Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 976
Filtrar
1.
Biosens Bioelectron ; 261: 116517, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38924814

RESUMEN

Cell-free protein synthesis (CFPS) reactions can be used to detect nucleic acids. However, most CFPS systems rely on a toehold switch and exhibit the following critical limitations: (i) off-target signals due to leaky translation in the absence of target nucleic acids, (ii) a suboptimal detection limit of approximately 30 nM without pre-amplification, and (iii) labor-intensive screening processes due to sequence constraints for the target nucleic acids. To overcome these shortcomings, we developed a new split T7 switch-mediated CFPS system in which the split T7 promoter was applied to a three-way junction structure to selectively initiate transcription-translation only in the presence of target nucleic acids. Both fluorescence and colorimetric detection systems were constructed by employing different reporter proteins. Notably, we introduced the self-complementation of split fluorescent proteins to streamline preparation of the proposed system, enabling versatile applications. Operation of this one-pot approach under isothermal conditions enabled the detection of target nucleic acids at concentrations as low as 10 pM, representing more than a thousand times improvement over previous toehold switch-based approaches. Furthermore, the proposed system demonstrated high specificity in detecting target nucleic acids and compatibility with various reporter proteins encoded in the expression region. By eliminating issues associated with the previous toehold switch system, our split T7 switch-mediated CFPS system could become a core platform for detecting various target nucleic acids.


Asunto(s)
Técnicas Biosensibles , Sistema Libre de Células , Ácidos Nucleicos , Biosíntesis de Proteínas , Técnicas Biosensibles/métodos , Ácidos Nucleicos/química , Bacteriófago T7/genética , Colorimetría/métodos , Regiones Promotoras Genéticas , Límite de Detección , Proteínas Virales , Humanos
2.
Metabolomics ; 20(4): 68, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941046

RESUMEN

INTRODUCTION: Exploring metabolic changes within host E. coli through an untargeted metabolomic study of T7L variants overexpression to optimize engineered endolysins for clinical/therapeutic use. AIM AND OBJECTIVE: This study aims to assess the impact of overexpressing T7L variants on the metabolic profiles of E. coli. The two variants considered include T7L-H37A, which has enhanced lytic activity compared to its wild-type protein, and T7L-H48K, a dead mutant with no significant activity. METHODS: 1H NMR-based metabolomics was employed to compare the metabolic profiles of E. coli cells overexpressing T7L wild-type protein and its variants. RESULTS: Overexpression of the T7L wild-type (T7L-WT) protein and its variants (T7L-H48K and T7L-H37A) was compared to RNAP overexpression in E. coli cells using 1H NMR-based metabolomics, analyzing a total of 75 annotated metabolites, including organic acids, amino acids, sugars, and nucleic acids. The results showed distinct clustering patterns for the two T7L variant groups compared with the WT, in which the dead mutant (H48K) group showed clustering close to that of RNAP. Pathway impact analysis revealed different effects of T7L variants on E. coli metabolic profiles, with T7L-H48K showing minimal alterations in energy and amino acid pathways linked to osmotic stress compared to noticeable alterations in these pathways for both T7L-H37A and T7L-WT. CONCLUSIONS: This study uncovered distinct metabolic fingerprints when comparing the overexpression of active and inactive mutants of T7L lytic enzymes in E. coli cells. These findings could contribute to the optimization and enhancement of suitable endolysins as potential alternatives to antibiotics.


Asunto(s)
Escherichia coli , Metaboloma , Metabolómica , Escherichia coli/metabolismo , Escherichia coli/genética , Metabolómica/métodos , Proteínas Virales/metabolismo , Proteínas Virales/genética , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , Mutación , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética
3.
Acta Biochim Biophys Sin (Shanghai) ; 56(6): 937-944, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38761011

RESUMEN

Bacteriophages have been used across various fields, and the utilization of CRISPR/Cas-based genome editing technology can accelerate the research and applications of bacteriophages. However, some bacteriophages can escape from the cleavage of Cas protein, such as Cas9, and decrease the efficiency of genome editing. This study focuses on the bacteriophage T7, which is widely utilized but whose mechanism of evading the cleavage of CRISPR/Cas9 has not been elucidated. First, we test the escape rates of T7 phage at different cleavage sites, ranging from 10 -2 to 10 -5. The sequencing results show that DNA point mutations and microhomology-mediated end joining (MMEJ) at the target sites are the main causes. Next, we indicate the existence of the hotspot DNA region of MMEJ and successfully reduce MMEJ events by designing targeted sites that bypass the hotspot DNA region. Moreover, we also knock out the ATP-dependent DNA ligase 1. 3 gene, which may be involved in the MMEJ event, and the frequency of MMEJ at 4. 3 is reduced from 83% to 18%. Finally, the genome editing efficiency in T7 Δ 1. 3 increases from 20% to 100%. This study reveals the mechanism of T7 phage evasion from the cleavage of CRISPR/Cas9 and demonstrates that the special design of editing sites or the deletion of key gene 1. 3 can reduce MMEJ events and enhance gene editing efficiency. These findings will contribute to advancing CRISPR/Cas-based tools for efficient genome editing in phages and provide a theoretical foundation for the broader application of phages.


Asunto(s)
Bacteriófago T7 , Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , Bacteriófago T7/genética , ADN Ligasas/genética , ADN Ligasas/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Genoma Viral
4.
Arch Microbiol ; 206(6): 272, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772980

RESUMEN

Phage-encoded endolysins have emerged as a potential substitute to conventional antibiotics due to their exceptional benefits including host specificity, rapid host killing, least risk of resistance. In addition to their antibacterial potency and biofilm eradication properties, endolysins are reported to exhibit synergism with other antimicrobial agents. In this study, the synergistic potency of endolysins was dissected with antimicrobial peptides to enhance their therapeutic effectiveness. Recombinantly expressed and purified bacteriophage endolysin [T7 endolysin (T7L); and T4 endolysin (T4L)] proteins have been used to evaluate the broad-spectrum antibacterial efficacy using different bacterial strains. Antibacterial/biofilm eradication studies were performed in combination with different antimicrobial peptides (AMPs) such as colistin, nisin, and polymyxin B (PMB) to assess the endolysin's antimicrobial efficacy and their synergy with AMPs. In combination with T7L, polymyxin B and colistin effectively eradicated the biofilm of Pseudomonas aeruginosa and exhibited a synergistic effect. Further, a combination of T4L and nisin displayed a synergistic effect against Staphylococcus aureus biofilms. In summary, the obtained results endorse the theme of combinational therapy consisting of endolysins and AMPs as an effective remedy against the drug-resistant bacterial biofilms that are a serious concern in healthcare settings.


Asunto(s)
Antibacterianos , Péptidos Antimicrobianos , Biopelículas , Sinergismo Farmacológico , Endopeptidasas , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Staphylococcus aureus , Biopelículas/efectos de los fármacos , Endopeptidasas/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Pseudomonas aeruginosa/efectos de los fármacos , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Nisina/farmacología , Nisina/química , Polimixina B/farmacología , Bacteriófagos , Colistina/farmacología , Bacteriófago T4/efectos de los fármacos , Bacteriófago T4/fisiología , Bacteriófago T7/efectos de los fármacos , Bacteriófago T7/genética
5.
Sci Rep ; 14(1): 9655, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671016

RESUMEN

The manufacturing of mRNA vaccines relies on cell-free based systems that are easily scalable and flexible compared with the traditional vaccine manufacturing processes. Typically, standard processes yield 2 to 5 g L-1 of mRNA, with recent process optimisations increasing yields to 12 g L-1. However, increasing yields can lead to an increase in the production of unwanted by-products, namely dsRNA. It is therefore imperative to reduce dsRNA to residual levels in order to avoid intensive purification steps, enabling cost-effective manufacturing processes. In this work, we exploit sequence modifications downstream of the T7 RNA polymerase promoter to increase mRNA yields whilst simultaneously minimising dsRNA. In particular, transcription performance was optimised by modifying the sequence downstream of the T7 promoter with additional AT-rich sequences. We have identified variants that were able to produce higher amounts of mRNA (up to 14 g L-1) in 45 min of reaction. These variants exhibited up to a 30% reduction in dsRNA byproduct levels compared to a wildtype T7 promoter, and have similar EGFP protein expression. The results show that optimising the non-coding regions can have an impact on mRNA production yields and quality, reducing overall manufacturing costs.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Regiones Promotoras Genéticas , ARN Mensajero , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Bacteriófago T7/genética , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Vacunas de ARNm
6.
J Biochem ; 176(1): 35-42, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426948

RESUMEN

The T7 gene 3 product, T7 endonuclease I, acts on various substrates with DNA structures, including Holliday junctions, heteroduplex DNAs and single-mismatch DNAs. Genetic analyses have suggested the occurrence of DNA recombination, replication and repair in Escherichia coli. In this study, T7 endonuclease I digested UV-irradiated covalently closed circular plasmid DNA into linear and nicked plasmid DNA, suggesting that the enzyme generates single- and double-strand breaks (SSB and DSB). To further investigate the biochemical functions of T7 endonuclease I, we have analysed endonuclease activity in UV-induced DNA substrates containing a single lesion, cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts (6-4PP). Interestingly, the leading cleavage site for CPD by T7 endonuclease I is at the second and fifth phosphodiester bonds that are 5' to the lesion of CPD on the lesion strand. However, in the case of 6-4PP, the cleavage pattern on the lesion strand resembled that of CPD, and T7 endonuclease I could also cleave the second phosphodiester bond that is 5' to the adenine-adenine residues opposite the lesion, indicating that the enzyme produces DSB in DNA containing 6-4PP. These findings suggest that T7endonuclease I accomplished successful UV damage repair by SSB in CPD and DSB in 6-4PP.


Asunto(s)
Daño del ADN , Desoxirribonucleasa I , Rayos Ultravioleta , Rayos Ultravioleta/efectos adversos , Desoxirribonucleasa I/metabolismo , Desoxirribonucleasa I/química , ADN/metabolismo , ADN/química , Escherichia coli/genética , Escherichia coli/metabolismo , Bacteriófago T7/enzimología , Bacteriófago T7/genética , Dímeros de Pirimidina/metabolismo , Dímeros de Pirimidina/química , Reparación del ADN
7.
Methods Mol Biol ; 2793: 85-100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38526725

RESUMEN

Bacteriophage T7 is an intracellular virus that recognizes its host via tail and tail fiber proteins known as receptor-binding proteins (RBPs). The RBPs attach to a specific lipopolysaccharide (LPS) displayed on the host. While there are various reports of phage host range expansion resulting from mutations in the RBP encoding genes, there is little evidence for contraction of host range. Notably, most experimental systems have not monitored changes in host range in the presence of several hosts simultaneously. Here, we use a continuous evolution system to show that T7 phages grown in the presence of five restrictive strains and one permissive host, each with a different LPS, gradually cease to recognize the restrictive strains. Remarkably, this result was obtained in experiments with six different permissive hosts. The altered specificity is due to mutations in the RBPs as determined by gene sequencing. The results of using this system demonstrate a major role for RBPs in restricting the range of futile infections, and this process can be harnessed to reduce the host range in applications such as recognition and elimination of a specific bacterial serotype by bacteriophages.


Asunto(s)
Bacteriófago T7 , Bacteriófagos , Bacteriófago T7/genética , Lipopolisacáridos/metabolismo , Bacteriófagos/genética , Unión Proteica , Proteínas Portadoras/metabolismo , Especificidad del Huésped
8.
Methods Mol Biol ; 2793: 55-64, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38526723

RESUMEN

Phage-assisted evolution has emerged as a powerful technique for improving a protein's function by using mutagenesis and selective pressure. However, mutations typically occur throughout the host's genome and are not limited to the gene-of-interest (GOI): these undesirable genomic mutations can yield host cells that circumvent the system's selective pressure. Our system targets mutations specifically toward the GOI by combining T7 targeted mutagenesis and phage-assisted evolution. This system improves the structure and function of proteins by accumulating favorable mutations that can change its binding affinity, specificity, and activity.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Mutación , Mutagénesis , Bacteriófago T7/genética
9.
Sci Rep ; 14(1): 2377, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287027

RESUMEN

Leveraging riboswitches, non-coding mRNA fragments pivotal to gene regulation, poses a challenge in effectively selecting and enriching these functional genetic sensors, which can toggle between ON and OFF states in response to their cognate inducers. Here, we show our engineered phage T7, enabling the evolution of a theophylline riboswitch. We have replaced T7's DNA polymerase with a transcription factor controlled by a theophylline riboswitch and have created two types of host environments to propagate the engineered phage. Both types host an error-prone T7 DNA polymerase regulated by a T7 promoter along with another critical gene-either cmk or pifA, depending on the host type. The cmk gene is necessary for T7 replication and is used in the first host type for selection in the riboswitch's ON state. Conversely, the second host type incorporates the pifA gene, leading to abortive T7 infections and used for selection in the riboswitch's OFF state. This dual-selection system, termed T7AE, was then applied to a library of 65,536 engineered T7 phages, each carrying randomized riboswitch variants. Through successive passage in both host types with and without theophylline, we observed an enrichment of phages encoding functional riboswitches that conferred a fitness advantage to the phage in both hosts. The T7AE technique thereby opens new pathways for the evolution and advancement of gene switches, including non-coding RNA-based switches, setting the stage for significant strides in synthetic biology.


Asunto(s)
Bacteriófagos , Riboswitch , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , Riboswitch/genética , Teofilina/farmacología , Bacteriófagos/genética , ADN Polimerasa Dirigida por ADN/metabolismo
10.
Adv Sci (Weinh) ; 11(9): e2307696, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38126671

RESUMEN

G-quadruplex (G4) is a four-stranded noncanonical DNA structure that has long been recognized as a potential hindrance to DNA replication. However, how replisomes effectively deal with G4s to avoid replication failure is still obscure. Here, using single-molecule and ensemble approaches, the consequence of the collision between bacteriophage T7 replisome and an intramolecular G4 located on either the leading or lagging strand is examined. It is found that the adjacent fork junctions induced by G4 formation incur the binding of T7 DNA polymerase (DNAP). In addition to G4, these inactive DNAPs present insuperable obstacles, impeding the progression of DNA synthesis. Nevertheless, T7 helicase can dismantle them and resolve lagging-strand G4s, paving the way for the advancement of the replication fork. Moreover, with the assistance of the single-stranded DNA binding protein (SSB) gp2.5, T7 helicase is also capable of maintaining a leading-strand G4 structure in an unfolded state, allowing for a fraction of T7 DNAPs to synthesize through without collapse. These findings broaden the functional repertoire of a replicative helicase and underscore the inherent G4 tolerance of a replisome.


Asunto(s)
ADN Helicasas , ADN Viral , ADN Viral/química , ADN Viral/metabolismo , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Bacteriófago T7/genética
11.
Arch Biochem Biophys ; 750: 109810, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37939867

RESUMEN

Ganglioside GM3 is a simple monosialoganglioside (NeuAc-Gal-Glc-ceramide) that modulates cell adhesion, proliferation, and differentiation. Previously, we reported isolation of GM3-binding vascular endothelial growth factor receptor and transforming growth factor-ß receptor by the T7 phage display method (Chung et al., 2009; Kim et al., 2013). To further identify novel proteins interacting with GM3, we extended the T7 phage display method in this study. After T7 phage display biopanning combined with immobilized biotin-labeled 3'-sialyllactose prepared on a streptavidin-coated microplate, we isolated 100 candidate sequences from the human lung cDNA library. The most frequently detected clones from the blast analysis were the human nucleolar and coiled-body phosphoprotein 1 (NOLC1) sequences. We initially identified NOLC1 as a molecule that possibly binds to GM3 and confirmed this binding ability using the glutathione S-transferase fusion protein. Herein, we report another GM3-interacting protein, NOLC1, that can be isolated by the T7 phage display method. These results are expected to be helpful for elucidating the functional roles of ganglioside GM3 with NOLC1. When human breast cancer MCF-7 cells were examined for subcellular localization of NOLC1, immunofluorescence of NOLC1 was observed in the intracellular region. In addition, NOLC1 expression was increased in the nucleolus after treatment with the anticancer drug doxorubicin. GM3 and NOLC1 levels in the doxorubicin-treated MCF-7 cells were correlated, indicating possible associations between GM3 and NOLC1. Therefore, direct interactions between carbohydrates and cellular proteins can pave the path for new signaling phenomena in biology.


Asunto(s)
Bacteriófago T7 , Neoplasias de la Mama , Humanos , Femenino , Bacteriófago T7/genética , Factor A de Crecimiento Endotelial Vascular , Gangliósido G(M3) , Células MCF-7 , Neoplasias de la Mama/genética , Doxorrubicina , Proteínas Nucleares/metabolismo , Fosfoproteínas
12.
Methods Enzymol ; 691: 185-207, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37914446

RESUMEN

RNA is playing an ever-growing role in molecular biology and biomedicine due to the many ways it influences gene expression and its increasing use in modern therapeutics. Hence, production of RNA molecules in large quantity and high purity has become essential for advancing basic scientific research and for developing next-generation therapeutics. T7 RNA polymerase (RNAP) is a DNA-dependent RNA polymerase of bacteriophage origin and it is the most widely-utilized tool enzyme for producing RNA. Here we describe a set of robust methods for in vitro transcribing RNA molecules from DNA templates using T7 RNAP, along with a set of subsequent RNA purification schemes. In the first part of this chapter, we provide the general method for T7 RNAP-based in vitro transcription and technical notes for troubleshooting failed or inefficient transcription. We also provide modified protocols for preparing specialized RNA transcripts. In the second part, we provide two purification methods using either gel-based denaturing purification or size exclusion column-based non-denaturing purification for isolating high-purity RNA products from transcription reaction mixtures and preparing them for downstream applications. This chapter is designed to provide researchers with versatile ways to efficiently generate RNA molecules of interest and a troubleshooting guide should they encounter problems while working with in vitro transcription using T7 RNAP.


Asunto(s)
ARN , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ADN , Bacteriófago T7/genética , Bacteriófago T7/metabolismo
13.
J Biochem ; 175(1): 85-93, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37795834

RESUMEN

T7 phage libraries displaying random peptides are powerful tools for screening peptide sequences that bind to various target molecules. The T7 phage system has the advantage of less biased peptide distribution compared to the M13 phage system. However, the construction of T7 phage DNA is challenging due to its long 36 kb linear DNA. Furthermore, the diversity of the libraries depends strongly on the efficiency of commercially available packaging extracts. To address these issues, we examined the combination of seamless cloning with cell-free translation systems. Seamless cloning technologies have been widely used to construct short circular plasmid DNA, and several recent studies showed that cell-free translation can achieve more diverse phage packaging. In this study, we combined these techniques to construct four libraries (CX7C, CX9C, CX11C and CX13C) with different random regions lengths. The libraries thus obtained all showed diversity > 109 plaque forming units (pfu). Evaluating our libraries with an anti-FLAG monoclonal antibody yielded the correct epitope sequence. The results indicate that our libraries are useful for screening peptide epitopes against antibodies. These findings suggest that our system can efficiently construct T7 phage libraries with greater diversity than previous systems.


Asunto(s)
Bacteriófago T7 , Biblioteca de Péptidos , Secuencia de Aminoácidos , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , Péptidos/química , ADN/metabolismo , Epítopos/química , Clonación Molecular
14.
BMC Plant Biol ; 23(1): 467, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803262

RESUMEN

BACKGROUND: The mechanisms and regulation for DNA replication in plant organelles are largely unknown, as few proteins involved in replisome assembly have been biochemically studied. A primase-helicase dubbed Twinkle (T7 gp4-like protein with intramitochondrial nucleoid localization) unwinds double-stranded DNA in metazoan mitochondria and plant organelles. Twinkle in plants is a bifunctional enzyme with an active primase module. This contrast with animal Twinkle in which the primase module is inactive. The organellar primase-helicase of Arabidopsis thaliana (AtTwinkle) harbors a primase module (AtPrimase) that consists of an RNA polymerase domain (RPD) and a Zn + + finger domain (ZFD). RESULTS: Herein, we investigate the mechanisms by which AtTwinkle recognizes its templating sequence and how primer synthesis and coupling to the organellar DNA polymerases occurs. Biochemical data show that the ZFD of the AtPrimase module is responsible for template recognition, and this recognition is achieved by residues N163, R166, and K168. The role of the ZFD in template recognition was also corroborated by swapping the RPDs of bacteriophage T7 primase and AtPrimase with their respective ZFDs. A chimeric primase harboring the ZFD of T7 primase and the RPD of AtPrimase synthesizes ribonucleotides from the T7 primase recognition sequence and conversely, a chimeric primase harboring the ZFD of AtPrimase and the RPD of T7 primase synthesizes ribonucleotides from the AtPrimase recognition sequence. A chimera harboring the RPDs of bacteriophage T7 and the ZBD of AtTwinkle efficiently synthesizes primers for the plant organellar DNA polymerase. CONCLUSIONS: We conclude that the ZFD is responsible for recognizing a single-stranded sequence and for primer hand-off into the organellar DNA polymerases active site. The primase activity of plant Twinkle is consistent with phylogeny-based reconstructions that concluded that Twinkle´s last eukaryotic common ancestor (LECA) was an enzyme with primase and helicase activities. In plants, the primase domain is active, whereas the primase activity was lost in metazoans. Our data supports the notion that AtTwinkle synthesizes primers at the lagging-strand of the organellar replication fork.


Asunto(s)
Arabidopsis , ADN Primasa , Animales , ADN Primasa/genética , ADN Primasa/química , ADN Primasa/metabolismo , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Arabidopsis/metabolismo , Mitocondrias/metabolismo , Dedos de Zinc , Ribonucleótidos , Replicación del ADN , Bacteriófago T7/genética
15.
ACS Synth Biol ; 12(10): 3092-3105, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37712503

RESUMEN

Recombinant proteins have broad applications. However, there is a lack of a recombinant protein expression system specifically for large-scale production in anaerobic hosts. Here, we developed a powerful and stringently inducible protein expression system based on the bacteriophage T7 system in the strictly anaerobic solvent-producing Clostridium saccharoperbutylacetonicum. With the integration of a codon optimized T7 RNA polymerase into the chromosome, a single plasmid carrying a T7 promoter could efficiently drive high-level expression of the target gene in an orthogonal manner, which was tightly regulated by a lactose-inducible system. Furthermore, by deleting beta-galactosidase genes involved in lactose metabolism, the transcriptional strength was further improved. In the ultimately optimized strain TM-07, the transcriptional strength of the T7 promoter showed 9.5-fold increase compared to the endogenous strong promoter Pthl. The heterologous NADP+-dependent 3-hydroxybutyryl-CoA dehydrogenase (Hbd1) from C. kluyveri was expressed in TM-07, and the yield of the recombinant protein reached 30.4-42.4% of the total cellular protein, surpassing the strong protein expression systems in other Gram-positive bacteria. The relative activity of Hbd1 in the crude enzyme was 198.0 U/mg, which was 8.3-fold higher than the natural activity in C. kluyveri. The relative activity of the purified enzyme reached 467.4 U/mg. To the best of our knowledge, this study represents the first application of the T7 expression system in Clostridium species, and this optimized expression system holds great potential for large-scale endotoxin-free recombinant protein production under strictly anaerobic conditions. This development paves the way for significant advancements in biotechnology and opens up new avenues for industrial applications.


Asunto(s)
Bacteriófago T7 , Lactosa , Bacteriófago T7/genética , Proteínas Recombinantes/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Clostridium/genética , Clostridium/metabolismo
16.
ACS Synth Biol ; 12(8): 2418-2431, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37548960

RESUMEN

Phage therapy to treat life-threatening drug-resistant infections has been hampered by technical challenges in phage production. Cell-free bacteriophage synthesis (CFBS) can overcome the limitations of standard phage production methods by manufacturing phage virions in vitro. CFBS mimics intracellular phage assembly using transcription/translation machinery (TXTL) harvested from bacterial lysates and combined with reagents to synthesize proteins encoded by a phage genomic DNA template. These systems may enable rapid phage production and engineering to accelerate phages from bench-to-bedside. TXTL harvested from wild type or commonly used bacterial strains was not optimized for bacteriophage production. Here, we demonstrate that TXTL from genetically modified E. coli BL21 can be used to enhance phage T7 yields in vitro by CFBS. Expression of 18 E. coli BL21 genes was manipulated by inducible CRISPR interference (CRISPRi) mediated by nuclease deficient Cas12a from F. novicida (dFnCas12a) to identify genes implicated in T7 propagation as positive or negative effectors. Genes shown to have a significant effect were overexpressed (positive effectors) or repressed (negative effectors) to modify the genetic background of TXTL harvested for CFBS. Phage T7 CFBS yields were improved by up to 10-fold in vitro through overexpression of translation initiation factor IF-3 (infC) and small RNAs OxyS and CyaR and by repression of RecC subunit exonuclease RecBCD. Continued improvement of CFBS will mitigate phage manufacturing bottlenecks and lower hurdles to widespread adoption of phage therapy.


Asunto(s)
Bacteriófagos , Bacteriófagos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Bacteriófago T7/genética , Replicación del ADN
17.
Nucleic Acids Res ; 51(13): 6540-6553, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37254785

RESUMEN

Bacteriophage T7 single-stranded DNA-binding protein (gp2.5) binds to and protects transiently exposed regions of single-stranded DNA (ssDNA) while dynamically interacting with other proteins of the replication complex. We directly visualize fluorescently labelled T7 gp2.5 binding to ssDNA at the single-molecule level. Upon binding, T7 gp2.5 reduces the contour length of ssDNA by stacking nucleotides in a force-dependent manner, suggesting T7 gp2.5 suppresses the formation of secondary structure. Next, we investigate the binding dynamics of T7 gp2.5 and a deletion mutant lacking 21 C-terminal residues (gp2.5-Δ21C) under various template tensions. Our results show that the base sequence of the DNA molecule, ssDNA conformation induced by template tension, and the acidic terminal domain from T7 gp2.5 significantly impact on the DNA binding parameters of T7 gp2.5. Moreover, we uncover a unique template-catalyzed recycling behaviour of T7 gp2.5, resulting in an apparent cooperative binding to ssDNA, facilitating efficient spatial redistribution of T7 gp2.5 during the synthesis of successive Okazaki fragments. Overall, our findings reveal an efficient binding mechanism that prevents the formation of secondary structures by enabling T7 gp2.5 to rapidly rebind to nearby exposed ssDNA regions, during lagging strand DNA synthesis.


Asunto(s)
Bacteriófago T7 , Proteínas Virales , Bacteriófago T7/genética , ADN/metabolismo , Replicación del ADN , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Conformación Molecular , Proteínas Virales/metabolismo
18.
J Virol Methods ; 316: 114725, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36965632

RESUMEN

African swine fever virus (ASFV) infection causes substantial economic losses to the swine industry worldwide, and there are still no safe and effective vaccines or therapeutics available. The granulated virus antigen improves the antigen present process and elicits high antibody reaction than the subunit antigen. In this study, the SpyTag peptide-p10 fusion protein was altered and displayed on the surface of the T7 phage to construct an engineered phage (T7-ST). At the same time, ASFV antigen-Spycatcher C-terminal-fused protein (antigen-SC) was expressed and purified by an E. coli prokaryotic expression system. Five virus-like particles (VLPs) displaying the main ASFV antigenic proteins P30, P54, P72, CD2v, and K145R were reconstructed by the isopeptide bond between SpyTag and antigen-SC proteins. The stability of five ASFV VLPs in high temperature and extreme pH conditions was evaluated by transmission electron microscopy (TEM) and plaque analysis. All ASFV VLPs induced a high titer antigen-specific antibody response in mice. Our results showed that the granulated antigen displaying ASFV protein on the surface of the T7 phage provides a robust potential vaccine and diagnostic tool to address the challenge of the ASFV pandemic.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Ratones , Bacteriófago T7/genética , Formación de Anticuerpos , Escherichia coli/genética , Proteínas Virales
19.
J Mol Biol ; 435(6): 167990, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36736885

RESUMEN

Stable 37 °C open complexes (OC) of E. coli RNA polymerase (RNAP) at λPR and T7A1 promoters form at similar rates but have very different lifetimes. To understand the downstream interactions responsible for OC lifetime, how promoter sequence directs them and when they form, we report lifetimes of stable OC and unstable late (I2) intermediates for promoters with different combinations of λPR (L) and T7A1 (T) discriminators, core promoters and UP elements. I2 lifetimes are similarly short, while stable OC lifetimes differ greatly, determined largely by the discriminator and modulated by core-promoter and UP elements. The free energy change ΔG3o for I2 â†’ stable OC is approximately -4 kcal more favorable for L-discriminator than for T-discriminator promoters. Downstream-truncation at +6 (DT+6) greatly destabilizes OC at L-discriminator but not T-discriminator promoters, making all ΔG3o values similar (approximately -4 kcal). Urea reduces OC lifetime greatly by affecting ΔG3o. We deduce that urea acts by disfavoring coupled folding of key elements of the ß'-clamp, that I2 is an open-clamp OC, and that clamp-closing in I2 â†’ stable OC involves coupled folding. Differences in ΔG3o between downstream-truncated and full-length promoters yield contributions to ΔG3o from interactions with downstream mobile elements (DME) including ß-lobe and ß'-jaw, more favorable for L-discriminator than for T-discriminator promoters. We deduce how competition between far-downstream DNA and σ70 region 1.1 affects ΔG3o values. We discuss variant-specific ΔG3o contributions in terms of the allosteric network by which differences in discriminator and -10 sequence are sensed and transmitted downstream to affect DME-duplex interactions in I2 â†’ stable OC.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Escherichia coli , Regiones Promotoras Genéticas , Factor sigma , ADN/química , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas/genética , Transcripción Genética , Factor sigma/química , Factor sigma/genética , Regulación Alostérica , Bacteriófago T7/genética , Bacteriófago lambda/genética
20.
mSystems ; 8(2): e0118922, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36794936

RESUMEN

Autographiviridae is a diverse yet distinct family of bacterial viruses marked by a strictly lytic lifestyle and a generally conserved genome organization. Here, we characterized Pseudomonas aeruginosa phage LUZ100, a distant relative of type phage T7. LUZ100 is a podovirus with a limited host range which likely uses lipopolysaccharide (LPS) as a phage receptor. Interestingly, infection dynamics of LUZ100 indicated moderate adsorption rates and low virulence, hinting at temperate characteristics. This hypothesis was supported by genomic analysis, which showed that LUZ100 shares the conventional T7-like genome organization yet carries key genes associated with a temperate lifestyle. To unravel the peculiar characteristics of LUZ100, ONT-cappable-seq transcriptomics analysis was performed. These data provided a bird's-eye view of the LUZ100 transcriptome and enabled the discovery of key regulatory elements, antisense RNA, and transcriptional unit structures. The transcriptional map of LUZ100 also allowed us to identify new RNA polymerase (RNAP)-promoter pairs that can form the basis for biotechnological parts and tools for new synthetic transcription regulation circuitry. The ONT-cappable-seq data revealed that the LUZ100 integrase and a MarR-like regulator (proposed to be involved in the lytic/lysogeny decision) are actively cotranscribed in an operon. In addition, the presence of a phage-specific promoter transcribing the phage-encoded RNA polymerase raises questions on the regulation of this polymerase and suggests that it is interwoven with the MarR-based regulation. This transcriptomics-driven characterization of LUZ100 supports recent evidence that T7-like phages should not automatically be assumed to have a strictly lytic life cycle. IMPORTANCE Bacteriophage T7, considered the "model phage" of the Autographiviridae family, is marked by a strictly lytic life cycle and conserved genome organization. Recently, novel phages within this clade have emerged which display characteristics associated with a temperate life cycle. Screening for temperate behavior is of utmost importance in fields like phage therapy, where strictly lytic phages are generally required for therapeutic applications. In this study, we applied an omics-driven approach to characterize the T7-like Pseudomonas aeruginosa phage LUZ100. These results led to the identification of actively transcribed lysogeny-associated genes in the phage genome, pointing out that temperate T7-like phages are emerging more frequent than initially thought. In short, the combination of genomics and transcriptomics allowed us to obtain a better understanding of the biology of nonmodel Autographiviridae phages, which can be used to optimize the implementation of phages and their regulatory elements in phage therapy and biotechnological applications, respectively.


Asunto(s)
Bacteriófagos , Fagos Pseudomonas , Fagos Pseudomonas/genética , Transcriptoma , Lisogenia , Bacteriófago T7/genética , ARN Polimerasas Dirigidas por ADN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...