Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.789
1.
Sci Rep ; 14(1): 10540, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719945

Viruses are crucial for regulating deep-sea microbial communities and biogeochemical cycles. However, their roles are still less characterized in deep-sea holobionts. Bathymodioline mussels are endemic species inhabiting cold seeps and harboring endosymbionts in gill epithelial cells for nutrition. This study unveiled a diverse array of viruses in the gill tissues of Gigantidas platifrons mussels and analyzed the viral metagenome and transcriptome from the gill tissues of Gigantidas platifrons mussels collected from a cold seep in the South Sea. The mussel gills contained various viruses including Baculoviridae, Rountreeviridae, Myoviridae and Siphovirdae, but the active viromes were Myoviridae, Siphoviridae, and Podoviridae belonging to the order Caudovirales. The overall viral community structure showed significant variation among environments with different methane concentrations. Transcriptome analysis indicated high expression of viral structural genes, integrase, and restriction endonuclease genes in a high methane concentration environment, suggesting frequent virus infection and replication. Furthermore, two viruses (GP-phage-contig14 and GP-phage-contig72) interacted with Gigantidas platifrons methanotrophic gill symbionts (bathymodiolin mussels host intracellular methanotrophic Gammaproteobacteria in their gills), showing high expression levels, and have huge different expression in different methane concentrations. Additionally, single-stranded DNA viruses may play a potential auxiliary role in the virus-host interaction using indirect bioinformatics methods. Moreover, the Cro and DNA methylase genes had phylogenetic similarity between the virus and Gigantidas platifrons methanotrophic gill symbionts. This study also explored a variety of viruses in the gill tissues of Gigantidas platifrons and revealed that bacteria interacted with the viruses during the symbiosis with Gigantidas platifrons. This study provides fundamental insights into the interplay of microorganisms within Gigantidas platifrons mussels in deep sea.


Bacteriophages , Bivalvia , Gills , Metagenomics , Animals , Metagenomics/methods , Bacteriophages/genetics , Bacteriophages/isolation & purification , Gills/microbiology , Gills/virology , Gills/metabolism , Bivalvia/microbiology , Bivalvia/virology , Bivalvia/genetics , Gene Expression Profiling , Transcriptome , Virome/genetics , Bacteria/genetics , Bacteria/classification , Symbiosis/genetics , Metagenome
2.
Nat Commun ; 15(1): 3954, 2024 May 10.
Article En | MEDLINE | ID: mdl-38729958

Defense-associated sirtuin 2 (DSR2) systems are widely distributed across prokaryotic genomes, providing robust protection against phage infection. DSR2 recognizes phage tail tube proteins and induces abortive infection by depleting intracellular NAD+, a process that is counteracted by another phage-encoded protein, DSR Anti Defense 1 (DSAD1). Here, we present cryo-EM structures of Bacillus subtilis DSR2 in its apo, Tube-bound, and DSAD1-bound states. DSR2 assembles into an elongated tetramer, with four NADase catalytic modules clustered in the center and the regulatory-sensing modules distributed at four distal corners. Interestingly, monomeric Tube protein, rather than its oligomeric states, docks at each corner of the DSR2 tetramer to form a 4:4 DSR2-Tube assembly, which is essential for DSR2 NADase activity. DSAD1 competes with Tube for binding to DSR2 by occupying an overlapping region, thereby inhibiting DSR2 immunity. Thus, our results provide important insights into the assembly, activation and inhibition of the DSR2 anti-phage defense system.


Bacillus subtilis , Bacterial Proteins , Bacteriophages , Cryoelectron Microscopy , Bacillus subtilis/immunology , Bacillus subtilis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Bacteriophages/genetics , Bacteriophages/immunology , Immune Evasion , Sirtuins/metabolism , Sirtuins/genetics , Viral Proteins/metabolism , Viral Proteins/immunology , Viral Proteins/chemistry , Viral Proteins/genetics , Protein Binding , Models, Molecular , NAD/metabolism
3.
Parasit Vectors ; 17(1): 222, 2024 May 15.
Article En | MEDLINE | ID: mdl-38745242

BACKGROUND: Culex pipiens pallens is a well-known mosquito vector for several diseases. Deltamethrin, a commonly used pyrethroid insecticide, has been frequently applied to manage adult Cx. pipiens pallens. However, mosquitoes can develop resistance to these insecticides as a result of insecticide misuse and, therefore, it is crucial to identify novel methods to control insecticide resistance. The relationship between commensal bacteria and vector resistance has been recently recognized. Bacteriophages (= phages) are effective tools by which to control insect commensal bacteria, but there have as yet been no studies using phages on adult mosquitoes. In this study, we isolated an Aeromonas phage vB AhM-LH that specifically targets resistance-associated symbiotic bacteria in mosquitoes. We investigated the impact of Aeromonas phage vB AhM-LH in an abundance of Aeromonas hydrophila in the gut of Cx. pipiens pallens and its effect on the status of deltamethrin resistance. METHODS: Phages were isolated on double-layer agar plates and their biological properties analyzed. Phage morphology was observed by transmission electron microscopy (TEM) after negative staining. The phage was then introduced into the mosquito intestines via oral feeding. The inhibitory effect of Aeromonas phage vB AhM-LH on Aeromonas hydrophila in mosquito intestines was assessed through quantitative real-time PCR analysis. Deltamethrin resistance of mosquitoes was assessed using WHO bottle bioassays. RESULTS: An Aeromonas phage vB AhM-LH was isolated from sewage and identified as belonging to the Myoviridae family in the order Caudovirales using TEM. Based on biological characteristics analysis and in vitro antibacterial experiments, Aeromonas phage vB AhM-LH was observed to exhibit excellent stability and effective bactericidal activity. Sequencing revealed that the Aeromonas phage vB AhM-LH genome comprises 43,663 bp (51.6% CG content) with 81 predicted open reading frames. No integrase-related gene was detected in the vB AH-LH genome, which marked it as a potential biological antibacterial. Finally, we found that Aeromonas phage vB AhM-LH could significantly reduce deltamethrin resistance in Cx. pipiens pallens, in both the laboratory and field settings, by decreasing the abundance of Aeromonas hydrophila in their midgut. CONCLUSIONS: Our findings demonstrate that Aeromonas phage vB AhM-LH could effectively modulate commensal bacteria Aeromonas hydrophila in adult mosquitoes, thus representing a promising strategy to mitigate mosquito vector resistance.


Aeromonas hydrophila , Bacteriophages , Culex , Insecticide Resistance , Nitriles , Pyrethrins , Animals , Aeromonas hydrophila/virology , Aeromonas hydrophila/drug effects , Culex/virology , Culex/microbiology , Bacteriophages/physiology , Bacteriophages/isolation & purification , Bacteriophages/genetics , Pyrethrins/pharmacology , Nitriles/pharmacology , Insecticides/pharmacology , Mosquito Vectors/virology , Mosquito Vectors/microbiology , Female
4.
Commun Biol ; 7(1): 535, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710842

Escherichia coli O157 can cause foodborne outbreaks, with infection leading to severe disease such as hemolytic-uremic syndrome. Although phage-based detection methods for E. coli O157 are being explored, research on their specificity with clinical isolates is lacking. Here, we describe an in vitro assembly-based synthesis of vB_Eco4M-7, an O157 antigen-specific phage with a 68-kb genome, and its use as a proof of concept for E. coli O157 detection. Linking the detection tag to the C-terminus of the tail fiber protein, gp27 produces the greatest detection sensitivity of the 20 insertions sites tested. The constructed phage detects all 53 diverse clinical isolates of E. coli O157, clearly distinguishing them from 35 clinical isolates of non-O157 Shiga toxin-producing E. coli. Our efficient phage synthesis methods can be applied to other pathogenic bacteria for a variety of applications, including phage-based detection and phage therapy.


Escherichia coli O157 , Escherichia coli O157/virology , Escherichia coli O157/genetics , Escherichia coli O157/isolation & purification , Humans , Escherichia coli Infections/microbiology , Escherichia coli Infections/diagnosis , Bacteriophages/genetics , Bacteriophages/isolation & purification , Coliphages/genetics , Coliphages/isolation & purification , Sensitivity and Specificity , Genome, Viral
5.
J Med Microbiol ; 73(5)2024 May.
Article En | MEDLINE | ID: mdl-38743467

Introduction . Acinetobacter baumannii is a critical priority pathogen for novel antimicrobials (World Health Organization) because of the rise in nosocomial infections and its ability to evolve resistance to last resort antibiotics. A. baumannii is thus a priority target for phage therapeutics. Two strains of a novel, virulent bacteriophage (LemonAid and Tonic) able to infect carbapenem-resistant A. baumannii (strain NCTC 13420), were isolated from environmental water samples collected through a citizen science programme.Gap statement. Phage-host coevolution can lead to emergence of host resistance, with a concomitant reduction in the virulence of host bacteria; a potential benefit to phage therapy applications.Methodology. In vitro and in vivo assays, genomics and microscopy techniques were used to characterize the phages; determine mechanisms and impact of phage resistance on host virulence, and the efficacy of the phages against A. baumannii.Results. A. baumannii developed resistance to both viruses, LemonAid and Tonic. Resistance came at a cost to virulence, with the resistant variants causing significantly reduced mortality in a Galleria mellonella larval in vivo model. A replicated 8 bp insertion increased in frequency (~40 % higher frequency than in the wild-type) within phage-resistant A. baumannii mutants, putatively resulting in early truncation of a protein of unknown function. Evidence from comparative genomics and an adsorption assay suggests this protein acts as a novel phage receptor site in A. baumannii. We find no evidence linking resistance to changes in capsule structure, a known virulence factor. LemonAid efficiently suppressed growth of A. baumanni in vitro across a wide range of titres. However, in vivo, while survival of A. baumannii infected larvae significantly increased with both remedial and prophylactic treatment with LemonAid (107 p.f.u. ml-1), the effect was weak and not sufficient to save larvae from morbidity and mortality.Conclusion. While LemonAid and Tonic did not prove effective as a treatment in a Galleria larvae model, there is potential to harness their ability to attenuate virulence in drug-resistant A. baumannii.


Acinetobacter Infections , Acinetobacter baumannii , Bacteriophages , Acinetobacter baumannii/virology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/pathogenicity , Acinetobacter baumannii/genetics , Bacteriophages/genetics , Bacteriophages/physiology , Virulence , Acinetobacter Infections/microbiology , Animals , Moths/microbiology , Moths/virology , Phage Therapy , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Larva/microbiology , Larva/virology
6.
PLoS One ; 19(5): e0301292, 2024.
Article En | MEDLINE | ID: mdl-38743671

Enterococcus faecalis, a Gram-positive bacterium, poses a significant clinical challenge owing to its intrinsic resistance to a broad spectrum of antibiotics, warranting urgent exploration of innovative therapeutic strategies. This study investigated the viability of phage therapy as an alternative intervention for antibiotic-resistant E. faecalis, with a specific emphasis on the comprehensive genomic analysis of bacteriophage SAM-E.f 12. The investigation involved whole-genome sequencing of SAM-E.f 12 using Illumina technology, resulting in a robust dataset for detailed genomic characterization. Bioinformatics analyses were employed to predict genes and assign functional annotations. The bacteriophage SAM-E.f 12, which belongs to the Siphoviridae family, exhibited substantial potential, with a burst size of 5.7 PFU/infected cells and a latent period of 20 min. Host range determination experiments demonstrated its effectiveness against clinical E. faecalis strains, positioning SAM-E.f 12 as a precise therapeutic agent. Stability assays underscore resilience across diverse environmental conditions. This study provides a comprehensive understanding of SAM-E.f 12 genomic composition, lytic lifecycle parameters, and practical applications, particularly its efficacy in murine wound models. These results emphasize the promising role of phage therapy, specifically its targeted approach against antibiotic-resistant E. faecalis strains. The nuanced insights derived from this research will contribute to the ongoing pursuit of efficacious phage therapies and offer valuable implications for addressing the clinical challenges associated with E. faecalis infections.


Bacteriophages , Enterococcus faecalis , Genome, Viral , Enterococcus faecalis/virology , Enterococcus faecalis/genetics , Bacteriophages/genetics , Animals , Mice , Phage Therapy , Host Specificity/genetics , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/therapy , Whole Genome Sequencing , Genomics/methods , Siphoviridae/genetics
7.
Nat Commun ; 15(1): 4089, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744831

Dominant microorganisms of the Sargasso Sea are key drivers of the global carbon cycle. However, associated viruses that shape microbial community structure and function are not well characterised. Here, we combined short and long read sequencing to survey Sargasso Sea phage communities in virus- and cellular fractions at viral maximum (80 m) and mesopelagic (200 m) depths. We identified 2,301 Sargasso Sea phage populations from 186 genera. Over half of the phage populations identified here lacked representation in global ocean viral metagenomes, whilst 177 of the 186 identified genera lacked representation in genomic databases of phage isolates. Viral fraction and cell-associated viral communities were decoupled, indicating viral turnover occurred across periods longer than the sampling period of three days. Inclusion of long-read data was critical for capturing the breadth of viral diversity. Phage isolates that infect the dominant bacterial taxa Prochlorococcus and Pelagibacter, usually regarded as cosmopolitan and abundant, were poorly represented.


Bacteriophages , Metagenome , Metagenomics , Oceans and Seas , Seawater , Metagenomics/methods , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , Seawater/virology , Seawater/microbiology , Metagenome/genetics , Genome, Viral/genetics , Phylogeny , Prochlorococcus/virology , Prochlorococcus/genetics , Microbiota/genetics , Bacteria/genetics , Bacteria/virology , Bacteria/classification , Bacteria/isolation & purification
8.
Microb Genom ; 10(5)2024 May.
Article En | MEDLINE | ID: mdl-38717818

Evidence is accumulating in the literature that the horizontal spread of antimicrobial resistance (AMR) genes mediated by bacteriophages and bacteriophage-like plasmid (phage-plasmid) elements is much more common than previously envisioned. For instance, we recently identified and characterized a circular P1-like phage-plasmid harbouring a bla CTX-M-15 gene conferring extended-spectrum beta-lactamase (ESBL) resistance in Salmonella enterica serovar Typhi. As the prevalence and epidemiological relevance of such mechanisms has never been systematically assessed in Enterobacterales, in this study we carried out a follow-up retrospective analysis of UK Salmonella isolates previously sequenced as part of routine surveillance protocols between 2016 and 2021. Using a high-throughput bioinformatics pipeline we screened 47 784 isolates for the presence of the P1 lytic replication gene repL, identifying 226 positive isolates from 25 serovars and demonstrating that phage-plasmid elements are more frequent than previously thought. The affinity for phage-plasmids appears highly serovar-dependent, with several serovars being more likely hosts than others; most of the positive isolates (170/226) belonged to S. Typhimurium ST34 and ST19. The phage-plasmids ranged between 85.8 and 98.2 kb in size, with an average length of 92.1 kb; detailed analysis indicated a high amount of diversity in gene content and genomic architecture. In total, 132 phage-plasmids had the p0111 plasmid replication type, and 94 the IncY type; phylogenetic analysis indicated that both horizontal and vertical gene transmission mechanisms are likely to be involved in phage-plasmid propagation. Finally, phage-plasmids were present in isolates that were resistant and non-resistant to antimicrobials. In addition to providing a first comprehensive view of the presence of phage-plasmids in Salmonella, our work highlights the need for a better surveillance and understanding of phage-plasmids as AMR carriers, especially through their characterization with long-read sequencing.


Plasmids , Salmonella enterica , Serogroup , Plasmids/genetics , Salmonella enterica/virology , Salmonella enterica/genetics , Salmonella Infections/microbiology , Bacteriophages/genetics , Bacteriophages/classification , Salmonella Phages/genetics , Salmonella Phages/classification , Humans , Phylogeny , Gene Transfer, Horizontal , Retrospective Studies
9.
Cell Host Microbe ; 32(5): 634-636, 2024 May 08.
Article En | MEDLINE | ID: mdl-38723602

Bacterial genomes are littered with exogenous: competing DNA elements. Here, Sprenger et al. demonstrate that the Vibrio cholerae prophage VP882 modulates host functions via production of regulatory sRNAs to promote phage development. Alternatively, host sRNAs inhibit the VP882 lytic phase by specifically regulating phage genes.


Prophages , Vibrio cholerae , Vibrio cholerae/genetics , Prophages/genetics , Prophages/physiology , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Genome, Bacterial , Bacteriophages/genetics , Bacteriophages/physiology , Gene Expression Regulation, Bacterial , RNA, Bacterial/genetics , RNA, Bacterial/metabolism
10.
Nat Commun ; 15(1): 3715, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698041

Phages play an essential role in controlling bacterial populations. Those infecting Pelagibacterales (SAR11), the dominant bacteria in surface oceans, have been studied in silico and by cultivation attempts. However, little is known about the quantity of phage-infected cells in the environment. Using fluorescence in situ hybridization techniques, we here show pelagiphage-infected SAR11 cells across multiple global ecosystems and present evidence for tight community control of pelagiphages on the SAR11 hosts in a case study. Up to 19% of SAR11 cells were phage-infected during a phytoplankton bloom, coinciding with a ~90% reduction in SAR11 cell abundance within 5 days. Frequently, a fraction of the infected SAR11 cells were devoid of detectable ribosomes, which appear to be a yet undescribed possible stage during pelagiphage infection. We dubbed such cells zombies and propose, among other possible explanations, a mechanism in which ribosomal RNA is used as a resource for the synthesis of new phage genomes. On a global scale, we detected phage-infected SAR11 and zombie cells in the Atlantic, Pacific, and Southern Oceans. Our findings illuminate the important impact of pelagiphages on SAR11 populations and unveil the presence of ribosome-deprived zombie cells as part of the infection cycle.


Bacteriophages , Ribosomes , Ribosomes/metabolism , Bacteriophages/genetics , Bacteriophages/physiology , Phytoplankton/virology , Phytoplankton/genetics , Phytoplankton/metabolism , In Situ Hybridization, Fluorescence , Alphaproteobacteria/genetics , Alphaproteobacteria/metabolism , Ecosystem , Seawater/microbiology , Seawater/virology , Oceans and Seas
11.
BMC Microbiol ; 24(1): 155, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704526

BACKGROUND: The in-depth understanding of the role of lateral genetic transfer (LGT) in phage-prophage interactions is essential to rationalizing phage applications for human and animal therapy, as well as for food and environmental safety. This in silico study aimed to detect LGT between phages of potential industrial importance and their hosts. METHODS: A large array of genetic recombination detection algorithms, implemented in SplitsTree and RDP4, was applied to detect LGT between various Escherichia, Listeria, Salmonella, Campylobacter, Staphylococcus, Pseudomonas, and Vibrio phages and their hosts. PHASTER and RAST were employed respectively to identify prophages across the host genome and to annotate LGT-affected genes with unknown functions. PhageAI was used to gain deeper insights into the life cycle history of recombined phages. RESULTS: The split decomposition inferences (bootstrap values: 91.3-100; fit: 91.433-100), coupled with the Phi (0.0-2.836E-12) and RDP4 (P being well below 0.05) statistics, provided strong evidence for LGT between certain Escherichia, Listeria, Salmonella, and Campylobacter virulent phages and prophages of their hosts. The LGT events entailed mainly the phage genes encoding for hypothetical proteins, while some of these genetic loci appeared to have been affected even by intergeneric recombination in specific E. coli and S. enterica virulent phages when interacting with their host prophages. Moreover, it is shown that certain L. monocytogenes virulent phages could serve at least as the donors of the gene loci, involved in encoding for the basal promoter specificity factor, for L. monocytogenes. In contrast, the large genetic clusters were determined to have been simultaneously exchanged by many S. aureus prophages and some Staphylococcus temperate phages proposed earlier as potential therapeutic candidates (in their native or modified state). The above genetic clusters were found to encompass multiple genes encoding for various proteins, such as e.g., phage tail proteins, the capsid and scaffold proteins, holins, and transcriptional terminator proteins. CONCLUSIONS: It is suggested that phage-prophage interactions, mediated by LGT (including intergeneric recombination), can have a far-reaching impact on the co-evolutionary trajectories of industrial phages and their hosts especially when excessively present across microbially rich environments.


Prophages , Recombination, Genetic , Prophages/genetics , Campylobacter/virology , Campylobacter/genetics , Staphylococcus/virology , Staphylococcus/genetics , Gene Transfer, Horizontal , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/classification , Listeria/virology , Listeria/genetics , Salmonella/virology , Salmonella/genetics , Evolution, Molecular , Bacteria/virology , Bacteria/genetics
12.
Front Cell Infect Microbiol ; 14: 1382145, 2024.
Article En | MEDLINE | ID: mdl-38736748

Carbapenem-resistant Acinetobacter baumannii (CRAB) has become a new threat in recent years, owing to its rapidly increasing resistance to antibiotics and new effective therapies are needed to combat this pathogen. Phage therapy is considered to be the most promising alternative for treating CRAB infections. In this study, a novel phage, Ab_WF01, which can lyse clinical CRAB, was isolated and characterized from hospital sewage. The multiplicity of infection, morphology, one-step growth curve, stability, sensitivity, and lytic activity of the phage were also investigated. The genome of phage Ab_WF01 was 41, 317 bp in size with a GC content of 39.12% and encoded 51 open reading frames (ORFs). tRNA, virulence, and antibiotic resistance genes were not detected in the phage genome. Comparative genomic and phylogenetic analyses suggest that phage Ab_WF01 is a novel species of the genus Friunavirus, subfamily Beijerinckvirinae, and family Autographiviridae. The in vivo results showed that phage Ab_WF01 significantly increased the survival rate of CRAB-infected Galleria mellonella (from 0% to 70% at 48 h) and mice (from 0% to 60% for 7 days). Moreover, after day 3 post-infection, phage Ab_WF01 reduced inflammatory response, with strongly ameliorated histological damage and bacterial clearance in infected tissue organs (lungs, liver, and spleen) in mouse CRAB infection model. Taken together, these results show that phage Ab_WF01 holds great promise as a potential alternative agent with excellent stability for against CRAB infections.


Acinetobacter Infections , Acinetobacter baumannii , Bacteriophages , Carbapenems , Genome, Viral , Phage Therapy , Phylogeny , Sewage , Acinetobacter baumannii/virology , Acinetobacter baumannii/drug effects , Sewage/virology , Sewage/microbiology , Animals , Carbapenems/pharmacology , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/classification , Bacteriophages/isolation & purification , Acinetobacter Infections/microbiology , Mice , Anti-Bacterial Agents/pharmacology , Open Reading Frames , Disease Models, Animal , Moths/virology , Moths/microbiology , Base Composition
13.
Microbiology (Reading) ; 170(5)2024 May.
Article En | MEDLINE | ID: mdl-38739436

Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 µg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 µg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 µg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 µg ml-1) and P. aeruginosa P2307 (65.00 µg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.


Anti-Bacterial Agents , Endopeptidases , Glucans , Polymyxin B , Salmonella Phages , Endopeptidases/pharmacology , Endopeptidases/chemistry , Endopeptidases/metabolism , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Salmonella Phages/genetics , Salmonella Phages/physiology , Salmonella Phages/chemistry , Glucans/chemistry , Glucans/pharmacology , Animals , Microbial Sensitivity Tests , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/virology , Mice , Salmonella typhimurium/virology , Salmonella typhimurium/drug effects , Bacteriophages/physiology , Bacteriophages/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/pharmacology , Viral Proteins/chemistry
14.
Arch Virol ; 169(5): 117, 2024 May 13.
Article En | MEDLINE | ID: mdl-38739272

Xanthomonas phage AhaSv was isolated from lake water. Genome sequencing showed that its genome is a linear dsDNA molecule with a length of 55,576 bp and a G+C content of 63.23%. Seventy-one open reading frames (ORFs) were predicted, and no tRNAs were found in the genome. Phylogenetic analysis showed that AhaSv is closely related to members of the genus Salvovirus of the family Casjensviridae. Intergenomic similarity values between phage AhaSv and homologous phages were up to 90.6%, suggesting that phage AhaSv should be considered a member of a new species in the genus Salvovirus.


Bacteriophages , Base Composition , Genome, Viral , Open Reading Frames , Phylogeny , Xanthomonas , Xanthomonas/virology , Xanthomonas/genetics , Xanthomonas/classification , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/isolation & purification , DNA, Viral/genetics , Sequence Analysis, DNA , Lakes/virology , Lakes/microbiology
15.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732145

Bacteria and their phage adversaries are engaged in an ongoing arms race, resulting in the development of a broad antiphage arsenal and corresponding viral countermeasures. In recent years, the identification and utilization of CRISPR-Cas systems have driven a renewed interest in discovering and characterizing antiphage mechanisms, revealing a richer diversity than initially anticipated. Currently, these defense systems can be categorized based on the bacteria's strategy associated with the infection cycle stage. Thus, bacterial defense systems can degrade the invading genetic material, trigger an abortive infection, or inhibit genome replication. Understanding the molecular mechanisms of processes related to bacterial immunity has significant implications for phage-based therapies and the development of new biotechnological tools. This review aims to comprehensively cover these processes, with a focus on the most recent discoveries.


Bacteria , Bacteriophages , CRISPR-Cas Systems , Bacteria/genetics , Bacteriophages/physiology , Bacteriophages/genetics , Drug Resistance, Bacterial/genetics , Humans , Bacterial Infections/immunology , Bacterial Infections/microbiology
16.
Nat Microbiol ; 9(5): 1312-1324, 2024 May.
Article En | MEDLINE | ID: mdl-38565896

Dormant prophages protect lysogenic cells by expressing diverse immune systems, which must avoid targeting their cognate prophages upon activation. Here we report that multiple Staphylococcus aureus prophages encode Tha (tail-activated, HEPN (higher eukaryotes and prokaryotes nucleotide-binding) domain-containing anti-phage system), a defence system activated by structural tail proteins of incoming phages. We demonstrate the function of two Tha systems, Tha-1 and Tha-2, activated by distinct tail proteins. Interestingly, Tha systems can also block reproduction of the induced tha-positive prophages. To prevent autoimmunity after prophage induction, these systems are inhibited by the product of a small overlapping antisense gene previously believed to encode an excisionase. This genetic organization, conserved in S. aureus prophages, allows Tha systems to protect prophages and their bacterial hosts against phage predation and to be turned off during prophage induction, balancing immunity and autoimmunity. Our results show that the fine regulation of these processes is essential for the correct development of prophages' life cycle.


Prophages , Staphylococcus aureus , Prophages/genetics , Staphylococcus aureus/virology , Staphylococcus aureus/immunology , Autoimmunity , Lysogeny , Staphylococcus Phages/genetics , Staphylococcus Phages/immunology , Staphylococcus Phages/physiology , Viral Tail Proteins/genetics , Viral Tail Proteins/metabolism , Bacteriophages/genetics , Bacteriophages/immunology , Bacteriophages/physiology
17.
Proc Natl Acad Sci U S A ; 121(19): e2317954121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38683976

Several microbial genomes lack textbook-defined essential genes. If an essential gene is absent from a genome, then an evolutionarily independent gene of unknown function complements its function. Here, we identified frequent nonhomologous replacement of an essential component of DNA replication initiation, a replicative helicase loader gene, in Vibrionaceae. Our analysis of Vibrionaceae genomes revealed two genes with unknown function, named vdhL1 and vdhL2, that were substantially enriched in genomes without the known helicase-loader genes. These genes showed no sequence similarities to genes with known function but encoded proteins structurally similar with a viral helicase loader. Analyses of genomic syntenies and coevolution with helicase genes suggested that vdhL1/2 encodes a helicase loader. The in vitro assay showed that Vibrio harveyi VdhL1 and Vibrio ezurae VdhL2 promote the helicase activity of DnaB. Furthermore, molecular phylogenetics suggested that vdhL1/2 were derived from phages and replaced an intrinsic helicase loader gene of Vibrionaceae over 20 times. This high replacement frequency implies the host's advantage in acquiring a viral helicase loader gene.


DNA Helicases , DNA Replication , Phylogeny , Vibrionaceae , Vibrionaceae/genetics , Vibrionaceae/enzymology , DNA Helicases/metabolism , DNA Helicases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Bacteriophages/genetics , Bacteriophages/enzymology , Evolution, Molecular , Genome, Bacterial , DnaB Helicases/metabolism , DnaB Helicases/genetics , Vibrio/genetics , Vibrio/enzymology
18.
Proc Natl Acad Sci U S A ; 121(19): e2321190121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38687783

Targeting proteins to specific subcellular destinations is essential in prokaryotes, eukaryotes, and the viruses that infect them. Chimalliviridae phages encapsulate their genomes in a nucleus-like replication compartment composed of the protein chimallin (ChmA) that excludes ribosomes and decouples transcription from translation. These phages selectively partition proteins between the phage nucleus and the bacterial cytoplasm. Currently, the genes and signals that govern selective protein import into the phage nucleus are unknown. Here, we identify two components of this protein import pathway: a species-specific surface-exposed region of a phage intranuclear protein required for nuclear entry and a conserved protein, PicA (Protein importer of chimalliviruses A), that facilitates cargo protein trafficking across the phage nuclear shell. We also identify a defective cargo protein that is targeted to PicA on the nuclear periphery but fails to enter the nucleus, providing insight into the mechanism of nuclear protein trafficking. Using CRISPRi-ART protein expression knockdown of PicA, we show that PicA is essential early in the chimallivirus replication cycle. Together, our results allow us to propose a multistep model for the Protein Import Chimallivirus pathway, where proteins are targeted to PicA by amino acids on their surface and then licensed by PicA for nuclear entry. The divergence in the selectivity of this pathway between closely related chimalliviruses implicates its role as a key player in the evolutionary arms race between competing phages and their hosts.


Bacteriophages , Cell Nucleus , Protein Transport , Viral Proteins , Viral Proteins/metabolism , Viral Proteins/genetics , Bacteriophages/metabolism , Bacteriophages/genetics , Cell Nucleus/metabolism , Virus Replication
19.
Nucleic Acids Res ; 52(8): 4723-4738, 2024 May 08.
Article En | MEDLINE | ID: mdl-38587192

Bacterial reverse transcriptases (RTs) are a large and diverse enzyme family. AbiA, AbiK and Abi-P2 are abortive infection system (Abi) RTs that mediate defense against bacteriophages. What sets Abi RTs apart from other RT enzymes is their ability to synthesize long DNA products of random sequences in a template- and primer-independent manner. Structures of AbiK and Abi-P2 representatives have recently been determined, but there are no structural data available for AbiA. Here, we report the crystal structure of Lactococcus AbiA polymerase in complex with a single-stranded polymerization product. AbiA comprises three domains: an RT-like domain, a helical domain that is typical for Abi polymerases, and a higher eukaryotes and prokaryotes nucleotide-binding (HEPN) domain that is common for many antiviral proteins. AbiA forms a dimer that distinguishes it from AbiK and Abi-P2, which form trimers/hexamers. We show the DNA polymerase activity of AbiA in an in vitro assay and demonstrate that it requires the presence of the HEPN domain which is enzymatically inactive. We validate our biochemical and structural results in vivo through bacteriophage infection assays. Finally, our in vivo results suggest that AbiA-mediated phage defense may not rely on AbiA-mediated cell death.


Bacteriophages , Lactococcus , Models, Molecular , Bacteriophages/genetics , Lactococcus/virology , Lactococcus/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Crystallography, X-Ray , Protein Domains , RNA-Directed DNA Polymerase/metabolism , RNA-Directed DNA Polymerase/chemistry , RNA-Directed DNA Polymerase/genetics , Protein Multimerization , Structure-Activity Relationship
20.
Sci Rep ; 14(1): 7913, 2024 04 04.
Article En | MEDLINE | ID: mdl-38575625

Bacteriophages are recognized as the most abundant members of microbiomes and have therefore a profound impact on microbial communities through the interactions with their bacterial hosts. The International Metagenomics and Metadesign of Subways and Urban Biomes Consortium (MetaSUB) has sampled mass-transit systems in 60 cities over 3 years using metagenomics, throwing light into these hitherto largely unexplored urban environments. MetaSUB focused primarily on the bacterial community. In this work, we explored MetaSUB metagenomic data in order to recover and analyze bacteriophage genomes. We recovered and analyzed 1714 phage genomes with size at least 40 kbp, from the class Caudoviricetes, the vast majority of which (80%) are novel. The recovered genomes were predicted to belong to temperate (69%) and lytic (31%) phages. Thirty-three of these genomes have more than 200 kbp, and one of them reaches 572 kbp, placing it among the largest phage genomes ever found. In general, the phages tended to be site-specific or nearly so, but 194 genomes could be identified in every city from which phage genomes were retrieved. We predicted hosts for 48% of the phages and observed general agreement between phage abundance and the respective bacterial host abundance, which include the most common nosocomial multidrug-resistant pathogens. A small fraction of the phage genomes are carriers of antibiotic resistance genes, and such genomes tended to be particularly abundant in the sites where they were found. We also detected CRISPR-Cas systems in five phage genomes. This study expands the previously reported MetaSUB results and is a contribution to the knowledge about phage diversity, global distribution, and phage genome content.


Bacteriophages , Microbiota , Railroads , Bacteriophages/genetics , Microbiota/genetics , Metagenome/genetics , Bacteria/genetics
...