Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
Development ; 147(22)2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33144400

RESUMEN

In terrestrial animals, the lacrimal drainage apparatus evolved to serve as conduits for tear flow; however, little is known about the ontogenesis of this system. Here, we define the anatomy of the fully formed tear duct in mice, characterize crucial morphogenetic events for the development of tear duct components and identify the site for primordial tear duct (PTD) initiation. We report that the PTD originates from the orbital lacrimal lamina, a junction formed by the epithelia of the maxillary and lateral nasal processes. We demonstrate that Prickle1, a key component of planar cell polarity signaling, is expressed in progenitors of the PTD and throughout tear duct morphogenesis. Disruption of Prickle1 stalls tear duct elongation; in particular, the loss of basement membrane deposition and aberrant cytoplasmic accumulation of laminin are salient. Altered cell adhesion, cytoskeletal transport systems, vesicular transport systems and cell axis orientation in Prickle1 mutants support the role of Prickle1 in planar cell polarity. Taken together, our results highlight a crucial role of Prickle1-mediated polarized basement membrane secretion and deposition in PTD elongation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Membrana Basal/embriología , Polaridad Celular/fisiología , Proteínas con Dominio LIM/metabolismo , Conducto Nasolagrimal/embriología , Organogénesis/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Membrana Basal/citología , Adhesión Celular/fisiología , Citoesqueleto/genética , Citoesqueleto/metabolismo , Proteínas con Dominio LIM/genética , Ratones , Conducto Nasolagrimal/citología
2.
Dev Dyn ; 249(11): 1318-1333, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32510705

RESUMEN

BACKGROUND: During development of the avian lung, the initially terminally branched epithelial tree later forms a continuous network of airways. This occurs via a large-scale epithelial fusion event, wherein airways that originate proximally collide with those that originate distally to form one continuous lumen. RESULTS: Here, we found that prior to fusion, the epithelium of the embryonic chicken lung undergoes a shape change to permit the initiation and extension of new branches which contain the cells that initiate contact. These changes in epithelial shape coincide with the differentiation of smooth muscle cells that wrap the airways. From these nascent epithelial branches, individual cells form cytoskeletal protrusions that extend toward and form a bridge with their target airway. Additional cells then join the fusion site, forming a bilayered epithelium. During this process, the basement membrane around the prefusion epithelium degrades and then reforms after fusion. The epithelial bilayer then undergoes apoptosis, clearing the path between the two lumens. CONCLUSIONS: The process of airway epithelial fusion in the developing chicken lung constitutes a novel mechanism for the generation of complex multicellular tubes and suggests a conserved role for smooth muscle in the shaping of airway epithelia.


Asunto(s)
Membrana Basal/embriología , Pollos , Pulmón/embriología , Mucosa Respiratoria/embriología , Animales , Membrana Basal/citología , Embrión de Pollo , Pulmón/citología , Mucosa Respiratoria/citología
3.
Nature ; 582(7811): 253-258, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32523119

RESUMEN

Tissue sculpting during development has been attributed mainly to cellular events through processes such as convergent extension or apical constriction1,2. However, recent work has revealed roles for basement membrane remodelling in global tissue morphogenesis3-5. Upon implantation, the epiblast and extraembryonic ectoderm of the mouse embryo become enveloped by a basement membrane. Signalling between the basement membrane and these tissues is critical for cell polarization and the ensuing morphogenesis6,7. However, the mechanical role of the basement membrane in post-implantation embryogenesis remains unknown. Here we demonstrate the importance of spatiotemporally regulated basement membrane remodelling during early embryonic development. Specifically, we show that Nodal signalling directs the generation and dynamic distribution of perforations in the basement membrane by regulating the expression of matrix metalloproteinases. This basement membrane remodelling facilitates embryo growth before gastrulation. The establishment of the anterior-posterior axis8,9 further regulates basement membrane remodelling by localizing Nodal signalling-and therefore the activity of matrix metalloproteinases and basement membrane perforations-to the posterior side of the embryo. Perforations on the posterior side are essential for primitive-streak extension during gastrulation by rendering the basement membrane of the prospective primitive streak more prone to breaching. Thus spatiotemporally regulated basement membrane remodelling contributes to the coordination of embryo growth, morphogenesis and gastrulation.


Asunto(s)
Membrana Basal/embriología , Membrana Basal/metabolismo , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Animales , Membrana Basal/citología , Blastocisto/citología , Blastocisto/metabolismo , Embrión de Mamíferos/citología , Matriz Extracelular/metabolismo , Femenino , Gástrula/embriología , Masculino , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ligandos de Señalización Nodal/metabolismo , Línea Primitiva/citología , Línea Primitiva/embriología , Línea Primitiva/metabolismo
4.
Development ; 147(4)2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31988185

RESUMEN

Organogenesis requires precise interactions between a developing tissue and its environment. In vertebrates, the developing eye is surrounded by a complex extracellular matrix as well as multiple mesenchymal cell populations. Disruptions to either the matrix or periocular mesenchyme can cause defects in early eye development, yet in many cases the underlying mechanism is unknown. Here, using multidimensional imaging and computational analyses in zebrafish, we establish that cell movements in the developing optic cup require neural crest. Ultrastructural analysis reveals that basement membrane formation around the developing eye is also dependent on neural crest, but only specifically around the retinal pigment epithelium. Neural crest cells produce the extracellular matrix protein nidogen: impairing nidogen function disrupts eye development, and, strikingly, expression of nidogen in the absence of neural crest partially restores optic cup morphogenesis. These results demonstrate that eye formation is regulated in part by extrinsic control of extracellular matrix assembly.This article has an associated 'The people behind the papers' interview.


Asunto(s)
Membrana Basal/embriología , Ojo/embriología , Cresta Neural/embriología , Alelos , Animales , Sistemas CRISPR-Cas , Proteínas de Unión al Calcio/fisiología , Movimiento Celular , Electroforesis Capilar , Matriz Extracelular/fisiología , Proteínas de la Matriz Extracelular/fisiología , Factores de Transcripción Forkhead/fisiología , Regulación del Desarrollo de la Expresión Génica , Genotipo , Mesodermo/embriología , Microscopía Electrónica de Transmisión , Morfogénesis , Mutación , Cresta Neural/citología , Organogénesis , Retina/embriología , Epitelio Pigmentado de la Retina/embriología , Transducción de Señal , Factor de Transcripción AP-2/fisiología , Pez Cebra , Proteínas de Pez Cebra/fisiología
5.
Development ; 146(23)2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31784458

RESUMEN

The Drosophila egg chamber comprises a germline cyst surrounded by a tightly organised epithelial monolayer, the follicular epithelium (FE). Loss of integrin function from the FE disrupts epithelial organisation at egg chamber termini, but the cause of this phenotype remains unclear. Here, we show that the ß-integrin Myospheroid (Mys) is only required during early oogenesis when the pre-follicle cells form the FE. Mutation of mys disrupts both the formation of a monolayered epithelium at egg chamber termini and the morphogenesis of the stalk between adjacent egg chambers, which develops through the intercalation of two rows of cells into a single-cell-wide stalk. Secondary epithelia, like the FE, have been proposed to require adhesion to the basement membrane to polarise. However, Mys is not required for pre-follicle cell polarisation, as both follicle and stalk cells localise polarity factors correctly, despite being mispositioned. Instead, loss of integrins causes pre-follicle cells to constrict basally, detach from the basement membrane and become internalised. Thus, integrin function is dispensable for pre-follicle cell polarity but is required to maintain cellular organisation and cell shape during morphogenesis.


Asunto(s)
Membrana Basal/embriología , Proteínas Portadoras/metabolismo , Polaridad Celular/fisiología , Proteínas de Drosophila/metabolismo , Cadenas beta de Integrinas/metabolismo , Morfogénesis , Óvulo/metabolismo , Animales , Membrana Basal/citología , Proteínas Portadoras/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Óvulo/citología
6.
Development ; 146(16)2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31371376

RESUMEN

Reciprocal epithelial-mesenchymal signaling is essential for morphogenesis, including branching of the lung. In the mouse, mesenchymal cells differentiate into airway smooth muscle that wraps around epithelial branches, but this contractile tissue is absent from the early avian lung. Here, we have found that branching morphogenesis in the embryonic chicken lung requires extracellular matrix (ECM) remodeling driven by reciprocal interactions between the epithelium and mesenchyme. Before branching, the basement membrane wraps the airway epithelium as a spatially uniform sheath. After branch initiation, however, the basement membrane thins at branch tips; this remodeling requires mesenchymal expression of matrix metalloproteinase 2, which is necessary for branch extension but for not branch initiation. As branches extend, tenascin C (TNC) accumulates in the mesenchyme several cell diameters away from the epithelium. Despite its pattern of accumulation, TNC is expressed exclusively by epithelial cells. Branch extension coincides with deformation of adjacent mesenchymal cells, which correlates with an increase in mesenchymal fluidity at branch tips that may transport TNC away from the epithelium. These data reveal novel epithelial-mesenchymal interactions that direct ECM remodeling during airway branching morphogenesis.


Asunto(s)
Matriz Extracelular/fisiología , Pulmón/embriología , Metaloproteinasas de la Matriz/metabolismo , Mesodermo/embriología , Mucosa Respiratoria/embriología , Animales , Membrana Basal/embriología , Líquidos Corporales/fisiología , Forma de la Célula , Embrión de Pollo , Matriz Extracelular/enzimología , Pulmón/enzimología , Pulmón/metabolismo , Mesodermo/enzimología , Morfogénesis , Mucosa Respiratoria/enzimología , Tenascina/metabolismo , Técnicas de Cultivo de Tejidos
7.
J Cell Biol ; 218(9): 3098-3116, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31387941

RESUMEN

Basement membranes (BMs) are cell-associated extracellular matrices that support tissue integrity, signaling, and barrier properties. Type IV collagen is critical for BM function, yet how it is directed into BMs in vivo is unclear. Through live-cell imaging of endogenous localization, conditional knockdown, and misexpression experiments, we uncovered distinct mechanisms of integrin-mediated collagen recruitment to Caenorhabditis elegans postembryonic gonadal and pharyngeal BMs. The putative laminin-binding αINA-1/ßPAT-3 integrin was selectively activated in the gonad and recruited laminin, which directed moderate collagen incorporation. In contrast, the putative Arg-Gly-Asp (RGD)-binding αPAT-2/ßPAT-3 integrin was activated in the pharynx and recruited high levels of collagen in an apparently laminin-independent manner. Through an RNAi screen, we further identified the small GTPase RAP-3 (Rap1) as a pharyngeal-specific PAT-2/PAT-3 activator that modulates collagen levels. Together, these studies demonstrate that tissues can use distinct mechanisms to direct collagen incorporation into BMs to precisely control collagen levels and construct diverse BMs.


Asunto(s)
Membrana Basal/embriología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Colágeno Tipo IV/metabolismo , Cadenas beta de Integrinas/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Colágeno Tipo IV/genética , Cadenas beta de Integrinas/genética
8.
Development ; 146(11)2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31064785

RESUMEN

Tissue mechanics play a crucial role in organ development. They rely on the properties of cells and the extracellular matrix (ECM), but the relative physical contribution of cells and ECM to morphogenesis is poorly understood. Here, we have analyzed the behavior of the peripodial epithelium (PE) of the Drosophila leg disc in the light of the dynamics of its cellular and ECM components. The PE undergoes successive changes during leg development, including elongation, opening and removal to free the leg. During elongation, we found that the ECM and cell layer are progressively uncoupled. Concomitantly, the tension, mainly borne by the ECM at first, builds up in the cell monolayer. Then, each layer of the peripodial epithelium is removed by an independent mechanism: while the ECM layer withdraws following local proteolysis, cellular monolayer withdrawal is independent of ECM degradation and is driven by myosin II-dependent contraction. These results reveal a surprising physical and functional cell-matrix uncoupling in a monolayer epithelium under tension during development.This article has an associated 'The people behind the papers' interview.


Asunto(s)
Drosophila melanogaster/embriología , Epitelio/embriología , Epitelio/crecimiento & desarrollo , Matriz Extracelular/fisiología , Miembro Posterior/embriología , Morfogénesis/fisiología , Animales , Animales Modificados Genéticamente , Membrana Basal/embriología , Membrana Basal/crecimiento & desarrollo , Fenómenos Biomecánicos , Tipificación del Cuerpo/fisiología , Comunicación Celular/fisiología , Proliferación Celular , Drosophila melanogaster/crecimiento & desarrollo , Embrión no Mamífero , Miembro Posterior/crecimiento & desarrollo , Miosina Tipo II/fisiología , Proteolisis , Tensión Superficial
9.
Dev Biol ; 452(1): 43-54, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31034836

RESUMEN

Fusion of the optic fissure is necessary to complete retinal morphogenesis and ensure proper function of the optic stalk. Failure of this event leads to congenital coloboma, one of the leading causes of pediatric blindness. Mechanistically it is widely accepted that the basement membrane (BM) surrounding the maturing retina needs to be remodeled within the fissure in order to facilitate subsequent epithelial sheet fusion. However, the mechanism driving BM remodeling has yet to be elucidated. As a first step to understanding this critical molecular event we comprehensively characterized the core composition of optic fissure BMs in the zebrafish embryos. Zebrafish optic fissure BMs were found to express laminin a1, a4, b1a, c1 and c3, nidogen 1a, 1b and 2a, collagen IV a1 and a2 as well as perlecan. Furthermore, we observed that laminin, perlecan and collagen IV expression persists in the fissure during fusion, up to 56 hpf, while nidogen expression is downregulated upon initiation of fusion, at 36 hpf. Using immunohistochemistry we also show that nidogen is removed from the BM prior to that of laminin, indicating that remodeling of the BM is an ordered event. Lastly, we characterized retinal morphogenesis in the absence of nidogen function and documented retinal malformation similar to what is observed in laminin mutants. Taken together, we propose a model of BM remodeling where nidogen acts as a linchpin during initiation of optic fissure fusion.


Asunto(s)
Membrana Basal/embriología , Regulación del Desarrollo de la Expresión Génica , Glicoproteínas de Membrana/metabolismo , Retina/embriología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Glicoproteínas de Membrana/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
10.
Dev Biol ; 446(2): 151-158, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30579765

RESUMEN

Premigratory neural crest cells arise within the dorsal neural tube and subsequently undergo an epithelial-to-mesenchymal transition (EMT) to leave the neuroepithelium and initiate migration. Draxin is a Wnt modulator that has been shown to control the timing of cranial neural crest EMT. Here we show that this process is accompanied by three stages of remodeling of the basement membrane protein laminin, from regression to expansion and channel formation. Loss of Draxin results in blocking laminin remodeling at the regression stage, whereas ectopic maintenance of Draxin blocks remodeling at the expansion stage. The latter effect is rescued by addition of Snail2, previously shown to be downstream of Draxin. Our results demonstrate an essential function for the Wnt modulator Draxin in regulating basement membrane remodeling during cranial neural crest EMT.


Asunto(s)
Proteínas Aviares/genética , Membrana Basal/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación del Desarrollo de la Expresión Génica , Laminina/genética , Cresta Neural/metabolismo , Animales , Proteínas Aviares/metabolismo , Membrana Basal/embriología , Movimiento Celular/genética , Embrión de Pollo , Técnicas de Silenciamiento del Gen , Laminina/metabolismo , Cresta Neural/embriología , Cráneo/embriología , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo
11.
J Craniomaxillofac Surg ; 46(12): 2027-2031, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30322778

RESUMEN

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces cleft palate and hydronephrosis in the mouse embryo. Cleft palate occurs due to failure in palatal grow, but the underlying mechanisms are unclear. We investigated the mechanisms of cleft palate development in TCDD-exposed mouse embryos. We administered olive oil (control group) or TCDD diluted in olive oil (40 µg/kg) via gastric tubes to pregnant mice on gestational day (GD) 12. Embryos of control and TCDD-exposed groups were removed from pregnant mice on GD 14 and GD 15, respectively. One mouse embryo from the control group had anteroposterior palatal fusion. Palatal fusion was observed in three TCDD-exposed mouse embryos. Palates of TCDD-exposed mice fused from the interior to the middle of the palates, while the palates were separated in the posterior region. The middle of the embryonic palatal shelves in TCDD-exposed animals was narrow and split at the fusional position. At this position, palatal and blood cells were dispersed from the palatal tissue and the epithelium was split, with a discontinuous basement membrane. The results suggest that decreased intercellular adhesion or insufficient tissue strength of the palatal shelves may be involved in the development of cleft palate following palatal fusion.


Asunto(s)
Membrana Basal/efectos de los fármacos , Membrana Basal/embriología , Fisura del Paladar/inducido químicamente , Fisura del Paladar/embriología , Dibenzodioxinas Policloradas/toxicidad , Animales , Femenino , Inmunohistoquímica , Ratones , Embarazo
12.
Matrix Biol ; 74: 101-120, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29981372

RESUMEN

Basement membrane is a highly conserved sheet-like extracellular matrix in animals, underlying simple and complex epithelia, and wrapping around tissues like muscles and nerves. Like the tissues they support, basement membranes become damaged by environmental insults. Although it is clear that basement membranes are repaired after damage, virtually nothing is known about this process. For example, it is not known how repaired basement membranes compare to undamaged ones, whether basement membrane components are necessary for epithelial wound closure, or whether there is a hierarchy of assembly that repairing basement membranes follow, similar to the hierarchy of assembly of embryonic basement membranes. In this report, we address these questions using the basement membrane of the Drosophila larval epidermis as a model system. By analyzing the four main basement membrane proteins - laminin, collagen IV, perlecan, and nidogen - we find that although basement membranes are repaired within a day after mechanical damage in vivo, thickened and disorganized matrix scars are evident with all four protein components. The new matrix proteins that repair damaged basement membranes are provided by distant adipose and muscle tissues rather than by the local epithelium, the same distant tissues that provide matrix proteins for growth of unwounded epithelial basement membranes. To identify a hierarchy of repair, we tested the dependency of each of the basement membrane proteins on the others for incorporation after damage. For proper incorporation after damage, nidogen requires laminin, and perlecan requires collagen IV, but surprisingly collagen IV does not to depend on laminin. Thus, the rules of basement membrane repair are subtly different than those of de novo assembly.


Asunto(s)
Membrana Basal/metabolismo , Cicatriz/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Cicatrización de Heridas , Animales , Membrana Basal/embriología , Colágeno Tipo IV/metabolismo , Modelos Animales de Enfermedad , Drosophila/embriología , Drosophila/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Laminina/metabolismo , Glicoproteínas de Membrana/metabolismo
13.
Invest Ophthalmol Vis Sci ; 59(3): 1368-1373, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29625460

RESUMEN

Purpose: Basement membrane degradation and macrophage aggregation at the optic fissure margins are crucial to optic fissure closure during normal murine eye development. Basement membrane degradation is also an essential step in cancer development, and matrix metalloproteinases (MMPs) play an important role. In this study, we investigated MMP alteration at the degrading basement membrane of optic fissure margins in mice and attempted to clarify the relationship between MMP activity and macrophages. Methods: Serial coronal frozen sections of eyes from BALB/c fetuses were prepared and gelatinase activity was examined using in situ zymography techniques. The frozen sections were immunohistochemically stained with anti-F4/80, anti-MMP 2, and anti-MMP 9 antibodies. Serial coronal paraffin sections were also immunohistochemically stained with anti-type IV collagen and anti-F4/80, and basement membrane disintegration and macrophage aggregation at the optic fissure margins were examined. Results: The basement membrane of optic fissure margins was rapidly degraded during gestational days (GDs) 12.0 to 12.5. Meanwhile, gelatinase activity at F4/80-positive macrophages significantly increased during GDs 11.5 to 12.0 and declined thereafter; some of those were also positive for MMP2. The number of macrophages was also increased and decreased at nearly the same time. Conclusions: Intramacrophage MMPs may be responsible for basement membrane degradation at the optic fissure margins during normal eye development in mice.


Asunto(s)
Membrana Basal/embriología , Membrana Basal/enzimología , Ojo/embriología , Macrófagos/enzimología , Metaloproteinasas de la Matriz/metabolismo , Organogénesis , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Fagocitos/fisiología
14.
Dev Biol ; 401(2): 287-98, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25557622

RESUMEN

Maintaining follicle integrity during development, whereby each follicle is a functional unit containing a single oocyte, is essential for the generation of healthy oocytes. However, the mechanisms that regulate this critical function have not been determined. In this paper we investigate the role of the oocyte in maintaining follicle development. To investigate this role, we use a mouse model with oocyte-specific deletion of C1galt1 which is required for the generation of core 1-derived O-glycans. The loss of oocyte-generated O-glycans results in the joining of follicles and the generation of Multiple-Oocyte Follicles (MOFs). The aim was to determine how Mutant follicle development is modified thus enabling follicles to join. Extracellular matrix and follicle permeability were studied using histology, immunohistochemistry and electron microscopy (EM). In ovaries containing Mutant Oocytes, the Follicle basal lamina (FBL) is altered both functionally and structurally from the primary stage onwards with Mutant follicles possessing unexpectedly thicker FBL. In Mutant ovaries, the theca cell layer is also modified with intermingling of theca between adjacent follicles. MOF function was analysed but despite increased numbers of preantral MOFs in Mutants, these do not reach the preovulatory stage after gonadotrophin stimulation. We propose a model describing how oocyte initiated changes in FBL and theca cells result in follicles joining. These data reveal new and important roles for the oocyte in follicle development and follicle integrity.


Asunto(s)
Membrana Basal/embriología , Galactosiltransferasas/genética , Oocitos/metabolismo , Folículo Ovárico/embriología , Células Tecales/citología , Animales , Membrana Basal/citología , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Femenino , Glicoproteínas/metabolismo , Gonadotropinas/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Folículo Ovárico/citología , Permeabilidad , Polisacáridos/genética
15.
Nat Cell Biol ; 16(12): 1146-56, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25419850

RESUMEN

Gastrulation leads to three germ layers--ectoderm, mesoderm and endoderm--that are separated by two basement membranes. In the mouse embryo, the emergent gut endoderm results from the widespread intercalation of cells of two distinct origins: pluripotent epiblast-derived definitive endoderm (DE) and extra-embryonic visceral endoderm (VE). Here we image the trajectory of prospective DE cells before intercalating into the VE epithelium. We show that the transcription factor SOX17, which is activated in prospective DE cells before intercalation, is necessary for gut endoderm morphogenesis and the assembly of the basement membrane that separates gut endoderm from mesoderm. Our results mechanistically link gut endoderm morphogenesis and germ layer segregation, two central and conserved features of gastrulation.


Asunto(s)
Endodermo/embriología , Estratos Germinativos/embriología , Proteínas HMGB/metabolismo , Mesodermo/embriología , Morfogénesis/fisiología , Factores de Transcripción SOXF/metabolismo , Animales , Membrana Basal/citología , Membrana Basal/embriología , Cadherinas/biosíntesis , Diferenciación Celular , Embrión de Mamíferos , Epitelio/embriología , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/biosíntesis , Fibronectinas/metabolismo , Gastrulación , Proteínas Fluorescentes Verdes/genética , Proteínas HMGB/biosíntesis , Factor Nuclear 3-beta del Hepatocito/genética , Ratones , Ratones Transgénicos , Morfogénesis/genética , Imagen Óptica/métodos , Factores de Transcripción SOXF/biosíntesis
16.
Dev Biol ; 396(1): 1-7, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25300580

RESUMEN

To feed or breathe, the oral opening must connect with the gut. The foregut and oral tissues converge at the primary mouth, forming the buccopharyngeal membrane (BPM), a bilayer epithelium. Failure to form the opening between gut and mouth has significant ramifications, and many craniofacial disorders have been associated with defects in this process. Oral perforation is characterized by dissolution of the BPM, but little is known about this process. In humans, failure to form a continuous mouth opening is associated with mutations in Hedgehog (Hh) pathway members; however, the role of Hh in primary mouth development is untested. Here, we show, using Xenopus, that Hh signaling is necessary and sufficient to initiate mouth formation, and that Hh activation is required in a dose-dependent fashion to determine the size of the mouth. This activity lies upstream of the previously demonstrated role for Wnt signal inhibition in oral perforation. We then turn to mouse mutants to establish that SHH and Gli3 are indeed necessary for mammalian mouth development. Our data suggest that Hh-mediated BPM persistence may underlie oral defects in human craniofacial syndromes.


Asunto(s)
Proteínas Hedgehog/metabolismo , Boca/embriología , Animales , Membrana Basal/embriología , Epitelio/embriología , Fibronectinas/metabolismo , Tracto Gastrointestinal/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Humanos , Inmunohistoquímica , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Morfolinas/química , Boca/fisiología , Proteínas del Tejido Nervioso/genética , Purinas/química , Proteínas Represoras/genética , Transducción de Señal , Factores de Tiempo , Proteínas Wnt/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis , Proteína Gli3 con Dedos de Zinc
17.
Mech Dev ; 133: 1-10, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25058486

RESUMEN

The basement membranes (BMs) of the nervous system include (a) the pial BM that surrounds the entire CNS, (b) the BMs that outline the vascular system of the CNS and PNS and (c) the BMs that are associated with Schwann cells. We previously found that isolated BMs are bi-functionally organized, whereby the two surfaces have different compositional, biomechanical and cell adhesion properties. To find out whether the bi-functional nature of BMs has an instructive function in organizing the tissue architecture of the developing nervous system, segments of human BMs were inserted into (a) the parasomitic mesoderm of chick embryos, intersecting with the pathways of axons and neural crest cells, or (b) into the midline of the embryonic chick spinal cord. The implanted BMs integrated into the embryonic tissues within 24h and were impenetrable to growing axons and migrating neural crests cells. Host axons and neural crest cells contacted the epithelial side but avoided the stromal side of the implanted BM. When the BMs were inserted into the spinal cord, neurons, glia cells and axons assembled at the epithelial side of the implanted BMs, while a connective tissue layer formed at the stromal side, resembling the tissue architecture of the spinal cord at the pial surface. Since the spinal cord is a-vascular at the time of BM implantation, we propose that the bi-functional nature of BMs has the function of segregating epithelial and connective cells into two adjacent compartments and participates in establishing the tissue architecture at the pial surface of the CNS.


Asunto(s)
Membrana Basal/embriología , Sistema Nervioso/embriología , Animales , Axones/fisiología , Membrana Basal/fisiología , Membrana Basal/trasplante , Movimiento Celular , Embrión de Pollo , Xenoinjertos , Humanos , Modelos Neurológicos , Cresta Neural/fisiología , Tubo Neural/embriología , Organizadores Embrionarios/fisiología
18.
BMC Dev Biol ; 14: 26, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24935095

RESUMEN

BACKGROUND: The Drosophila heart (dorsal vessel) is a relatively simple tubular organ that serves as a model for several aspects of cardiogenesis. Cardiac morphogenesis, proper heart function and stability require structural components whose identity and ways of assembly are only partially understood. Structural components are also needed to connect the myocardial tube with neighboring cells such as pericardial cells and specialized muscle fibers, the so-called alary muscles. RESULTS: Using an EMS mutagenesis screen for cardiac and muscular abnormalities in Drosophila embryos we obtained multiple mutants for two genetically interacting complementation groups that showed similar alary muscle and pericardial cell detachment phenotypes. The molecular lesions underlying these defects were identified as domain-specific point mutations in LamininB1 and Cg25C, encoding the extracellular matrix (ECM) components laminin ß and collagen IV α1, respectively. Of particular interest within the LamininB1 group are certain hypomorphic mutants that feature prominent defects in cardiac morphogenesis and cardiac ECM layer formation, but in contrast to amorphic mutants, only mild defects in other tissues. All of these alleles carry clustered missense mutations in the laminin LN domain. The identified Cg25C mutants display weaker and largely temperature-sensitive phenotypes that result from glycine substitutions in different Gly-X-Y repeats of the triple helix-forming domain. While initial basement membrane assembly is not abolished in Cg25C mutants, incorporation of perlecan is impaired and intracellular accumulation of perlecan as well as the collagen IV α2 chain is detected during late embryogenesis. CONCLUSIONS: Assembly of the cardiac ECM depends primarily on laminin, whereas collagen IV is needed for stabilization. Our data underscore the importance of a correctly assembled ECM particularly for the development of cardiac tissues and their lateral connections. The mutational analysis suggests that the ß6/ß3/ß8 interface of the laminin ß LN domain is highly critical for formation of contiguous cardiac ECM layers. Certain mutations in the collagen IV triple helix-forming domain may exert a semi-dominant effect leading to an overall weakening of ECM structures as well as intracellular accumulation of collagen and other molecules, thus paralleling observations made in other organisms and in connection with collagen-related diseases.


Asunto(s)
Colágeno Tipo IV/genética , Proteínas de Drosophila/genética , Matriz Extracelular/metabolismo , Laminina/genética , Miocardio/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Membrana Basal/embriología , Membrana Basal/metabolismo , Sitios de Unión/genética , Codón sin Sentido , Colágeno Tipo IV/metabolismo , Vasos Coronarios/embriología , Vasos Coronarios/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero/irrigación sanguínea , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Metanosulfonato de Etilo/toxicidad , Corazón/embriología , Laminina/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Datos de Secuencia Molecular , Mutagénesis/efectos de los fármacos , Mutágenos/toxicidad , Miocardio/citología , Homología de Secuencia de Aminoácido
19.
Mol Cell Biol ; 34(3): 560-72, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24277939

RESUMEN

We analyzed the mechanism of developmental failure in implanted ß1 integrin-null blastocysts and found that primitive endoderm cells are present but segregate away from, instead of forming an epithelial layer covering, the inner cell mass. This cell segregation phenotype was also reproduced in ß1 integrin-null embryoid bodies, in which primitive endoderm cells segregated and appeared as miniature aggregates detached from the core spheroids, and a primitive endoderm layer failed to form on the surface. Restricted ß1 integrin gene deletion in embryos using Ttr-Cre or Sox2-Cre indicated that the loss of integrin function in the cells of the inner core rather than the outer layer is responsible for the failure to form a primitive endoderm layer. We conclude that ß1 integrin is essential for the attachment of the primitive endoderm layer to the epiblast during the formation of a basement membrane, a process concurrent with the transition from cadherin- to integrin-mediated cell adhesion.


Asunto(s)
Blastocisto/metabolismo , Endodermo/metabolismo , Estratos Germinativos/metabolismo , Integrina beta1/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Membrana Basal/embriología , Membrana Basal/metabolismo , Blastocisto/citología , Western Blotting , Cadherinas/metabolismo , Adhesión Celular , Diferenciación Celular , Células Cultivadas , Implantación del Embrión , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Cuerpos Embrioides/ultraestructura , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Endodermo/citología , Endodermo/embriología , Femenino , Estratos Germinativos/citología , Estratos Germinativos/embriología , Integrina beta1/genética , Masculino , Ratones , Ratones Noqueados , Microscopía Confocal , Microscopía Electrónica , Microscopía Fluorescente , Modelos Biológicos , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Embarazo
20.
J Biol Chem ; 288(10): 6777-87, 2013 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-23325806

RESUMEN

We found that zebrafish has two differentially expressed col14a1 paralogs. col14a1a expression peaked between 18-somite stage and 24 hours postfertilization (hpf), whereas col14a1b was first expressed at 32 hpf. To uncover functions of collagen XIV (COLXIV) during early embryogenesis, we focused our study on col14a1a. We characterized the α1 (XIV-A) chain as a collagenase-sensitive 200-kDa protein that formed dimer that could be reduced at high pH. As observed for the transcript, COLXIV-A protein expression peaked between 24 and 48 hpf. Using antisense probes and polyclonal antibodies, we show that col14a1a and its protein product COLXIV-A are transiently expressed in several epithelia, including epithelia undergoing shape changes, such as the fin folds. In contrast, anti-COLXII antibodies stained only connective tissues. COLXIV-A was also detected in the basement membrane (BM), where it co-localized with COLXII. At later developmental stages, COLXIV-A was not expressed in epithelia anymore but persisted in the BM. Morpholino knockdown of COLXIV-A provoked a skin detachment phenotype. Electron microscopy analysis revealed that morpholino-injected embryos lacked a lamina densa and lamina lucida at 24 hpf, and BM defects, such as gaps in the adepidermal granules, were still detected at 48 hpf. These BM defects were accompanied by a rupture of the dermis and detachment of the epidermis. Taken together, these data suggest an unexpected role of COLXIV-A in undifferentiated epithelia and in the formation of embryonic basement membranes.


Asunto(s)
Colágeno/genética , Epitelio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Aletas de Animales/embriología , Aletas de Animales/metabolismo , Animales , Membrana Basal/embriología , Membrana Basal/metabolismo , Western Blotting , Colágeno/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Epitelio/embriología , Femenino , Técnicas de Silenciamiento del Gen , Hibridación in Situ , Masculino , Microscopía Confocal , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Factores de Tiempo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA