to scanning electron microscopy to detect the presence of biofilm. RESULTS: The surface roughness was the greatest in Group 1 and least in Group 2 followed by Group 4 and Group 3 coated brackets. The optical density values were highest in Group 1 and lowest in Group 4. Comparison of colony counts revealed high counts in Group 1 and low counts in Group 4. A positive correlation between surface roughness and colony counts was obtained, however, was not statistically significant. CONCLUSIONS: The coated orthodontic brackets exhibited less surface roughness than the uncoated orthodontic brackets. Group 4 coated orthodontic brackets showed the best antibacterial properties. CLINICAL RELEVANCE: Coated orthodontic brackets prevent adhesion of streptococcus mutans and reduces plaque accumulation around the brackets thereby preventing formation of white spot lesions during orthodontic treatment.


Anti-Bacterial Agents , Bacterial Adhesion , Microscopy, Electron, Scanning , Nanotubes , Orthodontic Brackets , Phosphorylcholine , Streptococcus mutans , Surface Properties , Titanium , Titanium/chemistry , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , Phosphorylcholine/chemistry , Streptococcus mutans/drug effects , Anti-Bacterial Agents/pharmacology , Nanotubes/chemistry , Bacterial Adhesion/drug effects , Microscopy, Atomic Force , Materials Testing , Stainless Steel/chemistry , Methacrylates/pharmacology , Methacrylates/chemistry , Biofilms/drug effects , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry
9.
Nat Commun ; 15(1): 3666, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38693120

Respiratory viral infection increases host susceptibility to secondary bacterial infections, yet the precise dynamics within airway epithelia remain elusive. Here, we elucidate the pivotal role of CD47 in the airway epithelium during bacterial super-infection. We demonstrated that upon influenza virus infection, CD47 expression was upregulated and localized on the apical surface of ciliated cells within primary human nasal or bronchial epithelial cells. This induced CD47 exposure provided attachment sites for Staphylococcus aureus, thereby compromising the epithelial barrier integrity. Through bacterial adhesion assays and in vitro pull-down assays, we identified fibronectin-binding proteins (FnBP) of S. aureus as a key component that binds to CD47. Furthermore, we found that ciliated cell-specific CD47 deficiency or neutralizing antibody-mediated CD47 inactivation enhanced in vivo survival rates. These findings suggest that interfering with the interaction between airway epithelial CD47 and pathogenic bacterial FnBP holds promise for alleviating the adverse effects of super-infection.


CD47 Antigen , Epithelial Cells , Staphylococcal Infections , Staphylococcus aureus , Superinfection , CD47 Antigen/metabolism , CD47 Antigen/genetics , Humans , Animals , Superinfection/microbiology , Mice , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Epithelial Cells/virology , Staphylococcal Infections/immunology , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Influenza, Human/metabolism , Influenza, Human/immunology , Influenza, Human/virology , Bacterial Adhesion , Respiratory Mucosa/metabolism , Respiratory Mucosa/microbiology , Respiratory Mucosa/virology , Mice, Inbred C57BL , Bronchi/metabolism , Bronchi/cytology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Mice, Knockout , Influenza A Virus, H1N1 Subtype
10.
Front Cell Infect Microbiol ; 14: 1391758, 2024.
Article En | MEDLINE | ID: mdl-38716194

Campylobacter jejuni, a Gram-negative bacterium, is one of the most common causes of foodborne illness worldwide. Its adhesion mechanism is mediated by several bacterial factors, including flagellum, protein adhesins, lipooligosaccharides, proteases, and host factors, such as surface glycans on epithelial cells and mucins. Fungal lectins, specialized carbohydrate-binding proteins, can bind to specific glycans on host and bacterial cells and thus influence pathogenesis. In this study, we investigated the effects of fungal lectins and protease inhibitors on the adhesion of C. jejuni to model biotic surfaces (mucin, fibronectin, and collagen) and Caco-2 cells as well as the invasion of Caco-2 cells. The lectins Marasmius oreades agglutinin (MOA) and Laccaria bicolor tectonin 2 (Tec2) showed remarkable efficacy in all experiments. In addition, different pre-incubations of lectins with C. jejuni or Caco-2 cells significantly inhibited the ability of C. jejuni to adhere to and invade Caco-2 cells, but to varying degrees. Pre-incubation of Caco-2 cells with selected lectins reduced the number of invasive C. jejuni cells the most, while simultaneous incubation showed the greatest reduction in adherent C. jejuni cells. These results suggest that fungal lectins are a promising tool for the prevention and treatment of C. jejuni infections. Furthermore, this study highlights the potential of fungi as a rich reservoir for novel anti-adhesive agents.


Bacterial Adhesion , Campylobacter jejuni , Lectins , Protease Inhibitors , Campylobacter jejuni/drug effects , Campylobacter jejuni/physiology , Campylobacter jejuni/metabolism , Humans , Caco-2 Cells , Bacterial Adhesion/drug effects , Lectins/metabolism , Lectins/pharmacology , Protease Inhibitors/pharmacology , Protease Inhibitors/metabolism , Fungi/drug effects , Mucins/metabolism , Epithelial Cells/microbiology , Fibronectins/metabolism
11.
Front Cell Infect Microbiol ; 14: 1389527, 2024.
Article En | MEDLINE | ID: mdl-38756230

Neisseria meningitidis (Nm, the meningococcus) is considered an asymptomatic colonizer of the upper respiratory tract and a transient member of its microbiome. It is assumed that the spread of N. meningitidis into the bloodstream occurs via transcytosis of the nasopharyngeal epithelial barrier without destroying the barrier layer. Here, we used Calu-3 respiratory epithelial cells that were grown under air-liquid-interface conditions to induce formation of pseudostratified layers and mucus production. The number of bacterial localizations in the outer mucus, as well as cellular adhesion, invasion and transmigration of different carrier and disease N. meningitidis isolates belonging to MenB:cc32 and MenW:cc22 lineages was assessed. In addition, the effect on barrier integrity and cytokine release was determined. Our findings showed that all strains tested resided primarily in the outer mucus layer after 24 h of infection (>80%). Nonetheless, both MenB:cc32 and MenW:cc22 carrier and disease isolates reached the surface of the epithelial cells and overcame the barrier. Interestingly, we observed a significant difference in the number of bacteria transmigrating the epithelial cell barrier, with the representative disease isolates being more efficient to transmigrate compared to carrier isolates. This could be attributed to the capacity of the disease isolates to invade, however could not be assigned to expression of the outer membrane protein Opc. Moreover, we found that the representative meningococcal isolates tested in this study did not damage the epithelial barrier, as shown by TEER measurement, FITC-dextran permeability assays, and expression of cell-junction components.


Bacterial Adhesion , Carrier State , Epithelial Cells , Meningococcal Infections , Nasopharynx , Neisseria meningitidis , Epithelial Cells/microbiology , Humans , Nasopharynx/microbiology , Neisseria meningitidis/metabolism , Meningococcal Infections/microbiology , Carrier State/microbiology , Cell Line , Cytokines/metabolism
12.
J Contemp Dent Pract ; 25(3): 260-266, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38690700

AIM AND BACKGROUND: This study aimed to explore the potential synergistic interaction of virgin coconut oil (VCO) and virgin olive oil (VOO) mixture against Streptococcus sanguinis, Streptococcus mutans, and Lactobacillus casei in a single and mixture species through the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), antiadherence, and antibiofilm activities. MATERIALS AND METHODS: The broth microdilution technique was used to individually determine the MIC of both oils and an oil mixture (in the ratio of 1:1) in a 96-well microtiter plate. As for the MBC, the subcultured method was used. The fractional inhibitory concentration index (ΣFIC) was determined to identify the interaction types between both oils. The oil mixture at its MIC was then tested on its antibiofilm and antiadherence effect. RESULTS: The MIC of the oil mixture against the tested microbiota was 50-100%. The oil mixture was bactericidal at 100% concentration for all the mentioned microbes except S. mutans. The ΣFIC value was 2 to 4, indicating that the VCO and VOO acted additively against the microbiota. Meanwhile, the oil mixture at MIC (50% for S. sanguinis and L. casei; 100% for S. mutans and mixture species) exhibited antiadherence and antibiofilm activity toward the microbiota in mixture species. CONCLUSION: The oil mixture possesses antibacterial, antibiofilm, and antiadherence properties toward the tested microbiota, mainly at 50-100% concentration of oil mixture. There was no synergistic interaction found between VCO and VOO. CLINICAL SIGNIFICANCE: Children and individuals with special care may benefit from using the oil mixture, primarily to regulate the biofilm formation and colonization of the bacteria. Furthermore, the oil mixture is natural and nontoxic compared to chemical-based oral healthcare products. How to cite this article: Ng YM, Sockalingam SNMP, Shafiei Z, et al. Biological Activities of Virgin Coconut and Virgin Olive Oil Mixture against Oral Primary Colonizers: An In Vitro Study. J Contemp Dent Pract 2024;25(3):260-266.


Biofilms , Coconut Oil , Lacticaseibacillus casei , Microbial Sensitivity Tests , Olive Oil , Streptococcus mutans , Streptococcus sanguis , Olive Oil/pharmacology , Streptococcus mutans/drug effects , Biofilms/drug effects , Coconut Oil/pharmacology , In Vitro Techniques , Streptococcus sanguis/drug effects , Lacticaseibacillus casei/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Bacterial Adhesion/drug effects
13.
Lett Appl Microbiol ; 77(4)2024 Apr 08.
Article En | MEDLINE | ID: mdl-38565315

Lactic acid bacteria, found in heterogenous niches, are known for their health-endorsing properties and are in demand as prospective probiotics. Hence, the scientific community around the globe is in continuous search for novel and new potential strains with extensive applicability and minimum risk. In this context, the present study evaluated the efficiency of Lactiplantibacillus plantarum (P2F2) of human origin, a highly autoaggregating and coaggregating (with pathogens) strain, for its colonization, growth promotion, and immunomodulation. Results indicated moderate hydrophobicity on adhesion to xylene and n-hexadecane and weak electron-donating properties with chloroform. The biofilm of P2F2 formed on polystyrene was strong and highly correlated to exopolysaccharide production. The autoaggregation was moderately correlated with hydrophobicity and biofilm production. It was noted that the P2F2 strain modulated the gut microbiota and increased intestinal villi length in Wistar rats. The lipid and glucose profiles remained intact. P2F2 treatment increased the activity of reactive oxygen species-generating cells in the peritoneal cavity, besides augmenting the mitogen-induced splenocyte proliferation and maintained the immunoglobulins at the normal level. Results from this study conclusively suggest that the strain P2F2 adheres to the intestine and modulates the gut ecosystem besides enhancing cell-mediated immunity without altering the serological parameters tested.


Lactobacillus plantarum , Probiotics , Animals , Humans , Infant , Rats , Bacterial Adhesion , Feces/microbiology , Immunomodulation , Probiotics/pharmacology , Prospective Studies , Rats, Wistar
14.
Front Cell Infect Microbiol ; 14: 1268243, 2024.
Article En | MEDLINE | ID: mdl-38606299

Introduction: Crohn's disease (CD) is a chronic inflammatory bowel disease, of which the etiology involves genetic, environmental and microbial factors. Adherent-invasive Escherichia coli (AIEC) and polymorphisms in autophagy-related genes have been implicated in CD etiology. Autophagy is a key process for the maintenance of cellular homeostasis, which allows the degradation of damaged cytoplasmic components and pathogens via lysosome. We have shown that a functional autophagy is necessary for AIEC clearance. Here, we aimed at identifying the autophagy receptor(s) responsible to target AIEC to autophagy for degradation. Methods: The levels of autophagy receptors p62, NDP52, NBR1, TAX1BP1 and Optineurin were knocked down in human intestinal epithelial cells T84 using siRNAs. The NDP52 knock-out (KO) and p62 KO HeLa cells, as well as NDP52 KO HeLa cells expressing the wild-type NDP52 or the mutated NDP52Val248Ala protein were used. Results and discussion: We showed that, among the tested autophagy receptors (p62, NDP52, NBR1, TAX1BP1 and Optineurin), diminished expression of p62 or NDP52 increased the number of the clinical AIEC LF82 strain inside epithelial cells. This was associated with increased pro-inflammatory cytokine production. Moreover, p62 or NDP52 directly colocalized with AIEC LF82 and LC3, an autophagy marker. As the NDP52Val248Ala polymorphism has been associated with increased CD susceptibility, we investigated its impact on AIEC control. However, in HeLa cell and under our experimental condition, no effect of this polymorphism neither on AIEC LF82 intracellular number nor on pro-inflammatory cytokine production was observed. Together, our results suggest that p62 and NDP52 act as autophagy receptors for AIEC recognition, controlling AIEC intracellular replication and inflammation.


Crohn Disease , Escherichia coli Infections , Humans , HeLa Cells , Intestinal Mucosa/metabolism , Escherichia coli Infections/metabolism , Carrier Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Autophagy/physiology , Cytokines/metabolism , Bacterial Adhesion
15.
Food Microbiol ; 121: 104519, 2024 Aug.
Article En | MEDLINE | ID: mdl-38637081

Currently, fresh, unprocessed food has become a relevant element of the chain of transmission of enteropathogenic infections. To survive on a plant surface and further spread the infections, pathogens like Salmonella have to attach stably to the leaf surface. Adhesion, driven by various virulence factors, including the most abundant fim operon encoding type 1 fimbriae, is usually an initial step of infection, preventing physical removal of the pathogen. Adhesion properties of Salmonella's type 1 fimbriae and its FimH adhesin were investigated intensively in the past. However, there is a lack of knowledge regarding its role in interaction with plant cells. Understanding the mechanisms and structures involved in such interaction may facilitate efforts to decrease the risk of contamination and increase fresh food safety. Here, we applied Salmonella genome site-directed mutagenesis, adhesion assays, protein-protein interactions, and biophysics methods based on surface plasmon resonance to unravel the role of FimH adhesin in interaction with spinach leaves. We show that FimH is at least partially responsible for Salmonella binding to spinach leaves, and this interaction occurs in a mannose-independent manner. Importantly, we identified a potential FimH receptor as endo-1,3-ß-d-Glucanase and found that this interaction is strong and specific, with a dissociation constant in the nanomolar range. This research advances our comprehension of Salmonella's interactions with plant surfaces, offering insights that can aid in minimizing contamination risks and improving the safety of fresh, unprocessed foods.


Mannose , Salmonella typhimurium , Salmonella typhimurium/genetics , Mannose/metabolism , Spinacia oleracea , Fimbriae Proteins/genetics , Fimbriae Proteins/chemistry , Fimbriae Proteins/metabolism , Adhesins, Bacterial/genetics , Bacterial Adhesion/genetics
16.
Sci Total Environ ; 927: 172242, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38582122

Bacterial adhesion plays a vital role in forming and shaping the structure of electroactive biofilms that are essential for the performance of bioelectrochemical systems (BESs). Type IV pili are known to mediate cell adhesion in many Gram-negative bacteria, but the mechanism of pili-mediated cell adhesion of Geobacter species on anode surface remains unclear. Herein, a minor pilin PilV2 was found to be essential for cell adhesion ability of Geobacter sulfurreducens since the lack of pilV2 gene depressed the cell adhesion capability by 81.2% in microplate and the anodic biofilm density by 23.1 % at -0.1 V and 37.7 % at -0.3 V in BESs. The less cohesiveness of mutant biofilms increased the charge transfer resistance and biofilm resistance, which correspondingly lowered current generation of the pilV2-deficient strain by up to 63.2 % compared with that of the wild-type strain in BESs. The deletion of pilV2 posed an insignificant effect on the production of extracellular polysaccharides, pili, extracellular cytochromes and electron shuttles that are involved in biofilm formation or extracellular electron transfer (EET) process. This study demonstrated the significance of pilV2 gene in cell adhesion and biofilm formation of G. sulfurreducens, as well as the importance of pili-mediated adhesion for EET of electroactive biofilm.


Bacterial Adhesion , Biofilms , Fimbriae Proteins , Geobacter , Geobacter/physiology , Geobacter/genetics , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/physiology , Fimbriae, Bacterial/metabolism , Bioelectric Energy Sources
17.
Microb Pathog ; 190: 106642, 2024 May.
Article En | MEDLINE | ID: mdl-38599551

The intestinal and respiratory tracts of healthy individuals serve as habitats for a diverse array of microorganisms, among which Klebsiella oxytoca holds significance as a causative agent in numerous community- and hospital-acquired infections, often manifesting in polymicrobial contexts. In specific circumstances, K. oxytoca, alongside other constituents of the gut microbiota, undergoes translocation to distinct physiological niches. In these new environments, it engages in close interactions with other microbial community members. As this interaction may progress to co-infection where the virulence of involved pathogens may be promoted and enhance disease severity, we investigated how K. oxytoca affects the adhesion of commonly co-isolated bacteria and vice versa during co-incubation of different biotic and abiotic surfaces. Co-incubation was beneficial for the adhesion of at least one of the two co-cultured strains. K. oxytoca enhanced the adhesion of other enterobacteria strains to polystyrene and adhered more efficiently to bladder or lung epithelial cell lines in the presence of most enterobacteria strains and S. aureus. This effect was accompanied by bacterial coaggregation mediated by carbohydrate-protein interactions occurring between bacteria. These interactions occur only in sessile, but not planktonic populations, and depend on the features of the surface. The data are of particular importance for the risk assessment of the urinary and respiratory tract infections caused by K. oxytoca, including those device-associated. In this paper, we present the first report on K. oxytoca ability to acquire increased adhesive capacities on epithelial cells through interactions with common causal agents of urinary and respiratory tract infections.


Bacterial Adhesion , Epithelial Cells , Klebsiella Infections , Klebsiella oxytoca , Lung , Urinary Bladder , Klebsiella oxytoca/physiology , Humans , Epithelial Cells/microbiology , Lung/microbiology , Klebsiella Infections/microbiology , Urinary Bladder/microbiology , Staphylococcus aureus/physiology , Staphylococcus aureus/pathogenicity , Coculture Techniques , Coinfection/microbiology , Cell Line , Microbial Interactions , Opportunistic Infections/microbiology , Respiratory Tract Infections/microbiology , Virulence
18.
Biomacromolecules ; 25(5): 2728-2739, 2024 May 13.
Article En | MEDLINE | ID: mdl-38563621

Myopia is a global public health issue. Rigid contact lenses (RCLs) are an effective way to correct or control myopia. However, bioadhesion issues remain one of the significant obstacles limiting its clinical application. Although enhancing hydrophilicity through various surface treatments can mitigate this problem, the duration of effectiveness is short-lived and the processing involved is complex and costly. Herein, an antiadhesive RCLs material was designed via 8-armed methacrylate-POSS (8MA-POSS), and poly(ethylene glycol) methacrylate (PEGMA) copolymerization with 3-[tris(trimethylsiloxy)silyl] propyl methacrylate (TRIS). The POSS and PEG segments incorporated P(TRIS-co-PEGMA-co-8MA-POSS) (PTPM) material was obtained and their optical transparency, refractive index, resolution, hardness, surface charge, thermal features, and wettability were tested and optimized. The antibioadhesion activities, including protein, lipid, and bacteria, were evaluated as well. In vitro and in vivo results indicated that the optimized antibioadhesive PTPM materials present good biocompatibility and biosafety. Thus, such POSS and PEG segments containing material were a potential antibioadhesive RCL material option.


Contact Lenses , Methacrylates , Organosilicon Compounds , Polyethylene Glycols , Polyethylene Glycols/chemistry , Methacrylates/chemistry , Animals , Organosilicon Compounds/chemistry , Organosilicon Compounds/pharmacology , Bacterial Adhesion/drug effects , Mice , Biocompatible Materials/chemistry , Humans , Myopia/drug therapy
19.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article En | MEDLINE | ID: mdl-38674155

Different levels of EspP2 expression are seen in strains of Glaesserella parasuis with high and low pathogenicity. As a potential virulence factor for G. parasuis, the pathogenic mechanism of EspP2 in infection of host cells is not clear. To begin to elucidate the effect of EspP2 on virulence, we used G. parasuis SC1401 in its wild-type form and SC1401, which was made EspP2-deficient. We demonstrated that EspP2 causes up-regulation of claudin-1 and occludin expression, thereby promoting the adhesion of G. parasuis to host cells; EspP2-deficiency resulted in significantly reduced adhesion of G. parasuis to cells. Transcriptome sequencing analysis of EspP2-treated PK15 cells revealed that the Rap1 signaling pathway is stimulated by EspP2. Blocking this pathway diminished occludin expression and adhesion. These results indicated that EspP2 regulates the adhesion of Glaesserella parasuis via Rap1 signaling pathway.


Haemophilus parasuis , Signal Transduction , rap1 GTP-Binding Proteins , Animals , Haemophilus parasuis/pathogenicity , Haemophilus parasuis/genetics , rap1 GTP-Binding Proteins/metabolism , rap1 GTP-Binding Proteins/genetics , Bacterial Adhesion , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Occludin/metabolism , Occludin/genetics , Claudin-1/metabolism , Claudin-1/genetics , Cell Line , Swine
20.
Appl Environ Microbiol ; 90(5): e0033424, 2024 May 21.
Article En | MEDLINE | ID: mdl-38624197

Aggregating strains of Tetragenococcus halophilus tend to be trapped during soy sauce mash-pressing process and are, therefore, critical for clear soy sauce production. However, the precise molecular mechanism involved in T. halophilus aggregation remains elusive. In previous studies, we isolated a number of aggregating strains, including T. halophilus AB4 and AL1, and showed that a cell surface proteinaceous aggregation factor is responsible for their aggregation phenotype. In the present study, we explored the role of polysaccharide intercellular adhesin (PIA) in aggregate formation in T. halophilus SL10, isolated from soy sauce. SL10 exhibited similar aggregation to AB4 and AL1 but formed a non-uniform precipitate with distinctive wrinkles at the bottom of the test tube, unlike AB4 and AL1. Insertion sequence mutations in each gene of the ica operon diminished aggregation and PIA production, highlighting the critical role of IcaADBC-mediated PIA production in T. halophilus aggregation. Furthermore, two non-aggregating cardiolipin synthase (cls) gene mutants with intact ica operon did not produce detectable PIA. Phospholipid composition analysis in cls mutants revealed a decrease in cardiolipin and an increase in phosphatidylglycerol levels, highlighting the association between phospholipid composition and PIA production. These findings provide evidence for the pivotal role of cls in PIA-mediated aggregation and lay the foundation for future studies to understand the intricate networks of the multiple aggregation factors governing microbial aggregation.IMPORTANCEAggregation, commonly observed in various microbes, triggers biofilm formation in pathogenic variants and plays a beneficial role in efficient food production in those used for food production. Here, we showed that Tetragenococcus halophilus, a microorganism used in soy sauce fermentation, forms aggregates in a polysaccharide intercellular adhesin (PIA)-mediated manner. Additionally, we unveiled the relationship between phospholipid composition and PIA production. This study provides evidence for the presence of aggregation factors in T. halophilus other than the proteinaceous aggregation factor and suggests that further understanding of the coordinated action of these factors may improve clarified soy sauce production.


Phospholipids , Phospholipids/metabolism , Enterococcaceae/metabolism , Enterococcaceae/genetics , Polysaccharides, Bacterial/metabolism , Bacterial Adhesion , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
...