Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
1.
J Antimicrob Chemother ; 79(7): 1683-1687, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38814812

RESUMEN

BACKGROUND: Bacteroides fragilis, an anaerobic gut bacterium and opportunistic pathogen, comprises two genetically divergent groups (or divisions) at the species level. Differences exist both in the core and accessory genomes and the beta-lactamase genes, with the cephalosporinase gene cepA represented only in division I and the carbapenemase gene cfiA only in division II. METHODS: Multidrug resistance in a clinical B. fragilis strain was examined by whole-genome sequencing. RESULTS: Strain CNM20200260 carried the antimicrobial resistance genes cepA, cfiA2, ant(6'), erm(F), mef(En2), est(T), tet(Q) and cat(A), along with 82-Phe mutation in gyrA (together with 47 amino acid changes in gyrA/B and parC/parE). bexA/B and other efflux pump genes were also observed. None of the detected insertion sequences was located upstream of cfiA2. The genome-based taxonomy coefficients (average nucleotide identity, DNA-DNA hybridization similarity and difference in genomic G + C%) with respect to genomes of the strains of B. fragilis division II and the novel species Bacteroides hominis (both cfiA-positive) met the criteria for CNM20200260 to belong to either species (>95%, >70% and <1%, respectively). No such similarity was seen with type strain NCTC 9343 or the representative genome FDAARGOS 1225 of B. fragilis (division I, cfiA-negative). Strain CNM20200260 harboured four out of nine Kyoto Encyclopedia of Genes and Genomes orthologues defined for division I and one of two defined for division II. CONCLUSIONS: This is the first description of the co-occurrence of cepA and cfiA in a Bacteroides strain, confirming the complexity of the taxonomy of this species.


Asunto(s)
Proteínas Bacterianas , Infecciones por Bacteroides , Bacteroides fragilis , Cefalosporinasa , beta-Lactamasas , Bacteroides fragilis/genética , Bacteroides fragilis/enzimología , Bacteroides fragilis/aislamiento & purificación , Bacteroides fragilis/clasificación , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Humanos , Cefalosporinasa/genética , Infecciones por Bacteroides/microbiología , Secuenciación Completa del Genoma , Farmacorresistencia Bacteriana Múltiple/genética , Antibacterianos/farmacología , Genoma Bacteriano , Pruebas de Sensibilidad Microbiana , Análisis de Secuencia de ADN
2.
Biochem J ; 481(12): 793-804, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38785320

RESUMEN

CRISPR-Cas systems confer adaptive immunity in prokaryotes, facilitating the recognition and destruction of invasive nucleic acids. Type III CRISPR systems comprise large, multisubunit ribonucleoprotein complexes with a catalytic Cas10 subunit. When activated by the detection of foreign RNA, Cas10 generates nucleotide signalling molecules that elicit an immune response by activating ancillary effector proteins. Among these systems, the Bacteroides fragilis type III CRISPR system was recently shown to produce a novel signal molecule, SAM-AMP, by conjugating ATP and SAM. SAM-AMP regulates a membrane effector of the CorA family to provide immunity. Here, we focus on NYN, a ribonuclease encoded within this system, probing its potential involvement in crRNA maturation. Structural modelling and in vitro ribonuclease assays reveal that NYN displays robust sequence-nonspecific, Mn2+-dependent ssRNA-cleavage activity. Our findings suggest a role for NYN in trimming crRNA intermediates into mature crRNAs, which is necessary for type III CRISPR antiviral defence. This study sheds light on the functional relevance of CRISPR-associated NYN proteins and highlights the complexity of CRISPR-mediated defence strategies in bacteria.


Asunto(s)
Sistemas CRISPR-Cas , ARN Bacteriano , Ribonucleasas , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , Ribonucleasas/metabolismo , Ribonucleasas/genética , Bacteroides fragilis/genética , Bacteroides fragilis/enzimología , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Procesamiento Postranscripcional del ARN , Modelos Moleculares
3.
Int J Biol Macromol ; 266(Pt 1): 130955, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38499120

RESUMEN

Lacto-N-fucopentaose V (LNFP V) is a typical human milk pentasaccharide. Multi-enzymatic in vitro synthesis of LNFP V from lactose was reported, however, microbial cell factory approach to LNFP V production has not been reported yet. In this study, the biosynthetic pathway of LNFP V was examined in Escherichia coli. The previously constructed E. coli efficiently producing lacto-N-tetraose was used as the starting strain. GDP-fucose pathway module and a regio-specific glycosyltransferase with α1,3-fucosylation activity were introduced to realize the efficient synthesis of LNFP V. The α1,3/4-fucosyltransferase from Bacteroides fragilis was selected as the best enzyme for in vivo biosynthesis of LNFP V from nine candidates, with the highest titer and the lowest by-product accumulation. A beneficial variant K128D was obtained to further enhance LNFP V titer using computer-assisted site-directed mutagenesis. The final strain EW10 could produce 25.68 g/L LNFP V by fed-batch cultivation, with the productivity of 0.56 g/L·h.


Asunto(s)
Bacteroides fragilis , Fucosiltransferasas , Bacteroides fragilis/enzimología , Bacteroides fragilis/genética , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oligosacáridos/biosíntesis , Oligosacáridos/metabolismo , Oligosacáridos/química , Humanos , Mutagénesis Sitio-Dirigida
4.
Nature ; 626(8000): 859-863, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326609

RESUMEN

Bacteria in the gastrointestinal tract produce amino acid bile acid amidates that can affect host-mediated metabolic processes1-6; however, the bacterial gene(s) responsible for their production remain unknown. Herein, we report that bile salt hydrolase (BSH) possesses dual functions in bile acid metabolism. Specifically, we identified a previously unknown role for BSH as an amine N-acyltransferase that conjugates amines to bile acids, thus forming bacterial bile acid amidates (BBAAs). To characterize this amine N-acyltransferase BSH activity, we used pharmacological inhibition of BSH, heterologous expression of bsh and mutants in Escherichia coli and bsh knockout and complementation in Bacteroides fragilis to demonstrate that BSH generates BBAAs. We further show in a human infant cohort that BBAA production is positively correlated with the colonization of bsh-expressing bacteria. Lastly, we report that in cell culture models, BBAAs activate host ligand-activated transcription factors including the pregnane X receptor and the aryl hydrocarbon receptor. These findings enhance our understanding of how gut bacteria, through the promiscuous actions of BSH, have a significant role in regulating the bile acid metabolic network.


Asunto(s)
Aciltransferasas , Amidohidrolasas , Aminas , Ácidos y Sales Biliares , Biocatálisis , Microbioma Gastrointestinal , Humanos , Aciltransferasas/metabolismo , Amidohidrolasas/metabolismo , Aminas/química , Aminas/metabolismo , Bacteroides fragilis/enzimología , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/metabolismo , Estudios de Cohortes , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Microbioma Gastrointestinal/fisiología , Ligandos , Receptor X de Pregnano/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Factores de Transcripción/metabolismo , Lactante , Técnicas de Cultivo de Célula
5.
Anaerobe ; 86: 102832, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38360202

RESUMEN

OBJECTIVES: This study screened the prevalence of rare ß-lactamase genes in Bacteroides fragilis group strains from clinical specimens and normal microbiota and examined the genetic properties of the strains carrying these genes. METHODS: blaHGD1, blaOXA347, cblA, crxA, and pbbA were detected by real-time polymerase chain reaction in collections of Bacteroides strains from clinical (n = 406) and fecal (n = 184) samples. To examine the genetic backgrounds of the samples, end-point PCR, FT-IR, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were used. RESULTS: All B. uniformis isolates were positive for cblA in both collections. Although crxA was B. xylanisolvens-specific and associated with carbapenem resistance, it was only found in six fecal and three clinical B. xylanisolvens strains. Moreover, the crxA-positive strains were not clonal among B. xylanisolvens (contrary to cfiA in B. fragilis), implicating a rate of mobility or emergence by independent evolutionary events. The Phocaeicola (B.) vulgatus/P. dorei-specific gene blaHGD1 was detected among all P. vulgatus/P. dorei isolates from fecal (n = 36) and clinical (n = 26) samples. No blaOXA347-carrying isolate was found from European collections, but all US samples (n = 6) were positive. For three clinical isolates belonging to B. thetaiotaomicron (n = 2) and B. ovatus (n = 1), pbbA was detected on mobile genetic elements, and pbbA-positive strains displayed non-susceptibility to piperacillin or piperacillin/tazobactam phenotypically. CONCLUSIONS: Based on these observations, ß-lactamases produced by rare ß-lactamase genes in B. fragilis group strains should not be overlooked because they could encode important resistance phenotypes.


Asunto(s)
Infecciones por Bacteroides , Bacteroides fragilis , Heces , beta-Lactamasas , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Humanos , Infecciones por Bacteroides/microbiología , Bacteroides fragilis/genética , Bacteroides fragilis/enzimología , Bacteroides fragilis/aislamiento & purificación , Bacteroides fragilis/efectos de los fármacos , Heces/microbiología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética
6.
Nature ; 622(7984): 826-833, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37853119

RESUMEN

CRISPR systems are widespread in the prokaryotic world, providing adaptive immunity against mobile genetic elements1,2. Type III CRISPR systems, with the signature gene cas10, use CRISPR RNA to detect non-self RNA, activating the enzymatic Cas10 subunit to defend the cell against mobile genetic elements either directly, via the integral histidine-aspartate (HD) nuclease domain3-5 or indirectly, via synthesis of cyclic oligoadenylate second messengers to activate diverse ancillary effectors6-9. A subset of type III CRISPR systems encode an uncharacterized CorA-family membrane protein and an associated NrN family phosphodiesterase that are predicted to function in antiviral defence. Here we demonstrate that the CorA-associated type III-B (Cmr) CRISPR system from Bacteroides fragilis provides immunity against mobile genetic elements when expressed in Escherichia coli. However, B. fragilis Cmr does not synthesize cyclic oligoadenylate species on activation, instead generating S-adenosyl methionine (SAM)-AMP (SAM is also known as AdoMet) by conjugating ATP to SAM via a phosphodiester bond. Once synthesized, SAM-AMP binds to the CorA effector, presumably leading to cell dormancy or death by disruption of the membrane integrity. SAM-AMP is degraded by CRISPR-associated phosphodiesterases or a SAM-AMP lyase, potentially providing an 'off switch' analogous to cyclic oligoadenylate-specific ring nucleases10. SAM-AMP thus represents a new class of second messenger for antiviral signalling, which may function in different roles in diverse cellular contexts.


Asunto(s)
Adenosina Trifosfato , Bacteroides fragilis , Sistemas CRISPR-Cas , Escherichia coli , S-Adenosilmetionina , Sistemas de Mensajero Secundario , Adenosina Trifosfato/metabolismo , Bacteroides fragilis/enzimología , Bacteroides fragilis/genética , Bacteroides fragilis/inmunología , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/inmunología , Sistemas CRISPR-Cas/fisiología , Endonucleasas/química , Endonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/inmunología , Escherichia coli/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , ARN/inmunología , ARN/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
7.
J Biol Chem ; 299(8): 105033, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37437886

RESUMEN

Polyamines are positively charged alkylamines ubiquitous among eukaryotes, prokaryotes, and archaea. Humans obtain polyamines through dietary intake, metabolic production, or uptake of polyamines made by gut microbes. The polyamine biosynthetic pathway used by most gut microbes differs from that used by human cells. This alternative pathway employs carboxyspermidine dehydrogenase (CASDH), an enzyme with limited characterization. Here, we solved a 1.94 Å X-ray crystal structure of Bacteroides fragilis CASDH by molecular replacement. BfCASDH is composed of three domains with a fold similar to saccharopine dehydrogenase but with a distinct active site arrangement. Using steady-state methods, we determined kcat and kcat/Km for BfCASDH and Clostridium leptum CASDH using putrescine, diaminopropane, aspartate semi-aldehyde, NADH, and NADPH as substrates. These data revealed evidence of cooperativity in BfCASDH. Putrescine is the likely polyamine substrate and NADPH is the coenzyme used to complete the reaction, forming carboxyspermidine as a product. These data provide the first kinetic characterization of CASDH-a key enzyme in the production of microbial polyamines.


Asunto(s)
Bacteroides fragilis , Oxidorreductasas , Humanos , NADP , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Poliaminas/metabolismo , Putrescina , Espermidina/metabolismo , Bacteroides fragilis/enzimología
8.
Diagn Microbiol Infect Dis ; 105(2): 115857, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36436310

RESUMEN

An increase of carbapenemase-producing Bacteroides fragilis infections is observed. To detect such a resistance in B. fragilis, several tests exist that are expensive or show poor sensitivity and specificity. Therefore, we upgraded the Anaerobic Carbapenem Inactivation Method (Ana-CIM) to easily screen for carbapenemase-producing B. fragilis. The presence of carbapenemase cfiA gene was identified in 50 B. fragilis isolates by PCR. We modified the Ana-CIM by (1) increasing the bacterial inoculum, and (2) measuring the differences in diameter between the negative control and the testing disc. We correctly classified the cfiA-negative and positive isolates and could define a cut-off of positivity at 2 mm. Our modified Ana-CIM allowed to correctly discriminate the 31 cfiA-positive with meropenem MICs ranging from 1 to > 32 µg/mL. We anticipate that our modified Ana-CIM could be used in most clinical laboratories to easily screen for carbapenemase-producing B. fragilis, even at low levels.


Asunto(s)
Proteínas Bacterianas , Bacteroides fragilis , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Bacteroides fragilis/enzimología , Bacteroides fragilis/genética , Carbapenémicos/farmacología
9.
Anaerobe ; 73: 102507, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34979246

RESUMEN

OBJECTIVES: Bacteroides fragilis has a pronounced ability to survive prolonged exposure to atmospheric oxygen. The major objective of this study was to biochemically characterize the components of the thioredoxin system in B. fragilis. The nitroreductase activity of TrxR was also assayed. METHODS: Components of the thioredoxin system were expressed in E. coli and used in a disulfide reductase activity assay. Activity of TrxR was measured with purified recombinant enzyme or with cell extracts after or without exposure to oxygen or hydrogen peroxide, respectively. RESULTS: Of all six thioredoxins tested, only thioredoxins A, D, and F were reduced by recombinant TrxR and natural TrxR present in B. fragilis cell extracts. Exposure to oxygen and hydrogen peroxide increased the activity of TrxR. Further, B. fragilis TrxR acts as a nitroreductase with furazolidone or 1-Chloro-2,4-dinitrobenzene as substrates but cannot reduce metronidazole. CONCLUSION: TrxR shows an increase in activity under the conditions of oxidative stress and exerts nitroreductase activity.


Asunto(s)
Bacteroides fragilis , Estrés Oxidativo , Reductasa de Tiorredoxina-Disulfuro , Bacteroides fragilis/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
10.
Biomolecules ; 11(12)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34944439

RESUMEN

Diverse members of the Bacteroidetes phylum have general protein O-glycosylation systems that are essential for processes such as host colonization and pathogenesis. Here, we analyzed the function of a putative fucosyltransferase (FucT) family that is widely encoded in Bacteroidetes protein O-glycosylation genetic loci. We studied the FucT orthologs of three Bacteroidetes species-Tannerella forsythia, Bacteroides fragilis, and Pedobacter heparinus. To identify the linkage created by the FucT of B. fragilis, we elucidated the full structure of its nine-sugar O-glycan and found that l-fucose is linked ß1,4 to glucose. Of the two fucose residues in the T. forsythia O-glycan, the fucose linked to the reducing-end galactose was shown by mutational analysis to be l-fucose. Despite the transfer of l-fucose to distinct hexose sugars in the B. fragilis and T. forsythia O-glycans, the FucT orthologs from B. fragilis, T. forsythia, and P. heparinus each cross-complement the B. fragilis ΔBF4306 and T. forsythia ΔTanf_01305 FucT mutants. In vitro enzymatic analyses showed relaxed acceptor specificity of the three enzymes, transferring l-fucose to various pNP-α-hexoses. Further, glycan structural analysis together with fucosidase assays indicated that the T. forsythia FucT links l-fucose α1,6 to galactose. Given the biological importance of fucosylated carbohydrates, these FucTs are promising candidates for synthetic glycobiology.


Asunto(s)
Bacteroides/crecimiento & desarrollo , Fucosiltransferasas/química , Fucosiltransferasas/genética , Polisacáridos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroides/enzimología , Bacteroides fragilis/enzimología , Bacteroides fragilis/crecimiento & desarrollo , Conformación de Carbohidratos , Evolución Molecular , Fucosiltransferasas/metabolismo , Regulación Bacteriana de la Expresión Génica , Glicosilación , Modelos Moleculares , Pedobacter/enzimología , Pedobacter/crecimiento & desarrollo , Polisacáridos/metabolismo , Tannerella forsythia/enzimología , Tannerella forsythia/crecimiento & desarrollo
11.
Bioorg Med Chem ; 42: 116243, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34126284

RESUMEN

Core fucosylation is the attachment of an α-1,6-fucose moiety to the innermost N-acetyl glucosamine (GlcNAc) in N-glycans in mammalian systems. It plays a pivotal role in modulating the structural and biological functions of glycoproteins including therapeutic antibodies. Yet, few α-l-fucosidases appear to be capable of removing core fucose from intact glycoproteins. This paper describes a comparative study of the substrate specificity and relative activity of the human α-l-fucosidase (FucA1) and two bacterial α-l-fucosidases, the AlfC from Lactobacillus casei and the BfFuc from Bacteroides fragilis. This study was enabled by the synthesis of an array of structurally well-defined core-fucosylated substrates, including core-fucosylated N-glycopeptides and a few antibody glycoforms. It was found that AlfC and BfFuc could not remove core fucose from intact full-length N-glycopeptides or N-glycoproteins but could hydrolyze only the truncated Fucα1,6GlcNAc-peptide substrates. In contrast, the human α-l-fucosidase (FucA1) showed low activity on truncated Fucα1,6GlcNAc substrates but was able to remove core fucose from intact and full-length core-fucosylated N-glycopeptides and N-glycoproteins. In addition, it was found that FucA1 was the only α-l-fucosidase that showed low but apparent activity to remove core fucose from intact IgG antibodies. The ability of FucA1 to defucosylate intact monoclonal antibodies reveals an opportunity to evolve the human α-l-fucosidase for direct enzymatic defucosylation of therapeutic antibodies to improve their antibody-dependent cellular cytotoxicity.


Asunto(s)
Fucosa/metabolismo , Glicopéptidos/metabolismo , Glicoproteínas/metabolismo , alfa-L-Fucosidasa/metabolismo , Bacteroides fragilis/enzimología , Conformación de Carbohidratos , Fucosa/química , Glicopéptidos/química , Glicoproteínas/química , Humanos , Lacticaseibacillus casei/enzimología , Modelos Moleculares , Especificidad por Sustrato , alfa-L-Fucosidasa/química
12.
Org Biomol Chem ; 19(13): 2968-2977, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33729259

RESUMEN

GH29 α-l-fucosidases catalyze hydrolysis of terminal α-l-fucosyl linkages with varying specificity and are expressed by prominent members of the human gut microbiota. Both homeostasis and dysbiosis at the human intestinal microbiota interface have been correlated with altered fucosidase activity. Herein we describe the development of a 2-deoxy-2-fluoro fucosyl fluoride derivative with an azide mini-tag as an activity-based probe (ABP) for selective in vitro labelling of GH29 α-l-fucosidases. Only catalytically active fucosidases are inactivated by this ABP, allowing their functionalization with a biotin reporter group via the CuAAC reaction and subsequent in-gel detection at nanogram levels. The ABP we present here is shown to be active against a GH29 α-l-fucosidase from Bacteroides fragilis and capable of labeling two other GH29 α-l-fucosidases with different linkage specificity, illustrating its broader utility. This novel ABP is a valuable addition to the toolbox of fucosidase probes by allowing identification and functional studies of the wide variety of GH29 fucosidases, including those in the gut microbiota.


Asunto(s)
Fucosa/química , Sondas Moleculares/química , alfa-L-Fucosidasa/análisis , Bacteroides fragilis/enzimología , Fucosa/análogos & derivados , Fucosa/farmacología , Microbioma Gastrointestinal , Humanos , Sondas Moleculares/síntesis química , Sondas Moleculares/farmacología , Estructura Molecular , alfa-L-Fucosidasa/antagonistas & inhibidores , alfa-L-Fucosidasa/metabolismo
13.
Nucleic Acids Res ; 48(19): 11040-11053, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33045731

RESUMEN

The genomes of gut Bacteroidales contain numerous invertible regions, many of which contain promoters that dictate phase-variable synthesis of surface molecules such as polysaccharides, fimbriae, and outer surface proteins. Here, we characterize a different type of phase-variable system of Bacteroides fragilis, a Type I restriction modification system (R-M). We show that reversible DNA inversions within this R-M locus leads to the generation of eight specificity proteins with distinct recognition sites. In vitro grown bacteria have a different proportion of specificity gene combinations at the expression locus than bacteria isolated from the mammalian gut. By creating mutants, each able to produce only one specificity protein from this region, we identified the R-M recognition sites of four of these S-proteins using SMRT sequencing. Transcriptome analysis revealed that the locked specificity mutants, whether grown in vitro or isolated from the mammalian gut, have distinct transcriptional profiles, likely creating different phenotypes, one of which was confirmed. Genomic analyses of diverse strains of Bacteroidetes from both host-associated and environmental sources reveal the ubiquity of phase-variable R-M systems in this phylum.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteroides fragilis/enzimología , Enzimas de Restricción-Modificación del ADN/metabolismo , Microbioma Gastrointestinal , Animales , Proteínas Bacterianas/genética , Enzimas de Restricción-Modificación del ADN/genética , Humanos , Ratones , Mutación , Transcriptoma
14.
Cell Microbiol ; 22(12): e13252, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32827216

RESUMEN

The enteropathogenic bacterium, Campylobacter jejuni, was considered to be non-saccharolytic, but recently it emerged that l-fucose plays a central role in C. jejuni virulence. Half of C. jejuni clinical isolates possess an operon for l-fucose utilisation. In the intestinal tract, l-fucose is abundantly available in mucin O-linked glycan structures, but C. jejuni lacks a fucosidase enzyme essential to release the l-fucose. We set out to determine how C. jejuni can gain access to these intestinal l-fucosides. Growth of the fuc + C. jejuni strains, 129,108 and NCTC 11168, increased in the presence of l-fucose while fucose permease knockout strains did not benefit from additional l-fucose. With fucosidase assays and an activity-based probe, we confirmed that Bacteriodes fragilis, an abundant member of the intestinal microbiota, secretes active fucosidases. In the presence of mucins, C. jejuni was dependent on B. fragilis fucosidase activity for increased growth. Campylobacter jejuni invaded Caco-2 intestinal cells that express complex O-linked glycan structures that contain l-fucose. In infection experiments, C. jejuni was more invasive in the presence of B. fragilis and this increase is due to fucosidase activity. We conclude that C. jejuni fuc + strains are dependent on exogenous fucosidases for increased growth and invasion.


Asunto(s)
Bacteroides fragilis/enzimología , Campylobacter jejuni/crecimiento & desarrollo , Campylobacter jejuni/patogenicidad , Fucosa/metabolismo , Mucinas/metabolismo , alfa-L-Fucosidasa/metabolismo , Células CACO-2 , Campylobacter jejuni/genética , Humanos , Interacciones Microbianas/fisiología , Virulencia , alfa-L-Fucosidasa/biosíntesis
15.
J Biol Chem ; 295(31): 10709-10725, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32518167

RESUMEN

Bacterial glycosphingolipids such as glucuronosylceramide and galactosylceramide have been identified as ligands for invariant natural killer T cells and play important roles in host defense. However, the glycosphingolipid synthases required for production of these ceramides have not been well-characterized. Here, we report the identification and characterization of glucuronosylceramide synthase (ceramide UDP-glucuronosyltransferase [Cer-GlcAT]) in Zymomonas mobilis, a Gram-negative bacterium whose cellular membranes contain glucuronosylceramide. On comparing the gene sequences that encode the diacylglycerol GlcAT in bacteria and plants, we found a homologous gene that is widely distributed in the order Sphingomonadales in the Z. mobilis genome. We first cloned the gene and expressed it in Escherichia coli, followed by protein purification using nickel-Sepharose affinity and gel filtration chromatography. Using the highly enriched enzyme, we observed that it has high glycosyltransferase activity with UDP-glucuronic acid and ceramide as sugar donor and acceptor substrate, respectively. Cer-GlcAT deletion resulted in a loss of glucuronosylceramide and increased the levels of ceramide phosphoglycerol, which was expressed in WT cells only at very low levels. Furthermore, we found sequences homologous to Cer-GlcAT in Sphingobium yanoikuyae and Bacteroides fragilis, which have been reported to produce glucuronosylceramide and α-galactosylceramide, respectively. We expressed the two homologs of the cer-glcat gene in E. coli and found that each gene encodes Cer-GlcAT and Cer-galactosyltransferase, respectively. These results contribute to the understanding of the roles of bacterial glycosphingolipids in host-bacteria interactions and the function of bacterial glycosphingolipids in bacterial physiology.


Asunto(s)
Proteínas Bacterianas/metabolismo , Galactosilceramidas/biosíntesis , Galactosiltransferasas/metabolismo , Glucuronosiltransferasa/metabolismo , Glicoesfingolípidos/biosíntesis , Zymomonas/enzimología , Proteínas Bacterianas/genética , Bacteroides fragilis/enzimología , Bacteroides fragilis/genética , Galactosilceramidas/genética , Galactosiltransferasas/genética , Glucuronosiltransferasa/genética , Glicoesfingolípidos/genética , Zymomonas/genética
16.
mBio ; 11(1)2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019804

RESUMEN

In bacteria, the respiratory pathways that drive molecular transport and ATP synthesis include a variety of enzyme complexes that utilize different electron donors and acceptors. This property allows them to vary the efficiency of energy conservation and to generate different types of electrochemical gradients (H+ or Na+). We know little about the respiratory pathways in Bacteroides species, which are abundant in the human gut, and whether they have a simple or a branched pathway. Here, we combined genetics, enzyme activity measurements, and mammalian gut colonization assays to better understand the first committed step in respiration, the transfer of electrons from NADH to quinone. We found that a model gut Bacteroides species, Bacteroides fragilis, has all three types of putative NADH dehydrogenases that typically transfer electrons from the highly reducing molecule NADH to quinone. Analyses of NADH oxidation and quinone reduction in wild-type and deletion mutants showed that two of these enzymes, Na+-pumping NADH:quinone oxidoreductase (NQR) and NADH dehydrogenase II (NDH2), have NADH dehydrogenase activity, whereas H+-pumping NADH:ubiquinone oxidoreductase (NUO) does not. Under anaerobic conditions, NQR contributes more than 65% of the NADH:quinone oxidoreductase activity. When grown in rich medium, none of the single deletion mutants had a significant growth defect; however, the double Δnqr Δndh2 mutant, which lacked almost all NADH:quinone oxidoreductase activity, had a significantly increased doubling time. Despite unaltered in vitro growth, the single nqr deletion mutant was unable to competitively colonize the gnotobiotic mouse gut, confirming the importance of NQR to respiration in B. fragilis and the overall importance of respiration to this abundant gut symbiont.IMPORTANCEBacteroides species are abundant in the human intestine and provide numerous beneficial properties to their hosts. The ability of Bacteroides species to convert host and dietary glycans and polysaccharides to energy is paramount to their success in the human gut. We know a great deal about the molecules that these bacteria extract from the human gut but much less about how they convert those molecules into energy. Here, we show that B. fragilis has a complex respiratory pathway with two different enzymes that transfer electrons from NADH to quinone and a third enzyme complex that may use an electron donor other than NADH. Although fermentation has generally been believed to be the main mechanism of energy generation in Bacteroides, we found that a mutant lacking one of the NADH:quinone oxidoreductases was unable to compete with the wild type in the mammalian gut, revealing the importance of respiration to these abundant gut symbionts.


Asunto(s)
Bacteroides fragilis/enzimología , Bacteroides fragilis/genética , Anaerobiosis , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Benzoquinonas/metabolismo , Femenino , Vida Libre de Gérmenes , Masculino , Redes y Vías Metabólicas , Ratones , NAD/metabolismo , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Oxidación-Reducción , Quinona Reductasas/genética , Quinona Reductasas/metabolismo , Eliminación de Secuencia
17.
Nat Commun ; 10(1): 5375, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772234

RESUMEN

Pif1 plays multiple roles in maintaining genome stability and preferentially unwinds forked dsDNA, but the mechanism by which Pif1 unwinds forked dsDNA remains elusive. Here we report the structure of Bacteroides sp Pif1 (BaPif1) in complex with a symmetrical double forked dsDNA. Two interacting BaPif1 molecules are bound to each fork of the partially unwound dsDNA, and interact with the 5' arm and 3' ss/dsDNA respectively. Each of the two BaPif1 molecules is an active helicase and their interaction may regulate their helicase activities. The binding of BaPif1 to the 5' arm causes a sharp bend in the 5' ss/dsDNA junction, consequently breaking the first base-pair. BaPif1 bound to the 3' ss/dsDNA junction impacts duplex unwinding by stabilizing the unpaired first base-pair and engaging the second base-pair poised for breaking. Our results provide an unprecedented insight into how two BaPif1 coordinate with each other to unwind the forked dsDNA.


Asunto(s)
ADN Helicasas/química , ADN Helicasas/metabolismo , ADN/química , ADN/metabolismo , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroides fragilis/enzimología , Emparejamiento Base , Cristalografía por Rayos X , ADN Helicasas/genética , Transferencia Resonante de Energía de Fluorescencia , Mutagénesis , Conformación de Ácido Nucleico , Conformación Proteica , Imagen Individual de Molécula
18.
Microbiol Res ; 222: 35-42, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30928028

RESUMEN

2'-Fucosyllactose (2'-FL) is the most abundant human milk oligosaccharide and is important for infant nutrition and health. Because 2'-FL has potential as a functional ingredient in advanced infant formula and as a prebiotic in various foods, a cost-effective method for 2'-FL production is desirable. α1,2-Fucosyltransferase (α1,2-FT) is one of the key enzymes enabling the microbial biosynthesis of this complex sugar. However, the α1,2-FTs reported so far for the whole-cell biosynthesis of 2'-FL originate from pathogens, posing a potential hurdle for approval as a food production method depending on countries. In this study, 10 α1,2-FT genes from bacteria of biosafety level one were identified, and the main features of the deduced amino acid sequences were characterized. Four codon-optimized α1,2-FT genes were synthesized and introduced into Escherichia coli ΔL M15 strain containing the plasmid pBCGW encoding guanosine 5'-diphosphate-l-fucose biosynthetic enzymes. Among the four genes, 2'-FL was produced only by the α1,2-FT from Thermosynechococcus elongatus (Te2FT). Bifidobacterium thermacidophilum α1,2-FT (Bt2FT) showed high expression but was not active in E. coli ΔL M15. The other two α1,2-FTs were not expressed to a detectable level. During batch flask fermentation of Te2FT-expressing E. coli ΔL M15 cells, 0.49 g/L 2'-FL was obtained after 72 h of induction. This is comparable to the values previously reported for α1,2-FTs from Helicobacter pylori and Bacteroides fragilis.


Asunto(s)
Escherichia coli/genética , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trisacáridos/biosíntesis , Proteínas Bacterianas/genética , Bacteroides fragilis/enzimología , Bacteroides fragilis/metabolismo , Bifidobacterium/genética , Bifidobacterium/metabolismo , Cianobacterias/enzimología , Cianobacterias/genética , ADN Bacteriano , Escherichia coli/metabolismo , Fermentación , Regulación Bacteriana de la Expresión Génica , Helicobacter pylori/enzimología , Helicobacter pylori/metabolismo , Leche Humana , Oligosacáridos
19.
J Bacteriol ; 201(11)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30858300

RESUMEN

Korormicin is an antibiotic produced by some pseudoalteromonads which selectively kills Gram-negative bacteria that express the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR.) We show that although korormicin is an inhibitor of Na+-NQR, the antibiotic action is not a direct result of inhibiting enzyme activity. Instead, perturbation of electron transfer inside the enzyme promotes a reaction between O2 and one or more redox cofactors in the enzyme (likely the flavin adenine dinucleotide [FAD] and 2Fe-2S center), leading to the production of reactive oxygen species (ROS). All Pseudoalteromonas contain the nqr operon in their genomes, including Pseudoalteromonas strain J010, which produces korormicin. We present activity data indicating that this strain expresses an active Na+-NQR and that this enzyme is not susceptible to korormicin inhibition. On the basis of our DNA sequence data, we show that the Na+-NQR of Pseudoalteromonas J010 carries an amino acid substitution (NqrB-G141A; Vibrio cholerae numbering) that in other Na+-NQRs confers resistance against korormicin. This is likely the reason that a functional Na+-NQR is able to exist in a bacterium that produces a compound that typically inhibits this enzyme and causes cell death. Korormicin is an effective antibiotic against such pathogens as Vibrio cholerae, Aliivibrio fischeri, and Pseudomonas aeruginosa but has no effect on Bacteroides fragilis and Bacteroides thetaiotaomicron, microorganisms that are important members of the human intestinal microflora.IMPORTANCE As multidrug antibiotic resistance in pathogenic bacteria continues to rise, there is a critical need for novel antimicrobial agents. An essential requirement for a useful antibiotic is that it selectively targets bacteria without significant effects on the eukaryotic hosts. Korormicin is an excellent candidate in this respect because it targets a unique respiratory enzyme found only in prokaryotes, the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR). Korormicin is synthesized by some species of the marine bacterium Pseudoalteromonas and is a potent and specific inhibitor of Na+-NQR, an enzyme that is essential for the survival and proliferation of many Gram-negative human pathogens, including Vibrio cholerae and Pseudomonas aeruginosa, among others. Here, we identified how korormicin selectively kills these bacteria. The binding of korormicin to Na+-NQR promotes the formation of reactive oxygen species generated by the reaction of the FAD and the 2Fe-2S center cofactors with O2.


Asunto(s)
Antibacterianos/farmacología , Antibiosis , Pseudoalteromonas/metabolismo , Especies Reactivas de Oxígeno/agonistas , Aliivibrio fischeri/efectos de los fármacos , Aliivibrio fischeri/enzimología , Aliivibrio fischeri/crecimiento & desarrollo , Aliivibrio fischeri/patogenicidad , Antibacterianos/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroides fragilis/efectos de los fármacos , Bacteroides fragilis/enzimología , Bacteroides fragilis/crecimiento & desarrollo , Bacteroides thetaiotaomicron/efectos de los fármacos , Bacteroides thetaiotaomicron/enzimología , Bacteroides thetaiotaomicron/crecimiento & desarrollo , Ácidos Grasos Insaturados/biosíntesis , Ácidos Grasos Insaturados/farmacología , Flavina-Adenina Dinucleótido/metabolismo , Expresión Génica , Lactonas/farmacología , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Operón , Oxidación-Reducción , Estructura Secundaria de Proteína , Pseudoalteromonas/genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/patogenicidad , Quinona Reductasas/antagonistas & inhibidores , Quinona Reductasas/genética , Quinona Reductasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/enzimología , Vibrio cholerae/crecimiento & desarrollo , Vibrio cholerae/patogenicidad
20.
Int J Biol Macromol ; 127: 197-203, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30639654

RESUMEN

Bacteroides fragilis is an anaerobic bacterium naturally hosted in the human colon flora. B. fragilisd­lactate dehydrogenase (Bfd­LDH) is an important enzyme which catalyzes the conversion of d­lactate to pyruvate and regulates anaerobic glycolysis. In this study Bfd­LDH has been targeted for structure based drug design. B. fragilisd­lactate dehydrogenase has been expressed, purified and inhibitory activities of 25 coumarin derivatives previously synthetize for their antioxidant activity were evaluated. Among the 25 coumarin derivatives, compound 6a, 5l, and 6b exhibited the highest inhibitory activity with IC50 values of 0,47 µM, 0,57 µM ve 0,057 µM, respectively. The results indicate that the mechanism by which 6a, 5l and 6b coumarin derivatives inhibit Bfd­LDH by reversible non-competitive inhibition. Docking experiments were carried out to further explain the results and compare the theoretical and experimental affinity of these compounds to the Bfd­LDH protein. According to docking results, all coumarins bind to the site occupied by pyruvate and the nicotinamide ring of NADH.


Asunto(s)
Proteínas Bacterianas/química , Bacteroides fragilis/enzimología , Cumarinas/química , L-Lactato Deshidrogenasa/química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA