Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
1.
Elife ; 132024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120998

RESUMEN

Most teleost fishes exhibit a biphasic life history with a larval oceanic phase that is transformed into morphologically and physiologically different demersal, benthic, or pelagic juveniles. This process of transformation is characterized by a myriad of hormone-induced changes, during the often abrupt transition between larval and juvenile phases called metamorphosis. Thyroid hormones (TH) are known to be instrumental in triggering and coordinating this transformation but other hormonal systems such as corticoids, might be also involved as it is the case in amphibians. In order to investigate the potential involvement of these two hormonal pathways in marine fish post-embryonic development, we used the Malabar grouper (Epinephelus malabaricus) as a model system. We assembled a chromosome-scale genome sequence and conducted a transcriptomic analysis of nine larval developmental stages. We studied the expression patterns of genes involved in TH and corticoid pathways, as well as four biological processes known to be regulated by TH in other teleost species: ossification, pigmentation, visual perception, and metabolism. Surprisingly, we observed an activation of many of the same pathways involved in metamorphosis also at an early stage of the larval development, suggesting an additional implication of these pathways in the formation of early larval features. Overall, our data brings new evidence to the controversial interplay between corticoids and thyroid hormones during metamorphosis as well as, surprisingly, during the early larval development. Further experiments will be needed to investigate the precise role of both pathways during these two distinct periods and whether an early activation of both corticoid and TH pathways occurs in other teleost species.


Asunto(s)
Larva , Metamorfosis Biológica , Animales , Metamorfosis Biológica/genética , Larva/crecimiento & desarrollo , Larva/genética , Larva/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transcriptoma , Perfilación de la Expresión Génica , Lubina/genética , Lubina/crecimiento & desarrollo , Lubina/metabolismo , Hormonas Tiroideas/metabolismo
2.
Genes (Basel) ; 15(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39062708

RESUMEN

Jinhu groupers, the hybrid offspring of tiger groupers (Epinephelus fuscoguttatus) and potato groupers (Epinephelus tukula), have excellent heterosis in fast growth and strong stress resistance. However, compared with the maternal tiger grouper, Jinhu groupers show delayed gonadal development. To explore the interspecific difference in gonadal development, we compared the transcriptomes of brain, pituitary, and gonadal tissues between Jinhu groupers and tiger groupers at 24-months old. In total, 3034 differentially expressed genes (DEGs) were obtained. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses showed that the osteoclast differentiation, oocyte meiosis, and ovarian steroidogenesis may be involved in the difference in gonadal development. Trend analysis showed that the DEGs were mainly related to signal transduction and cell growth and death. Additionally, differences in expression levels of nr4a1, pgr, dmrta2, tbx19, and cyp19a1 may be related to gonadal retardation in Jinhu groupers. A weighted gene co-expression network analysis revealed three modules (i.e., saddlebrown, paleturquoise, and greenyellow) that were significantly related to gonadal development in the brain, pituitary, and gonadal tissues, respectively, of Jinhu groupers and tiger groupers. Network diagrams of the target modules were constructed and the respective hub genes were determined (i.e., cdh6, col18a1, and hat1). This study provides additional insight into the molecular mechanism underlying ovarian stunting in grouper hybrids.


Asunto(s)
Lubina , Transcriptoma , Animales , Femenino , Transcriptoma/genética , Lubina/genética , Lubina/crecimiento & desarrollo , Lubina/metabolismo , Masculino , Perfilación de la Expresión Génica/métodos , Sistema Hipotálamo-Hipofisario/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Gónadas/metabolismo , Gónadas/crecimiento & desarrollo , Hipófisis/metabolismo , Ovario/metabolismo , Ovario/crecimiento & desarrollo , Eje Hipotálamico-Pituitario-Gonadal
3.
Fish Shellfish Immunol ; 152: 109792, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39084277

RESUMEN

The aim of this study was to investigate the effects of antibacterial peptides from Brevibacillus texasporus (BT) on the growth performance, meat quality and gut health of cultured largemouth bass (Micropterus salmoides). Largemouth bass (36.17 ± 1.52 g) were divided into 2 groups and each group was fed with diets supplemented with or without 200 ppm of BT peptides for 130 days. The results showed that BT peptides had no significant influences on growth performance and body indexes, but significantly enhanced total antioxidant capacity and lysozyme content in the serum. Moreover, digestive enzymes activities and intestinal villous height were also prominently increased. From meat quality aspect, no significant differences were found in nutritional components, amino acid composition, fatty acid composition and texture property, except the values of hardness, gumminess and γ-linolenic acid (C18:3n6) were remarkably increased after BT peptides intervention. Finally, the results of gut microbiota and short chain fatty acids revealed that BT peptides significantly decreased the relative abundances of harmful bacteria such as genus Acinetobacter and Pseudomonas, and increased the production of short chain fatty acids. In conclusion, this study confirmed that BT peptides could be used to improve the health of largemouth bass, which provided novel insights into the application of antimicrobial peptides in aquacultures.


Asunto(s)
Alimentación Animal , Lubina , Brevibacillus , Dieta , Microbioma Gastrointestinal , Animales , Lubina/crecimiento & desarrollo , Alimentación Animal/análisis , Dieta/veterinaria , Microbioma Gastrointestinal/efectos de los fármacos , Carne/análisis , Suplementos Dietéticos/análisis , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Distribución Aleatoria , Proteínas Bacterianas
4.
Sci Rep ; 14(1): 13868, 2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879696

RESUMEN

The purpose of this research was to examine the potential effects of bentonite (BN) supplemented diets on growth, feed utilization, blood biochemistry, and histomorphology of Dicentrarchus labrax. Six treatments in triplicate were tested: B0, B0.5, B1.0, B1.5, B3.0, and B4.5, which represented fish groups fed diets supplemented with 0, 0.5, 1, 1.5, 3, and 4.5% BN, respectively. For 84 days, juveniles' seabass (initial weight = 32.73 g) were fed diets containing 46% protein, three times daily at 3% of body weight. With a 5% daily water exchange, underground seawater (32 ppt) was used. Findings revealed significant improvements in water quality (TAN and NH3), growth (FW, WG and SGR) and feed utilization (FCR, PER and PPV) in fish fed BN-supplemented diets, with the best values in favor of the B1.5 group. Additional enhancements in kidney function indicators (urea and uric acid) and liver enzymes were observed in fish of the BN-treated groups along with a decrease in cholesterol level in the B1.5 group. Further improvements in fish innate immunity (hemoglobin, red blood cells, glucose, total protein, globulin, and immunoglobulin IgM), antioxidant activity (total antioxidative capacity and catalase), and decreased cortisol levels in fish of the BN-treated groups. Histological examinations of the anterior and posterior intestines and liver in groups B1.5 and B3 revealed the healthiest organs. This study recommends BN at a concentration of 1.5% as a feed additive in the Dicentrarchus labrax diet.


Asunto(s)
Amoníaco , Alimentación Animal , Antioxidantes , Lubina , Bentonita , Suplementos Dietéticos , Animales , Lubina/inmunología , Lubina/crecimiento & desarrollo , Lubina/metabolismo , Antioxidantes/metabolismo , Bentonita/farmacología , Bentonita/administración & dosificación , Amoníaco/metabolismo , Alimentación Animal/análisis , Dieta/veterinaria
5.
Artículo en Inglés | MEDLINE | ID: mdl-38897364

RESUMEN

Microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) are priority contaminants of marine environments. However, their combined toxic effects on aquatic organisms are still largely unclear. In this study, the toxicological effects of microplastics (MPs) and Benzo[a]pyrene (BaP), a representative PAH, on Asian sea bass Lates calcarifer was investigated. Juvenile Asian sea bass were exposed for 56 days to polyethylene MPs (0.1 and 1 mg/L) and BaP (20 and 80 µg/L) as single or combined environmental stressors. The effects of MPs and BaP exposure on fish were evaluated considering several biological indices such as growth and condition indices, the oxidative stress response in the liver, and the expression levels of genes related to the stress, immunomodulation, detoxification, and apoptosis. Exposure to MPs and BaP in single or combined experiments significantly (P < 0.05) decreased fish growth, and altered body protein content and food conversion ratio (FCR), but greater magnitudes of changes was observed in the combined experimental group of BaP80 + MP1. The activities of liver antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) decreased; meanwhile, malondialdehyde (MDA) activity was dramatically enhanced (P < 0.05). The combined groups with higher concentrations (BaP80+ MP1) caused more severe alterations in enzyme levels compared to the single exposure groups and lower concentrations. MDA was the most affected among the studied enzymes. The expression levels of functional genes involved in stress response (GPX, HSP70, HSP90), pro-inflammation (LYZ, IL-1ß, IL-8, and TNF-α), and detoxification (CYP1A) displayed significant alterations as the result of exposure to MPs and BaP single and in combination. The transcription levels of functional genes were more affected in fish exposed to BaP at 80 ng/mL when combined with MPs at 1 mg/mL. Additionally, MPs and BaP heightened the expression of apoptotic-related genes (p53 and caspase-3) on day 7 of exposure in a dose-dependent synergetic manner (P < 0.05). The results of this study demonstrate that exposure to MPs and BaP alone results in significant alterations in fish growth and condition factors, and could activate the stress response, stimulate the anti-oxidative defense system, immune transcriptomic response, and apoptosis in Asian sea bass; however, MPs can enhance the adverse effects of BaP on biological markers.


Asunto(s)
Lubina , Benzo(a)pireno , Microplásticos , Estrés Oxidativo , Contaminantes Químicos del Agua , Animales , Lubina/crecimiento & desarrollo , Lubina/genética , Lubina/metabolismo , Benzo(a)pireno/toxicidad , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
6.
BMC Genomics ; 25(1): 580, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858615

RESUMEN

BACKGROUND: Understanding growth regulatory pathways is important in aquaculture, fisheries, and vertebrate physiology generally. Machine learning pattern recognition and sensitivity analysis were employed to examine metabolomic small molecule profiles and transcriptomic gene expression data generated from liver and white skeletal muscle of hybrid striped bass (white bass Morone chrysops x striped bass M. saxatilis) representative of the top and bottom 10 % by body size of a production cohort. RESULTS: Larger fish (good-growth) had significantly greater weight, total length, hepatosomatic index, and specific growth rate compared to smaller fish (poor-growth) and also had significantly more muscle fibers of smaller diameter (≤ 20 µm diameter), indicating active hyperplasia. Differences in metabolomic pathways included enhanced energetics (glycolysis, citric acid cycle) and amino acid metabolism in good-growth fish, and enhanced stress, muscle inflammation (cortisol, eicosanoids) and dysfunctional liver cholesterol metabolism in poor-growth fish. The majority of gene transcripts identified as differentially expressed between groups were down-regulated in good-growth fish. Several molecules associated with important growth-regulatory pathways were up-regulated in muscle of fish that grew poorly: growth factors including agt and agtr2 (angiotensins), nicotinic acid (which stimulates growth hormone production), gadd45b, rgl1, zfp36, cebpb, and hmgb1; insulin-like growth factor signaling (igfbp1 and igf1); cytokine signaling (socs3, cxcr4); cell signaling (rgs13, rundc3a), and differentiation (rhou, mmp17, cd22, msi1); mitochondrial uncoupling proteins (ucp3, ucp2); and regulators of lipid metabolism (apoa1, ldlr). Growth factors pttg1, egfr, myc, notch1, and sirt1 were notably up-regulated in muscle of good-growing fish. CONCLUSION: A combinatorial pathway analysis using metabolomic and transcriptomic data collectively suggested promotion of cell signaling, proliferation, and differentiation in muscle of good-growth fish, whereas muscle inflammation and apoptosis was observed in poor-growth fish, along with elevated cortisol (an anti-inflammatory hormone), perhaps related to muscle wasting, hypertrophy, and inferior growth. These findings provide important biomarkers and mechanisms by which growth is regulated in fishes and other vertebrates as well.


Asunto(s)
Lubina , Perfilación de la Expresión Génica , Animales , Lubina/genética , Lubina/crecimiento & desarrollo , Lubina/metabolismo , Femenino , Masculino , Metabolómica , Desarrollo de Músculos/genética , Transcriptoma , Músculo Esquelético/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Metaboloma , Hígado/metabolismo
7.
Fish Shellfish Immunol ; 149: 109593, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697374

RESUMEN

A type of fermented bile acids (FBAs) has been produced through a biological method, and its effects on growth performance, metabolism, and intestinal microbiota in largemouth bass were investigated. The results demonstrated that incorporating 0.03 %-0.05 % FBAs diet could improve the final weight, weight gain and specific growth rate, and decrease the feed conversion ratio. Dietary FBAs did not significantly affect the levels of high-density lipoprotein, low-density lipoprotein, and triglycerides, but decreased the activities of α-amylase in most groups. Adding FBAs to the diet significantly increased the integrity of the microscopic structure of the intestine, thickened the muscular layer of the intestine, and notably enhanced its intestinal barrier function. The addition of FBAs to the diet increased the diversity of the gut microbiota in largemouth bass. At the phylum level, there was an increase in the abundance of Proteobacteria, Firmicutes, Tenericutes and Cyanobacteria and a significant decrease in Actinobacteria and Bacteroidetes. At the genus level, the relative abundance of beneficial bacteria Mycoplasma in the GN6 group and Coprococcus in the GN4 group significantly increased, while the pathogenic Enhydrobacter was inhibited. Meanwhile, the highest levels of AKP and ACP were observed in the groups treated with 0.03 % FBAs, while the highest levels of TNF-α and IL-10 were detected in the group treated with 0.04 % FBAs. Additionally, the highest levels of IL-1ß, IL-8T, GF-ß, IGF-1, and IFN-γ were noted in the group treated with 0.06 % FBAs. These results suggested that dietary FBAs improved growth performance and intestinal wall health by altering lipid metabolic profiles and intestinal microbiota in largemouth bass.


Asunto(s)
Alimentación Animal , Lubina , Ácidos y Sales Biliares , Dieta , Microbioma Gastrointestinal , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ácidos y Sales Biliares/metabolismo , Alimentación Animal/análisis , Lubina/crecimiento & desarrollo , Lubina/inmunología , Dieta/veterinaria , Intestinos/microbiología , Fermentación , Metaboloma , Suplementos Dietéticos/análisis , Distribución Aleatoria
8.
Fish Shellfish Immunol ; 150: 109635, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754648

RESUMEN

The present study explored the effects of different lipid sources on growth performance, lipid deposition, antioxidant capacity, inflammatory response and disease resistance of largemouth bass (Micropterus salmoides). Four isonitrogenous (crude protein 50.46 %) and isolipidic (crude lipid 11.12 %) diets were formulated to contain 7 % of different oil sources including fish oil (FO) (control), soybean oil (SO), linseed oil (LO) and coconut oil (CO). Largemouth bass with initial body weight of 36.0 ± 0.2 g were randomly distributed into 12 tanks, with 30 fish per tank and 3 tanks per treatment. The fish were fed with the experiment diets twice daily for 8 weeks. The results indicated that the weight gain of largemouth bass fed the FO diet was significantly higher than that of fish fed the LO and CO diets. The liver crude lipid content in FO group was significantly higher than other groups, while the highest liver triglyceride content was showed in SO group and the lowest was detected in LO group. At transcriptional level, expression of lipogenesis related genes (pparγ, srebp1, fas, acc, dgat1 and dgat2) in the SO and CO group were significantly higher than the FO group. However, the expression of lipolysis and fatty acids oxidation related genes (pparα, cpt1, and aco) in vegetable oils groups were significantly higher than the FO group. As to the antioxidant capacity, vegetable oils significantly reduced the malondialdehyde content of largemouth bass. Total antioxidant capacity in the SO and LO groups were significantly increased compared with the FO group. Catalase in the LO group was significantly increased compared with the FO group. Furthermore, the ER stress related genes, such as grp78, atf6α, atf6ß, chop and xbp1 were significantly enhanced in the vegetable oil groups compared with the FO group. The activity of serum lysozyme in vegetable oil groups were significantly higher than in FO group. Additionally, the relative expression of non-specific immune related genes, including tlr2, mapk11, mapk13, mapk14, rela, tgf-ß1, tnfα, 5lox, il-1ß and il10, were all significantly increased in SO and CO groups compared to the other groups. In conclusion, based on the indexes including growth performance, lipid deposition, antioxidant capacity and inflammatory response, SO and LO could be alternative oil sources for largemouth bass.


Asunto(s)
Alimentación Animal , Antioxidantes , Lubina , Dieta , Metabolismo de los Lípidos , Animales , Lubina/inmunología , Lubina/crecimiento & desarrollo , Dieta/veterinaria , Alimentación Animal/análisis , Antioxidantes/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Distribución Aleatoria , Suplementos Dietéticos/análisis , Grasas de la Dieta/administración & dosificación , Aceites de Pescado/administración & dosificación , Aceite de Linaza/administración & dosificación , Enfermedades de los Peces/inmunología , Inflamación/veterinaria , Inflamación/inmunología , Aceite de Soja/administración & dosificación , Aceite de Coco/administración & dosificación
9.
Fish Shellfish Immunol ; 149: 109551, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599363

RESUMEN

The present study aimed to evaluate the effect of king oyster mushroom (Pleurotus eryngii) root waste and soybean meal co-fermented protein (CFP) on growth performance, feed utilization, immune status, hepatic and intestinal health of largemouth bass (Micropterus salmoides). Largemouth bass (12.33 ± 0.18 g) were divided into five groups, fed with diets containing 0 %, 5 %, 10 %, 15 % and 20 % CFP respectively for 7 weeks. The growth performance and dietary utilization were slightly improved by the supplementation of CFP. In addition, improved immunoglobulin M (IgM) content and lysozyme activity in treatments confirm the enhancement of immunity in fish by the addition of CFP, especially in fish fed 20 % CFP (P < 0.05). Furthermore, CFP significantly improved liver GSH (glutathione) content in groups D10 and D15 (P < 0.05), and slightly improved total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity while slightly reduced malondialdehyde (MDA) content. Simultaneously, the upregulation of lipolysis-related genes (PPARα, CPT1 and ACO) expression and downregulation of lipid synthesis-related genes (ACC and DGAT1) expression was recorded in the group D20 compared with the control (P < 0.05), which were consistent with the decreased liver lipid contents, suggests that lipid metabolism was improved by CFP. In terms of intestinal structural integrity, ameliorated intestinal morphology in treatments were consistent with the upregulated Occludin, Claudin-1 and ZO-1 genes expression. The intestinal pro-inflammatory cytokines (TNF-α and IL-8) expression were suppressed while the anti-inflammatory cytokines (IL-10 and TGF-ß) were activated in treatments. The expression of antimicrobial peptides (Hepcidin-1, Piscidin-2 and Piscidin-3) and intestinal immune effectors (IgM and LYZ) were slightly up-regulated in treatments. Additionally, the relative abundance of intestinal beneficial bacteria (Firmicutes) increased while the relative abundance of potential pathogenic bacteria (Fusobacterium and Proteobacteria) decreased, which indicated that the intestinal microbial community was well-reorganized by CFP. In conclusion, dietary CFP improves growth, immunity, hepatic and intestinal health of largemouth bass, these data provided a theoretical basis for the application of this novel functional protein ingredient in fish.


Asunto(s)
Alimentación Animal , Lubina , Dieta , Suplementos Dietéticos , Glycine max , Hígado , Pleurotus , Animales , Lubina/inmunología , Lubina/crecimiento & desarrollo , Alimentación Animal/análisis , Dieta/veterinaria , Pleurotus/química , Glycine max/química , Hígado/inmunología , Hígado/efectos de los fármacos , Hígado/metabolismo , Suplementos Dietéticos/análisis , Intestinos/inmunología , Intestinos/efectos de los fármacos , Fermentación , Inmunidad Innata/efectos de los fármacos , Distribución Aleatoria , Raíces de Plantas/química , Relación Dosis-Respuesta a Droga
10.
Artículo en Inglés | MEDLINE | ID: mdl-38609061

RESUMEN

Natural and synthetic estrogens are contaminants present in aquatic ecosystems. They can have significant consequences on the estrogen-sensitive functions of organisms, including skeletal development and growth of vertebrate larvae. Synthetic polyphenols represent a group of environmental xenoestrogens capable of binding the receptors for the natural hormone estradiol-17ß (E2). To better understand how (xeno-)estrogens can affect the skeleton in fish species with high ecological and commercial interest, 16 days post-hatch larvae of the seabass were experimentally exposed for 7 days to E2 and Bisphenol A (BPA), both used at the regulatory concentration of surface water quality (E2: 0.4 ng.L-1, BPA: 1.6 µg.L-1) or at a concentration 100 times higher. Skeletal mineralization levels were evaluated using Alizarin red staining, and expression of several genes playing key roles in growth, skeletogenesis and estrogen signaling pathways was assessed by qPCR. Our results show that E2 exerts an overall negative effect on skeletal mineralization at the environmental concentration of 0.4 ng.L-1, correlated with an increase in the expression of genes associated only with osteoblast bone cells. Both BPA exposures inhibited mineralization with less severe effects and modified bone homeostasis by regulating the expression of gene encoding osteoblasts and osteoclasts markers. Our results demonstrate that environmental E2 exposure inhibits larval growth and has an additional inhibitory effect on skeleton mineralization while both BPA exposures have marginal inhibitory effect on skeletal mineralization. All exposures have significant effects on transcriptional levels of genes involved in the skeletal development of seabass larvae.


Asunto(s)
Lubina , Compuestos de Bencidrilo , Estradiol , Fenoles , Contaminantes Químicos del Agua , Animales , Compuestos de Bencidrilo/toxicidad , Fenoles/toxicidad , Estradiol/metabolismo , Contaminantes Químicos del Agua/toxicidad , Lubina/crecimiento & desarrollo , Lubina/metabolismo , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/metabolismo , Calcificación Fisiológica/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos
11.
J Fish Biol ; 105(1): 186-200, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38684177

RESUMEN

The objective of this study is to provide information on the reproductive biology of tomato hind grouper, Cephalopholis sonnerati (Valenciennes, 1828) for conservation and management purposes. Fish caught by artisanal fishermen from September 2019 to August 2021 were analysed. A total of 280 females, 31 males, and 4 transitional and 178 sex-undetermined fish were analysed. The female to male sex proportion was 9:1, and the fish reached a maximum total body length of 38.5 and 54.5 cm for females and males, respectively. The following microscopic stages were identified: immature, developing, ripe, running ripe/releasing, and spent in both males and females. Several asynchronous development patterns were observed in the studied gonads, including multiple oocyte stages and early and advanced stages of sexual transition. High gonadosomatic index (GSI) for both males and females was recorded in March, May, and November. Running ripe and releasing stages in females were identified in the months from March to June, which indicates the spawning season. The absolute and relative fecundity of the species ranged from 162,723 ± 207,267 and 239 ± 285, respectively. An exponential relationship was found between fecundity and total body length (TL), fecundity and total body weight (TW), and fecundity and gonad weight (GW).


Asunto(s)
Reproducción , Animales , Femenino , Masculino , India , Fertilidad , Lubina/fisiología , Lubina/crecimiento & desarrollo , Gónadas/crecimiento & desarrollo , Gónadas/fisiología , Estaciones del Año , Razón de Masculinidad , Perciformes/fisiología
12.
J Fish Biol ; 104(6): 2032-2043, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38569601

RESUMEN

Otolith shape is often used as a tool in fish stock identification. The goal of this study was to experimentally assess the influence of changing temperature and ontogenic evolution on the shape component of the European seabass (Dicentrarchus labrax) otolith during early-life stages. A total of 1079 individuals were reared in a water temperature of 16°C up to 232 days post hatch (dph). During this experiment, several specimens were transferred into tanks with a water temperature of 21°C to obtain at the end of this study four different temperature treatments, each with varying ratios between the number of days at 16 and 21°C. To evaluate the otolith morphogenesis, samples were examined at 43, 72, 86 and 100 dph. The evolution of normalized otolith shape from hatching up to 100 dph showed that there were two main successive changes. First, faster growth in the antero-posterior axis than in the dorso-ventral axis changed the circular-shaped otolith from that observed at hatching and, second, increasing the complexity relating to the area between the rostrum and the anti-rostrum. To test the effect of changing temperature, growing degree-day was used in three linear mixed-effect models. Otolith morphogenesis was positively correlated to growing degree-day, but was also dependent on temperature level. Otolith shape is influenced by environmental factors, particularly temperature, making it an efficient tool for fish stock identification.


Asunto(s)
Lubina , Morfogénesis , Membrana Otolítica , Temperatura , Animales , Membrana Otolítica/crecimiento & desarrollo , Lubina/crecimiento & desarrollo , Lubina/fisiología , Lubina/anatomía & histología
13.
Mar Environ Res ; 198: 106517, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657369

RESUMEN

Estuarine mangroves are often considered nurseries for the Atlantic Goliath grouper juveniles. Yet, the contributions of different estuarine primary producers and habitats as sources of organic matter during early ontogenetic development remain unclear. Given the species' critically endangered status and protection in Brazil, obtaining biological samples from recently settled recruits in estuaries is challenging. In this study, we leveraged a local partnership with fishers and used stable isotope (C and N) profiles from the eye lenses of stranded individuals or incidentally caught by fishery to reconstruct the trophic and habitat changes of small juveniles. The eye lens grows by the apposition of protein-rich layers. Once these layers are formed, they become inert, allowing to make inferences on the trophic ecology and habitat use along the development of the individual until its capture. We used correlations between fish size and the entire eye lens size, along with estuarine baselines, to reconstruct the fish size and trophic positions for each of the lens layers obtained. We then used dominant primary producers and basal sources from mangrove sheltered, exposed estuarine and marine habitats to construct an ontogenetic model of trophic and habitat support changes since maternal origins. Our model revealed marine support before the juveniles reached 25 mm (standard length), followed by a rapid increase in reliance on mangrove sheltered sources, coinciding with the expected size at settlement. After reaching 60 mm, individuals began to show variability. Some remained primarily supported by the mangrove sheltered area, while others shifted to rely more on the exposed estuarine area around 150 mm. Our findings indicate that while mangroves are critical for settlement, as Goliath grouper juveniles grow, they can utilize organic matter produced throughout the estuary. This underscores the need for conservation strategies that focus on seascape connectivity, as protecting just one discrete habitat may not be sufficient to preserve this endangered species and safeguard its ecosystem functions.


Asunto(s)
Ecosistema , Especies en Peligro de Extinción , Cristalino , Animales , Cristalino/crecimiento & desarrollo , Brasil , Estuarios , Isótopos de Carbono/análisis , Isótopos de Nitrógeno/análisis , Lubina/fisiología , Lubina/crecimiento & desarrollo , Cadena Alimentaria , Monitoreo del Ambiente
14.
Mar Biotechnol (NY) ; 26(3): 423-431, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38649627

RESUMEN

This study is the first investigation for using sex-related gene expression in tail fin tissues of seabass as early sex determination without killing the fish. The European seabass (Dicentrarchus labrax) is gonochoristic and lacks distinguishable sex chromosomes, so, sex determination is referred to molecular actions for some sex-related genes on autosomal chromosomes which are well known such as cyp19a1a, dmrt1a, and dmrt1b genes which play crucial role in gonads development and sex differentiation. cyp19a1a is expressed highly in females for ovarian development and dmrt1a and dmrt1b are for testis development in males. In this study, we evaluated the difference in the gene expression levels of studied genes by qPCR in tail fins and gonads. We then performed discriminant analysis (DA) using morphometric traits and studied gene expression parameters as predictor tools for fish sex. The results revealed that cyp19a1a gene expression was significantly higher in future females' gonads and tail fins (p ≥ 0.05). Statistically, cyp19a1a gene expression was the best parameter to discriminate sex even the hit rate of any other variable by itself could not correctly classify 100% of the fish sex except when it was used in combination with cyp19a1a. In contrast, Dmrt1a gene expression was higher in males than females but there were difficulties in analyzing dmrt1a and dmrt1b expressions in the tail because levels were low. So, it could be used in future research to differentiate and determine the sex of adult fish using the cyp19a1a gene expression marker without killing or sacrificing fish.


Asunto(s)
Aletas de Animales , Aromatasa , Lubina , Factores de Transcripción , Animales , Lubina/genética , Lubina/metabolismo , Lubina/crecimiento & desarrollo , Masculino , Femenino , Aletas de Animales/metabolismo , Aromatasa/genética , Aromatasa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Procesos de Determinación del Sexo/genética , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Ovario/metabolismo , Gónadas/metabolismo , Gónadas/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Diferenciación Sexual/genética
15.
Fish Physiol Biochem ; 50(3): 1065-1077, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38367082

RESUMEN

The present study aims to investigate nutritional programming through early starvation in the European seabass (Dicentrarchus labrax). European seabass larvae were fasted at three different developmental periods for three durations from 60 to 65 dph (F1), 81 to 87 dph (F2), and 123 to 133 dph (F3). Immediate effects were investigated by studying gene expression of npy (neuropeptide Y) and avt (Arginine vasotocin) in the head, while potential long-term effects (i.e., programming) were evaluated on intermediary metabolism later in life (in juveniles). Our findings indicate a direct effect regarding gene expression in the head only for F1, with higher avt mRNA level in fasted larved compared to controls. The early starvation periods had no long-term effect on growth performance (body weight and body length). Regarding intermediary metabolism, we analyzed related key plasma metabolites which reflect the intermediary metabolism: no differences for glucose, triglycerides, and free fatty acids in the plasma were observed in juveniles irrespective of the three early starvation stimuli. As programming is mainly linked to molecular mechanisms, we then studied hepatic mRNA levels for 23 key actors of glucose, lipid, amino acid, and energy metabolism. For many of the metabolic genes, there was no impact of early starvation in juveniles, except for three genes involved in glucose metabolism (glut2-glucose transporter and pk-pyruvate kinase) and lipid metabolism (acly-ATP citrate lyase) which were higher in F2 compared to control. Together, these results highlight that starvation between 81 to 87 dph may have more long-term impact, suggesting the existence of a developmental window for programming by starvation. In conclusion, European seabass appeared to be resilient to early starvation during larvae stages without drastic impacts on intermediary metabolism later in life.


Asunto(s)
Lubina , Larva , Hígado , Inanición , Animales , Lubina/crecimiento & desarrollo , Lubina/metabolismo , Lubina/genética , Hígado/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Inanición/metabolismo , Neuropéptido Y/metabolismo , Neuropéptido Y/genética , Vasotocina/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
16.
Fish Physiol Biochem ; 50(3): 973-988, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38421537

RESUMEN

ß-Glucans are immunostimulants and are widely used in aquaculture industry. The present study was conducted to evaluate the effects of different periods of ß-glucan management on growth performance, intestinal health, and disease resistance in pearl gentian grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). A commercial feed was used as control diet (CD), and the ß-glucan diet (ßD) was based on CD and further supplemented with 0.1% ß-glucan. Grouper in control and long-term ß-glucan diet (LGD) groups were fed with CD and ßD for 8 weeks, respectively. Groupers in short-term ß-glucan diet (SGD) group were fed with CD for the first 4 weeks and ßD for the last 4 weeks. We found that LGD and SGD had no effect on growth performance but reduced the mortalities of grouper after challenging with Vibrio harveyi. In addition, both LGD and SGD increased intestinal morphology, enhanced antioxidant capacity, enhanced immunity, inhibited apoptosis, altered the transcriptional profile, and activated mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signaling pathway in the intestine of grouper. Furthermore, the effect of LGD on most of the above parameters was comparable to that of SGD. In conclusion, LGD and SGD did not affect growth rate parameters but enhanced the intestinal health and disease resistance of pearl gentian grouper.


Asunto(s)
Alimentación Animal , Lubina , Dieta , Resistencia a la Enfermedad , Enfermedades de los Peces , Intestinos , beta-Glucanos , Animales , beta-Glucanos/farmacología , beta-Glucanos/administración & dosificación , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/prevención & control , Lubina/inmunología , Lubina/crecimiento & desarrollo , Resistencia a la Enfermedad/efectos de los fármacos , Intestinos/efectos de los fármacos , Dieta/veterinaria , Alimentación Animal/análisis , Suplementos Dietéticos , Vibriosis/veterinaria , Vibriosis/prevención & control , Vibriosis/inmunología , Vibrio/efectos de los fármacos , Masculino
17.
Front Immunol ; 14: 1110696, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936939

RESUMEN

Introduction: In an effort to minimize the usage of fishmeal in aquaculture, novel protein diets, including Tenebrio molitor, cottonseed protein concentrate, Clostridium autoethanogenum, and Chlorella vulgaris were evaluated for their potential to replace fishmeal. Nevertheless, comprehensive examinations on the gut health of aquatic animals under an alternate feeding strategy when fed novel protein diets are vacant. Methods: Five isonitrogenous and isolipidic diets containing various proteins were manufactured, with a diet consisting of whole fishmeal serving as the control and diets containing novel proteins serving as the experimental diets. Largemouth bass (Micropterus salmoides) with an initial body weight of 4.73 ± 0.04g employed as an experimental animal and given these five diets for the first 29 days followed by a fishmeal diet for the next 29 days. Results: The results of this study demonstrated that the growth performance of novel protein diets in the second stage was better than in the first stage, even though only the C. vulgaris diet increased antioxidant capacity and the cottonseed protein concentrate diet decreased it. Concerning the intestinal barriers, the C. autoethanogenum diet lowered intestinal permeability and plasma IL-1ß/TNF-α. In addition, the contents of intestinal immunological factors, namely LYS and sIgA-like, were greater in C. vulgaris than in fishmeal. From the data analysis of microbiome and metabolome, the levels of short chain fatty acids (SCFAs), anaerobic bacteria, Lactococcus, and Firmicutes were significantly higher in the C. autoethanogenum diet than in the whole fishmeal diet, while the abundance of Pseudomonas, aerobic bacteria, Streptococcus, and Proteobacteria was lowest. However, no extremely large differences in microbiota or short chain fatty acids were observed between the other novel protein diets and the whole fishmeal diet. In addition, the microbiota were strongly connected with intestinal SCFAs, lipase activity, and tight junctions, as shown by the Mantel test and Pearson's correlation. Discussion: Taken together, according to Z-score, the ranking of advantageous functions among these protein diets was C. autoethanogenum diet > C. vulgaris diet > whole fishmeal diet > cottonseed protein concentrate > T. molitor diet. This study provides comprehensive data illustrating a mixed blessing effect of novel protein diets on the gut health of juvenile largemouth bass under an alternate feeding strategy.


Asunto(s)
Alimentación Animal , Lubina , Dieta , Intestinos , Lubina/crecimiento & desarrollo , Lubina/inmunología , Lubina/fisiología , Multiómica , Intestinos/química , Intestinos/efectos de los fármacos , Intestinos/inmunología , Intestinos/fisiología , Proteínas de Peces , Animales , Alimentación Animal/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Dieta/efectos adversos , Dieta/métodos , Dieta/veterinaria , Ácidos Grasos/análisis , Aceite de Semillas de Algodón , Proteínas de Plantas , Chlorella vulgaris , Tenebrio , Insectos Comestibles
18.
Fish Physiol Biochem ; 48(1): 145-159, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35034221

RESUMEN

Many metabolic diseases in fish are often associated with lowered mitochondrial fatty acid ß-oxidation (FAO). However, the physiological role of mitochondrial FAO in lipid metabolism has not been verified in many carnivorous fish species, for example in largemouth bass (Micropterus salmonids). In the present study, a specific mitochondrial FAO inhibitor, mildronate (MD), was used to investigate the effects of impaired mitochondrial FAO on growth performance, health status, and lipid metabolism of largemouth bass. The results showed that the dietary MD treatment significantly suppressed growth performance and caused heavy lipid accumulation, especially neutral lipid, in the liver. The MD-treated fish exhibited lower monounsaturated fatty acid and higher long-chain polyunsaturated fatty acids in the muscle. The MD treatment downregulated the gene expressions in lipolysis and lipogenesis, as well as the expressions of the genes and some key proteins in FAO without enhancing peroxisomal FAO. Additionally, the MD-treated fish had lower serum aspartate aminotransferase activity and lower pro-inflammation- and apoptosis-related genes in the liver. Taken together, MD treatment markedly induced lipid accumulation via depressing lipid catabolism. Our findings reveal the pivotal roles of mitochondrial FAO in maintaining health and lipid homeostasis in largemouth bass and could be hopeful in understanding metabolic diseases in farmed carnivorous fish.


Asunto(s)
Lubina , Metabolismo de los Lípidos , Metilhidrazinas/efectos adversos , Animales , Lubina/crecimiento & desarrollo , Lubina/metabolismo , Dieta/veterinaria , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos , Hígado/efectos de los fármacos , Hígado/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
19.
Fish Shellfish Immunol ; 120: 214-221, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34843945

RESUMEN

This study aimed to evaluate the effects of partial replacement of fish meal (FM) with yellow mealworm (Tenebrio molitor, TM) on the growth performance, food utilization and intestinal immune response of juvenile largemouth bass (Micropterus salmoides). Seven diets containing increasing levels of TM (FM substitution) were designed (approximately 0% (0%), 4% (11.1%), 8.1% (22.2%), 12.2% (33.3%), 16.3% (44.4%), 20.4% (55.5%), and 24.5% (66.6%), designated TM0, TM11, TM22, TM33, TM44, TM55, and TM66, respectively). 420 fish were randomly selected and placed in 21 cages (1 m*1 m*1 m, 7 treatments for triplicate, 20 fish per cage). Fish (initial weight 6.25 ± 0.03 g) were fed seven isonitrogenous (47%) and isocaloric (19 MJ kg-1) diets to satiety twice daily for 8 weeks. Compared to the control group (TM0), TM11 showed no significant difference in the weight gain rate (WGR), specific growth rate (SGR) or feed conversion ratio (FCR), while all other TM inclusion groups presented different degrees of decline. There was no significant difference in the whole-body composition among all groups (P > 0.05). Plasma total protein (TP), triglyceride (TG) and albumin (ALB) contents were significantly decreased in TM55 and TM66 (P < 0.05). The highest plasma aspartate transaminase (AST) activity was observed in TM66 (P < 0.05). TM33, TM44 and TM55 showed the lowest activities of plasma alanine amiotransferase (ALT) and alkaline phosphatase (ALP) (P < 0.05). Moreover, increased mRNA levels of superoxide dismutase (SOD) and catalase (CAT) were measured in the TM11 to TM55 groups, while intestinal SOD activity peaked in TM11 (P < 0.05). With the exception of TM11, the other TM inclusion groups showed significant inhibition of the relative expression of RelA, C3 and TNF-α (P < 0.05). All experimental groups exhibited lower expression of IL-10 than TM0 (P < 0.05). The TM11 group showed significantly upregulated expression of IL-1ß and TGF-ß (P < 0.05). In addition, TLR2 expression was increased in TM11 and TM22 (P < 0.05). Considering enzyme activities and immune-related gene expression, TM supplementation levels should not exceed 4% (TM11).


Asunto(s)
Alimentación Animal , Antioxidantes/metabolismo , Lubina , Tenebrio , Alimentación Animal/análisis , Animales , Lubina/crecimiento & desarrollo , Lubina/inmunología , Dieta/veterinaria , Suplementos Dietéticos
20.
Fish Shellfish Immunol ; 120: 280-286, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34838703

RESUMEN

The study explored on the effects of dietary 0.4% dandelion extract on the growth performance, serum biochemical parameters, liver histology and the expression levels of immune and apoptosis-related genes in the head kidney and spleen of hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀) at different feeding period. The results showed that the weight gain rate (WGR) of the hybrid grouper were significantly increased at the second and fourth weeks (P < 0.05), but there was no significant difference in WGR at the eighth week (P > 0.05). Compared with the control group, dietary dandelion extracts supplementation improve lipid metabolism, reduce lipid accumulation in liver and maintain normal liver histology at the second and fourth weeks. At the end of the second week, the relative expression levels of antioxidant related genes (MnSOD, GPX and GR) in the head kidney of hybrid grouper fed with dandelion extract increased significantly; at the end of week 4 and week 8, the relative expression levels of antioxidant related genes other than MnSOD did not change significantly. However, in the spleen of hybrid grouper, the expression of these antioxidant genes showed the opposite trend. At the end of the eighth week, dietary dandelion extract supplementation significantly increased the expression of inflammatory response related genes in head kidney of hybrid grouper, but showed the opposite trend in spleen. In conclusion, the short-term (2 or 4 weeks) application of 0.4% dandelion extract in feed had the effects of growth improvement, liver protection and immune stimulation on hybrid grouper due to its antioxidant and anti-inflammatory activities. The beneficial effect of dandelion extract on hybrid grouper was time-dependent, and its action time on different immune organs of hybrid grouper was not synchronous.


Asunto(s)
Lubina , Extractos Vegetales , Taraxacum , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Apoptosis , Lubina/genética , Lubina/crecimiento & desarrollo , Lubina/inmunología , Suplementos Dietéticos , Hibridación Genética , Hígado , Extractos Vegetales/farmacología , Taraxacum/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA