Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 347
1.
Appl Microbiol Biotechnol ; 108(1): 364, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38842723

Beauveria bassiana (Bal.-Criv.) is an important entomopathogenic fungus being used for the management of various agricultural pests worldwide. However, all strains of B. bassiana may not be effective against whitefly, Bemisia tabaci, or other pests, and strains show diversity in their growth, sporulation, virulence features, and overall bioefficacy. Thus, to select the most effective strain, a comprehensive way needs to be devised. We studied the diversity among the 102 strains of B. bassiana isolated from 19 insect species based on their physiological features, virulence, and molecular phylogeny, to identify promising ones for the management of B. tabaci. Strains showed diversity in mycelial growth, conidial production, and their virulence against B. tabaci nymphs. The highest nymphal mortality (2nd and 3rd instar) was recorded with MTCC-4511 (95.1%), MTCC-6289 (93.8%), and MTCC-4565 (89.9%) at a concentration of 1 × 106 conidia ml-1 under polyhouse conditions. The highest bioefficacy index (BI) was in MTCC-4511 (78.3%), MTCC-4565 (68.2%), and MTCC-4543 (62.1%). MTCC-4511, MTCC-4565, and MTCC-4543 clustered with positive loading of eigenvalues for the first two principal components and the cluster analysis also corresponded well with PCA (principal component analysis) (nymphal mortality and BI). The molecular phylogeny could not draw any distinct relationship between physiological features, the virulence of B. bassiana strains with the host and location. The BI, PCA, and square Euclidean distance cluster were found the most useful tools for selecting potential entomopathogenic strains. The selected strains could be utilized for the management of the B. tabaci nymphal population in the field through the development of effective formulations. KEY POINTS: • 102 B. bassiana strains showed diversity in growth and virulence against B. tabaci. • Bioefficacy index, PCA, and SED group are efficient tools for selecting potential strains. • MTCC-4511, 4565, and 4543 chosen as the most virulent strains to kill whitefly nymphs.


Beauveria , Gossypium , Hemiptera , Pest Control, Biological , Phylogeny , Beauveria/genetics , Beauveria/pathogenicity , Beauveria/classification , Beauveria/isolation & purification , Animals , Hemiptera/microbiology , Virulence , Gossypium/microbiology , Nymph/microbiology , Spores, Fungal/growth & development , Genetic Variation
2.
Pestic Biochem Physiol ; 202: 105936, 2024 Jun.
Article En | MEDLINE | ID: mdl-38879328

The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is one of the most destructive agricultural pests. The entomopathogenic fungus Beauveria bassiana (Hypocreales: Clavicipitaceae) is a biopesticide widely used for biocontrol of various pests. Secreted fungal proteases are critical for insect cuticle destruction and successful infection. We have previously shown that the serine protease BbAorsin in B. bassiana has entomopathogenic and antiphytopathogenic activities. However, the contribution of BbAorsin to fungal growth, conidiation, germination, virulence and antiphytopathogenic activities remains unclear. In this study, the deletion (ΔBbAorsin), complementation (Comp), and overexpression (BbAorsinOE) strains of B. bassiana were generated for comparative studies. The results showed that ΔBbAorsin exhibited slower growth, reduced conidiation, lower germination rate, and longer germination time compared to WT and Comp. In contrast, BbAorsinOE showed higher growth rate, increased conidiation, higher germination rate and shorter germination time. Injection of BbAorsinOE showed the highest virulence against S. frugiperda larvae, while injection of ΔBbAorsin showed the lowest virulence. Feeding BbAorsinOE resulted in lower pupation and adult eclosion rates and malformed adults. 16S rRNA sequencing revealed no changes in the gut microbiota after feeding either WT or BbAorsinOE. However, BbAorsinOE caused a disrupted midgut, leakage of gut microbiota into the hemolymph, and upregulation of apoptosis and immunity-related genes. BbAorsin can disrupt the cell wall of the phytopathogen Fusarium graminearum and alleviate symptoms in wheat seedlings and cherry tomatoes infected with F. graminearum. These results highlight the importance of BbAorsin for B. bassiana and its potential as a multifunctional biopesticide.


Beauveria , Beauveria/pathogenicity , Beauveria/genetics , Beauveria/physiology , Animals , Virulence , Fungal Proteins/genetics , Fungal Proteins/metabolism , Spodoptera/microbiology , Spores, Fungal , Larva/microbiology , Serine Proteases/metabolism , Serine Proteases/genetics , Pest Control, Biological , Fusarium/pathogenicity , Fusarium/genetics
3.
Virulence ; 15(1): 2362748, 2024 Dec.
Article En | MEDLINE | ID: mdl-38860453

Rad6 functions as a ubiquitin-conjugating protein that regulates cellular processes in many fungal species. However, its role in filamentous entomopathogenic fungi remains poorly understood. This study characterizes Rad6 in Beauveria bassiana, a filamentous fungus widely employed as a critical fungicide globally. The results demonstrate a significant association between Rad6 and conidial properties, heat shock response, and UV-B tolerance. Concurrently, the mutant strain exhibited heightened sensitivity to oxidative stress, cell wall interfering agents, DNA damage stress, and prolonged heat shock. Furthermore, the absence of Rad6 significantly extended the median lethal time (LT50) of Galleria mellonella infected by B. bassiana. This delay could be attributed to reduced Pr1 proteases and extracellular cuticle-degrading enzymes, diminished dimorphic transition rates, and dysregulated antioxidant enzymes. Additionally, the absence of Rad6 had a more pronounced effect on genetic information processing, metabolism, and cellular processes under normal conditions. However, its impact was limited to metabolism in oxidative stress. This study offers a comprehensive understanding of the pivotal roles of Rad6 in conidial and hyphal stress tolerance, environmental adaptation, and the pathogenesis of Beauveria bassiana.


Beauveria , Fungal Proteins , Oxidative Stress , Spores, Fungal , Beauveria/pathogenicity , Beauveria/genetics , Beauveria/physiology , Animals , Spores, Fungal/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Virulence , Stress, Physiological , Moths/microbiology , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Heat-Shock Response , Hyphae/growth & development
4.
Microbiol Spectr ; 12(6): e0404023, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38700331

We investigated the impact of various complex organic nitrogen sources on the submerged liquid fermentation of Beauveria bassiana, a versatile entomopathogenic fungus known for producing hydrophilic yeast-like single cells called blastospores. Specifically, we examined yeast extract, autolyzed yeast, inactive yeast, cottonseed flour, corn bran, and corn gluten meal as nitrogen compounds with different carbon-to-nitrogen (C:N) ratios. Our comprehensive analysis encompassed blastospore production, tolerance to abiotic stresses, shelf stability after drying, and virulence against mealworm larvae, crucial attributes for developing effective blastospore-based biopesticides. Notably, cottonseed flour emerged as the optimal nitrogen source, yielding up to 2.5 × 109 blastospores/mL within 3 days in a bioreactor. These blastospores exhibited the highest tolerance to heat stress and UV-B radiation exposure. The endogenous C:N ratio in blastospore composition was also impacted by nitrogen sources. Bioassays with mealworm larvae demonstrated that blastospores from cottonseed flour were the most virulent, achieving faster lethality (lower LT50) and requiring a lower inoculum (LC50). Importantly, blastospores produced with cottonseed flour displayed extended viability during storage, surpassing the retention of viability compared to those from autolyzed yeast over 180 days at 4°C. Despite differences in storage viability, both nitrogen sources conferred similar long-term blastospore bioactivity against mealworms. In summary, this research advances our understanding of the crucial impact of complex organic nitrogen selection on the phenotypic traits of blastospores in association with their intracellular C:N ratio, contributing to the production of ecologically fit, shelf-stable, and virulent propagules for effective pest biocontrol programs. IMPORTANCE: Biological control through entomopathogenic fungi provides essential ecological services in the integrated management of agricultural pests. In the context of submerged liquid fermentation, the nutritional composition significantly influences the ecological fitness, virulence and quality of these fungi. This study specifically explores the impact of various complex organic nitrogen sources derived from agro-industrial byproducts on the submerged liquid fermentation of Beauveria bassiana, a versatile entomopathogenic fungus known for producing hydrophilic yeast-like blastospores. Notably, manipulating the nitrogen source during submerged cultivation can influence the quality, fitness, and performance of blastospores. This research identifies cottonseed flour as the optimal low-cost nitrogen source, contributing to increased production yields, enhanced multi-stress tolerance, heightened virulence with extended shelf life and long-term bioactivity. These findings deepen our understanding of the critical role of nitrogen compound selection in liquid media formulation, facilitating the production of ecologically fit and virulent blastospores for more effective pest biocontrol programs.


Beauveria , Nitrogen , Spores, Fungal , Beauveria/metabolism , Beauveria/physiology , Beauveria/pathogenicity , Beauveria/growth & development , Nitrogen/metabolism , Virulence , Spores, Fungal/growth & development , Animals , Stress, Physiological , Larva/microbiology , Fermentation , Agriculture , Industrial Waste
5.
mBio ; 15(6): e0350423, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38747587

Successful host tissue colonization is crucial for fungal pathogens to cause mycosis and complete the infection cycle, in which fungal cells undergo a series of morphological transition-included cellular events to combat with hosts. However, many transcription factors (TFs) and their mediated networks regulating fungal pathogen colonization of host tissue are not well characterized. Here, a TF (BbHCR1)-mediated regulatory network was identified in an insect pathogenic fungus, Beauveria bassiana, that controlled insect hemocoel colonization. BbHCR1 was highly expressed in fungal cells after reaching insect hemocoel and controlled the yeast (in vivo blastospores)-to-hyphal morphological switch, evasion of immune defense response, and fungal virulence. Comparative analysis of RNA sequencing and chromatin immunoprecipitation sequencing identified a core set of BbHCR1 target genes during hemocoel colonization, in which abaA and brlA were targeted to limit the rapid switch from blastospores to hyphae and fungal virulence. Two targets encoding hypothetical proteins, HP1 and HP2, were activated and repressed by BbHCR1, respectively, which acted as a virulence factor and repressor, respectively, suggesting that BbHCR1 activated virulence factors but repressed virulence repressors during the colonization of insect hemocoel. BbHCR1 tuned the expression of two dominant hemocoel colonization-involved metabolite biosynthetic gene clusters, which linked its regulatory role in evasion of immune response. Those functions of BbHCR1 were found to be collaboratively regulated by Fus3- and Hog1-MAP kinases via phosphorylation. These findings have drawn a regulatory network in which Fus3- and Hog1-MAP kinases phosphorylate BbHCR1, which in turn controls the colonization of insect body cavities by regulating fungal morphological transition and virulence-implicated genes.IMPORTANCEFungal pathogens adopt a series of tactics for successful colonization in host tissues, which include morphological transition and the generation of toxic and immunosuppressive molecules. However, many transcription factors (TFs) and their linked pathways that regulate tissue colonization are not well characterized. Here, we identified a TF (BbHCR1)-mediated regulatory network that controls the insect fungal pathogen, Beauveria bassiana, colonization of insect hemocoel. During these processes, BbHCR1 targeted the fungal central development pathway for the control of yeast (blastospores)-to-hyphae morphological transition, activated virulence factors, repressed virulence repressors, and tuned the expression of two dominant hemocoel colonization-involved immunosuppressive and immunostimulatory metabolite biosynthetic gene clusters. The BbHCR1 regulatory function was governed by Fus3- and Hog1-MAP kinases. These findings led to a new regulatory network composed of Fus3- and Hog1-MAP kinases and BbHCR1 that control insect body cavity colonization by regulating fungal morphological transition and virulence-implicated genes.


Beauveria , Fungal Proteins , Gene Expression Regulation, Fungal , Gene Regulatory Networks , Transcription Factors , Animals , Transcription Factors/metabolism , Transcription Factors/genetics , Beauveria/genetics , Beauveria/pathogenicity , Virulence , Fungal Proteins/genetics , Fungal Proteins/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism , Insecta/microbiology , Hyphae/growth & development , Hyphae/genetics , Host-Pathogen Interactions
6.
J Invertebr Pathol ; 205: 108141, 2024 Jul.
Article En | MEDLINE | ID: mdl-38788920

Electron-transferring flavoprotein (Etf) and its dehydrogenase (Etfdh) are integral components of the electron transport chain in mitochondria. In this study, we characterize two putative etf genes (Bbetfa and Bbetfb) and their dehydrogenase gene Bbetfdh in the entomopathogenic fungus Beauveria bassiana. Individual deletion of these genes caused a significant reduction in vegetative growth, conidiation, and delayed conidial germination. Lack of these genes also led to abnormal metabolism of fatty acid and increasing lipid body accumulation. Furthermore, the virulence of Bbetfs and Bbetfdh deletion mutants was severely impaired due to decreasing infection structure formation. Additionally, all deletion strains showed reduced ATP synthesis compared to the wild-type strain. Taken together, Bbetfa and Bbetfb, along with Bbetfdh, play principal roles in fungal vegetative growth, conidiation, conidial germination, and pathogenicity of B. bassiana due to their essential functions in fatty acid metabolism.


Beauveria , Electron-Transferring Flavoproteins , Beauveria/pathogenicity , Beauveria/genetics , Beauveria/enzymology , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Virulence , Fungal Proteins/genetics , Fungal Proteins/metabolism , Spores, Fungal/growth & development , Oxidoreductases/metabolism , Oxidoreductases/genetics , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Oxidoreductases Acting on CH-NH Group Donors
7.
J Invertebr Pathol ; 204: 108083, 2024 Jun.
Article En | MEDLINE | ID: mdl-38458350

The abilities to withstand oxidation and assimilate fatty acids are critical for successful infection by many pathogenic fungi. Here, we characterized a Zn(II)2Cys6 transcription factor Bbotf1 in the insect pathogenic fungus Beauveria bassiana, which links oxidative response and fatty acid assimilation via regulating peroxisome proliferation. The null mutant ΔBbotf1 showed impaired resistance to oxidants, accompanied by decreased activities of antioxidant enzymes including CATs, PODs and SODs, and down-regulated expression of many antioxidation-associated genes under oxidative stress condition. Meanwhile, Bbotf1 acts as an activator to regulate fatty acid assimilation, lipid and iron homeostasis as well as peroxisome proliferation and localization, and the expressions of some critical genes related to glyoxylate cycle and peroxins were down-regulated in ΔBbotf1 in presence of oleic acid. In addition, ΔBbotf1 was more sensitive to osmotic stressors, CFW, SDS and LDS. Insect bioassays revealed that insignificant changes in virulence were seen between the null mutant and parent strain when conidia produced on CZP plates were used for topical application. However, propagules recovered from cadavers killed by ΔBbotf1 exhibited impaired virulence as compared with counterparts of the parent strain. These data offer a novel insight into fine-tuned aspects of Bbotf1 concerning multi-stress responses, lipid catabolism and infection cycles.


Beauveria , Fatty Acids , Peroxisomes , Transcription Factors , Beauveria/genetics , Beauveria/pathogenicity , Animals , Peroxisomes/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Fatty Acids/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Antioxidants/metabolism , Virulence , Oxidative Stress
8.
J Invertebr Pathol ; 204: 108078, 2024 Jun.
Article En | MEDLINE | ID: mdl-38438078

The spittlebug Philaenus spumarius (Hemiptera: Aphrophoridae) is the predominant vector of Xylella fastidiosa (Xanthomonadales: Xanthomonadaceae) in Apulia, Italy and the rest of Europe. Current control strategies of the insect vector rely on mechanical management of nymphal stages and insecticide application against adult populations. Entomopathogenic fungi (EPF) are biological control agents naturally attacking spittlebugs and may effectively reduce population levels of host species. Different experimental trials in controlled conditions have been performed to i) identify naturally occurring EPF on P, spumarius in Northwestern Italy, and ii) evaluate the potential for biocontrol of the isolated strains on both nymphal and adult stages of the spittlebug. Four EPF species were isolated from dead P. spumarius collected in semi-field conditions: Beauveria bassiana, Conidiobolus coronatus, Fusarium equiseti and Lecanicillium aphanocladii. All the fungal isolates showed entomopathogenic potential against nymphal stages of P. spumarius (≈ 45 % mortality), except for F. equiseti, in preliminary trials. No induced mortality was observed on adult stage. Lecanicillium aphanocladii was the most promising fungus and its pathogenicity against spittlebug nymphs was further tested in different formulations (conidia vs blastospores) and with natural adjuvants. Blastospore formulation was the most effective in killing nymphal instars and reducing the emergence rate of P, spumarius adults, reaching mortality levels (90%) similar to those of the commercial product Naturalis®, while no or adverse effect of natural adjuvants was recorded. The encouraging results of this study pave way for testing EPF isolates against P, spumarius in field conditions and find new environmentally friendly control strategies against insect vectors of X. fastidiosa.


Hemiptera , Nymph , Pest Control, Biological , Animals , Nymph/microbiology , Nymph/growth & development , Pest Control, Biological/methods , Hemiptera/microbiology , Beauveria/pathogenicity , Beauveria/physiology , Insect Vectors/microbiology , Fusarium , Italy , Xylella/physiology , Hypocreales/physiology , Hypocreales/pathogenicity
9.
Microbiol Spectr ; 11(1): e0312322, 2023 02 14.
Article En | MEDLINE | ID: mdl-36537797

The Aedes aegypti mosquito transmits devastating flaviviruses, such as Zika, dengue, and yellow fever viruses. For more effective control of the vector, the pathogenicity of Beauveria bassiana, a fungus commonly used for biological control of pest insects, may be enhanced based on in-depth knowledge of molecular interactions between the pathogen and its host. Here, we identified a mechanism employed by B. bassiana, which efficiently blocks the Ae. aegypti antifungal immune response by a protease that contains an ovarian tumor (OTU) domain. RNA-sequencing analysis showed that the depletion of OTU7B significantly upregulates the mRNA level of immunity-related genes after a challenge of the fungus. CRISPR-Cas9 knockout of OTU7B conferred a higher resistance of mosquitoes to the fungus B. bassiana. OTU7B suppressed activation of the immune response by preventing nuclear translocation of the NF-κB transcription factor Rel1, a mosquito orthologue of Drosophila Dorsal. Further studies identified tumor necrosis factor receptor-associated factor 4 (TRAF4) as an interacting protein of OTU7B. TRAF4-deficient mosquitoes were more sensitive to fungal infection, indicating TRAF4 to be the adaptor protein that activates the Toll pathway. TRAF4 is K63-link polyubiquitinated at K338 residue upon immune challenge. However, OTU7B inhibited the immune signaling by enzymatically removing the polyubiquitin chains of mosquito TRAF4. Thus, this study has uncovered a novel mechanism of fungal action against the host innate immunity, providing a platform for further improvement of fungal pathogen effectiveness. IMPORTANCE Insects use innate immunity to defend against microbial infection. The Toll pathway is a major immune signaling pathway that is associated with the antifungal immune response in mosquitoes. Our study identified a fungal-induced deubiquitinase, OTU7B, which, when knocked out, promotes the translocation of the NF-κB factor Rel1 into the nucleus and confers enhanced resistance to fungal infection. We further found the counterpart of OTU7B, TRAF4, which is a component of the Toll pathway and acts as an adaptor protein. OTU7B enzymatically removes K63-linked polyubiquitin chains from TRAF4. The immune response is suppressed, and mosquitoes become much more sensitive to the Beauveria bassiana infection. Our findings reveal a novel mechanism of fungal action against the host innate immunity.


Aedes , Beauveria , Mycoses , Animals , Aedes/genetics , Aedes/immunology , Aedes/microbiology , Beauveria/genetics , Beauveria/metabolism , Beauveria/pathogenicity , Immunity , Mosquito Vectors/genetics , NF-kappa B/metabolism , Polyubiquitin/metabolism , TNF Receptor-Associated Factor 4/metabolism , Zika Virus , Dengue Virus , Yellow fever virus , Flavivirus Infections/prevention & control
10.
ISME J ; 17(1): 1-11, 2023 01.
Article En | MEDLINE | ID: mdl-36127432

Insects can assemble defensive microbiomes on their body surfaces to defend against fungal parasitic infections. The strategies employed by fungal pathogens to combat host cuticular microbiotas remains unclear. Here, we report the identification and functional characterization of the defensin-like antimicrobial gene BbAMP1 encoded by the entomopathogenic fungus Beauveria bassiana. The mature peptide of BbAMP1 can coat fungal spores and can be secreted by the fungus to target and damage Gram-positive bacterial cells. Significant differences in insect survival were observed between the wild-type and BbAMP1 mutant strains during topical infection but not during injection assays that bypassed insect cuticles. Thus, BbAMP1 deletion considerably reduced fungal virulence while gene overexpression accelerated the fungal colonization of insects compared with the wild-type strain in natural infections. Topical infection of axenic Drosophila adults evidenced no difference in fly survivals between strains. However, the gnotobiotic infections with the addition of Gram-positive but not Gram-negative bacterial cells in fungal spore suspensions substantially increased the survival of the flies treated with ∆BbAMP1 compared to those infected by the wild-type and gene-overexpression strains. Bacterial colony counts and microbiome analysis confirmed that BbAMP1 could assist the fungus to manipulate insect surface bacterial loads. This study reveals that fungal defensin can suppress the host surface defensive microbiomes, which underscores the importance to extend the research scope of fungus-host interactions.


Beauveria , Drosophila , Microbiota , Animals , Beauveria/pathogenicity , Defensins/genetics , Fungal Proteins/genetics , Insecta/microbiology , Spores, Fungal , Drosophila/microbiology
11.
Braz. j. biol ; 82: 1-8, 2022. graf, tab, ilus
Article En | LILACS, VETINDEX | ID: biblio-1468449

Aedes aegypti is a culicide that has gained relevance over the years due to its ability to transmit various viruses that cause diseases in humans that all the years cause high mortality rates in the world population. The main problem is that Ae. aegypti has managed to establish and maintain a close relationship with humans and their habitat, which is why the search for alternatives to control vector populations becomes imperative. The objective of the present work was to study the effects of two Beauveria bassiana strains on Aedes aegypti. Third instar larvae of Ae. aegypti in 250 mL plastic containers were inoculated with the GHA and NB3 strains at different concentrations (1.5 × 104, 1.5× 105, 1.5 × 106 and 1.5 × 107 conidia/mL). The NB3 strain presented highest mortality values with 63% in the highest concentration i.e., 1.5 × 107, while for the GHA strain the highest mortality value was 30.7% at the same concentration. The results showed significant difference in mortality with respect to the strain and days post treatment (P = 0.0001), but not with respect to the conidial concentration (P = 0.634). The average mortality of larvae per day for the NB3 for different concentrations ranged from 20 to 25 larvae per day, while for the GHA daily mortality ranged from 5 to 12 larvae. In post-treatment mortality, the highest mortality was recorded in the third stage larvae for the NB3, while for GHA the highest percentage mortality was observed in individuals who managed to reach the adult state. The findings of the current research depicted the noteworthy role of B. bassiana for the management of an important vector of human disease.


O Aedes aegypti é um culicida que vem ganhando relevância ao longo dos anos devido à sua capacidade de transmitir diversos vírus causadores de doenças em humanos que ao longo dos anos ocasionam altas taxas de mortalidade na população mundial. O principal problema é que Ae. aegypti tem conseguido estabelecer e manter uma relação próxima com o homem e seu habitat, por isso a busca por alternativas para o controle das populações de vetores torna-se imperativa. O objetivo do presente trabalho foi estudar os efeitos de duas cepas de Beauveria bassiana sobre Ae. aegypti. Larvas de terceiro instar de Ae. aegypti em recipientes plásticos de 250 mL foram inoculados com as cepas GHA e NB3 em diferentes concentrações (1.5 × 104, 1.5 × 105, 1.5 × 106 e 1.5 × 107 conídios/mL). A cepa NB3 apresentou os maiores valores de mortalidade com 63% na concentração mais alta, ou seja, 1.5 × 107, enquanto para a cepa GHA o maior valor de mortalidade foi 30.7% na mesma concentração. Os resultados mostraram diferença significativa na mortalidade com relação à cepa e dias pós-tratamento (P = 0.0001), mas não com relação à concentração de conídios (P = 0.634). A mortalidade média de larvas por dia para o NB3 para diferentes concentrações variou de 20 a 25 larvas por dia, enquanto para o GHA a mortalidade diária variou de 5 a 12 larvas. Na mortalidade pós-tratamento, a maior mortalidade foi registrada nas larvas de terceiro estágio para o NB3, enquanto para o GHA o maior percentual de mortalidade foi observado em indivíduos que conseguiram atingir o estado adulto. Os resultados da pesquisa atual retratam o papel notável de B. bassiana no manejo de um importante vetor de doenças humanas.


Animals , Aedes , Beauveria/pathogenicity , Pest Control/methods , Arbovirus Infections/veterinary
12.
Toxins (Basel) ; 13(11)2021 11 20.
Article En | MEDLINE | ID: mdl-34822604

Fungi are the most common pathogens of insects and thus important regulators of their populations. Lipid-binding aegerolysin proteins, which are commonly found in the fungal kingdom, may be involved in several biologically relevant processes including attack and defense against other organisms. Aegerolysins act alone or together with membrane-attack-complex/perforin (MACPF)-like proteins to form transmembrane pores that lead to cell lysis. We performed an in-depth bioinformatics analysis of aegerolysins in entomopathogenic fungi and selected a candidate aegerolysin, beauveriolysin A (BlyA) from Beauveria bassiana. BlyA was expressed as a recombinant protein in Escherichia coli, and purified to further determine its functional and structural properties, including lipid-binding ability. Aegerolysins were found to be encoded in genomes of entomopathogenic fungi, such as Beauveria, Cordyceps, Metarhizium and Ophiocordyceps. Detailed bioinformatics analysis revealed that they are linked to MACPF-like genes in most genomes. We also show that BlyA interacts with an insect-specific membrane lipid. These results were placed in the context of other fungal and bacterial aegerolysins and their partner proteins. We believe that aegerolysins play a role in promoting the entomopathogenic and antagonistic activity of B. bassiana, which is an active ingredient of bioinsecticides.


Beauveria/pathogenicity , Fungal Proteins/metabolism , Hemolysin Proteins/metabolism , Pest Control, Biological , Animals , Beauveria/genetics , Complement Membrane Attack Complex/metabolism , Computational Biology , Genome, Fungal , Insecta/metabolism , Membrane Lipids/metabolism , Perforin/metabolism
13.
Front Immunol ; 12: 735497, 2021.
Article En | MEDLINE | ID: mdl-34603317

Serine protease inhibitors of Kazal-type (SPINKs) were widely identified in vertebrates and invertebrates, and played regulatory roles in digestion, coagulation, and fibrinolysis. In this study, we reported the important role of SPINK7 in regulating immune defense of silkworm, Bombyx mori. SPINK7 contains three Kazal domains and has 6 conserved cysteine residues in each domain. Quantitative real-time PCR analyses revealed that SPINK7 was exclusively expressed in hemocytes and was upregulated after infection with two fungi, Saccharomyces cerevisiae and Candida albicans. Enzyme activity inhibition test showed that SPINK7 significantly inhibited the activity of proteinase K from C. albicans. Additionally, SPINK7 inhibited the growth of three fungal spores, including S. cerevisiae, C. albicans, and Beauveria bassiana. The pathogen-associated molecular patterns (PAMP) binding assays suggested that SPINK7 could bind to ß-D-glucan and agglutinate B. bassiana and C. albicans. In vitro assays were performed using SPINK7-coated agarose beads, and indicated that SPINK7 promoted encapsulation and melanization of agarose beads by B. mori hemocytes. Furthermore, co-localization studies using immunofluorescence revealed that SPINK7 induced hemocytes to aggregate and entrap the fungi spores of B. bassiana and C. albicans. Our study revealed that SPINK7 could recognize fungal PAMP and induce the aggregation, melanization, and encapsulation of hemocytes, and provided valuable clues for understanding the innate immunity and cellular immunity in insects.


Beauveria/immunology , Bombyx/immunology , Candida albicans/immunology , Hemocytes/immunology , Insect Proteins/metabolism , Mycoses/immunology , Saccharomyces cerevisiae/immunology , Trypsin Inhibitor, Kazal Pancreatic/metabolism , Animals , Beauveria/metabolism , Beauveria/pathogenicity , Bombyx/genetics , Bombyx/metabolism , Bombyx/microbiology , Candida albicans/metabolism , Candida albicans/pathogenicity , Hemocytes/metabolism , Hemocytes/microbiology , Host Microbial Interactions , Immunity, Cellular , Immunity, Innate , Insect Proteins/genetics , Mycoses/genetics , Mycoses/metabolism , Pathogen-Associated Molecular Pattern Molecules/metabolism , Saccharomyces cerevisiae/pathogenicity , Signal Transduction , Trypsin Inhibitor, Kazal Pancreatic/genetics
14.
Sci Rep ; 11(1): 19624, 2021 10 04.
Article En | MEDLINE | ID: mdl-34608174

The putative ferricrocin synthetase gene ferS in the fungal entomopathogen Beauveria bassiana BCC 2660 was identified and characterized. The 14,445-bp ferS encodes a multimodular nonribosomal siderophore synthetase tightly clustered with Fusarium graminearum ferricrocin synthetase. Functional analysis of this gene was performed by disruption with the bar cassette. ΔferS mutants were verified by Southern and PCR analyses. HPLC and TLC analyses of crude extracts indicated that biosynthesis of ferricrocin was abolished in ΔferS. Insect bioassays surprisingly indicated that ΔferS killed the Spodoptera exigua larvae faster (LT50 59 h) than wild type (66 h). Growth and developmental assays of the mutant and wild type demonstrated that ΔferS had a significant increase in germination under iron depletion and radial growth and a decrease in conidiation. Mitotracker staining showed that the mitochondrial activity was enriched in ΔferS under both iron excess and iron depletion. Comparative transcriptomes between wild type and ΔferS indicated that the mutant was increased in the expression of eight cytochrome P450 genes and those in iron homeostasis, ferroptosis, oxidative stress response, ergosterol biosynthesis, and TCA cycle, compared to wild type. Our data suggested that ΔferS sensed the iron excess and the oxidative stress and, in turn, was up-regulated in the antioxidant-related genes and those in ergosterol biosynthesis and TCA cycle. These increased biological pathways help ΔferS grow and germinate faster than the wild type and caused higher insect mortality than the wild type in the early phase of infection.


Beauveria/growth & development , Beauveria/metabolism , Ferrichrome/analogs & derivatives , Host-Pathogen Interactions , Insecta/microbiology , Iron/metabolism , Animals , Beauveria/classification , Beauveria/pathogenicity , Computational Biology , Ferrichrome/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Homeostasis , Mutation , Oxidative Stress , Phylogeny , Virulence/genetics
15.
Pak J Biol Sci ; 24(9): 944-952, 2021 Jan.
Article En | MEDLINE | ID: mdl-34585547

<b>Background and Objective:</b> The red palm weevil is a dangerous date palm pests that cannot be controlled with chemical pesticides only. As a result of the justified concerns of the negative use of synthetic insecticides on human health and the environment. So on, candidate eco-friendly micro-organisms isolated from KSA agri-ecosystems were evaluated in controlling RPW. <b>Materials and Methods:</b> Some indigenous entomopathogenic fungi and bacteria were isolated from naturally infected RPW larvae and adults and evaluated as alternative control methods. <b>Results:</b> The infection of RPW larvae with entomopathogenic fungi and bacteria under natural conditions was higher than in adults. <i>Beauveria bassiana </i>was the most prevalent followed by <i>Aspergillus </i>sp., <i>Metarhizium anisopliae</i>, <i>Mucor</i> sp., <i>Cladosporium chlorocephalum</i>. In contrast, both <i>Bacillus</i> <i>thuringiensis</i> and <i>Bacillus popilliae</i> formed 73.9 and 26.1%, respectively. From the 7th day, mortalities (%) increased gradually and recorded the highest mortalities with 21st days after treatment and recorded 93.33, 66.70, 53.36, 46.69 and 60.00% when treated with <i>B. bassiana</i>, <i>M. anisopliae</i>, <i>C. chlorosphalum</i>, <i>Mucor</i> sp. and <i>Aspergillus</i> sp., respectively. <b>Conclusion:</b> Although there was evidence indicating midgut damage and feeding inhibition among larvae that survived the treatments, instead of lower activity of <i>B. thuringiensis</i> against <i>R. ferrugineus</i> immature stages may refer to that, Both species of <i>Bacillus</i> were more virulent as the days 15-21 post-treatment.


Beauveria/pathogenicity , Weevils/microbiology , Animals , Beauveria/physiology , Biological Assay/instrumentation , Biological Assay/methods , Saudi Arabia
16.
Arch Virol ; 166(11): 3233-3237, 2021 Nov.
Article En | MEDLINE | ID: mdl-34535823

The entomopathogenic fungus Beauveria bassiana is used worldwide for biological control of insects. Seven dsRNA segments were detected in a single B. bassiana strain, RCEF1446. High-throughput sequencing indicated the presence of three mycoviruses in RCEF1446. Two were identified as the known mycoviruses Beauveria bassiana victorivirus 1 and Beauveria bassiana polymycovirus 1, and the novel mycovirus was designated as "Beauveria bassiana bipartite mycovirus 1" (BbBV1). The complete sequence of the BbBV1 is described here. The mycovirus contains two dsRNA segments. The RNA 1 (dsRNA 4) of BbBV1 is 2,026 bp in length, encoding a RNA-dependent RNA polymerase (RdRp) (68.54 kDa), while the RNA 2 (dsRNA 6) is 1,810 bp in length, encoding a hypothetical protein (35.55 kDa) with unknown function. Moreover, the amino acid sequence of RdRp showed the highest sequence identity of 62.31% to Botryosphaeria dothidea bipartite mycovirus 1. Phylogenetic analysis based on RdRp sequences revealed that BbBV1 represents a distinct lineage of unassigned dsRNA mycoviruses infecting fungi.


Beauveria/virology , Double Stranded RNA Viruses/genetics , Fungal Viruses/genetics , Genome, Viral , Phylogeny , Beauveria/pathogenicity , RNA, Double-Stranded , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics
17.
Microbiol Spectr ; 9(1): e0056421, 2021 09 03.
Article En | MEDLINE | ID: mdl-34378960

Beauveria bassiana is an insect pathogenic fungus that serves as a model system for exploring the mechanisms of fungal development and host-pathogen interactions. Clinical and experimental studies have indicated that SND1 is closely correlated with the progression and invasiveness of common cancers as a potential oncogene, but this gene has rarely been studied in fungi. Here, we characterized the contributions of an SND1 ortholog (Tdp1) by constructing a BbTdp1 deletion strain and a complemented strain of B. bassiana. Compared with the wild-type (WT) strain, the ΔBbTdp1 mutant lost conidiation capacity (∼87.7%) and blastospore (∼96.3%) yields, increased sensitivity to chemical stress (4.4 to 54.3%) and heat shock (∼44.2%), and decreased virulence following topical application (∼24.7%) and hemocoel injection (∼40.0%). Flow cytometry readings showed smaller sizes of both conidia and blastospores for ΔBbTdp1 mutants. Transcriptomic data revealed 4,094 differentially expressed genes (|log2 ratio| > 2 and a q value of <0.05) between ΔBbTdp1 mutants and the WT strain, which accounted for 41.6% of the total genes, indicating that extreme fluctuation in the global gene expression pattern had occurred. Moreover, deletion of BbTdp1 led to an abnormal cell cycle with a longer S phase and shorter G2/M and G0/G1 phases of blastospores, and enzyme-linked immunosorbent assay confirmed that the level of phosphorylated cyclin-dependent kinase 1 (Cdk1) in the ΔBbTdp1 strain was ∼31.5% lower than in the WT strain. In summary, our study is the first to report that BbTdp1 plays a vital role in regulating conidia and blastospore yields, fungal morphological changes, and pathogenicity in entomopathogenic fungi. IMPORTANCE In this study, we used Beauveria bassiana as a biological model to report the role of BbTdp1 in entomopathogenic fungi. Our findings indicated that BbTdp1 contributed significantly to cell development, the cell cycle, and virulence in B. bassiana. In addition, deletion of BbTdp1 led to drastic fluctuations in the transcriptional profile. BbTdp1 can be developed as a novel target for B. bassiana development and pathogenicity, which also provides a framework for the study of Tdp1 in other fungi.


Beauveria/growth & development , Beauveria/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Insecta/microbiology , Animals , Beauveria/genetics , Beauveria/pathogenicity , Cell Cycle , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Transcriptome , Tudor Domain , Virulence
18.
Int J Mol Sci ; 22(15)2021 Jul 30.
Article En | MEDLINE | ID: mdl-34360963

The insect immune response is initiated by the recognition of invading microorganisms. Peptidoglycan recognition proteins (PGRPs) function primarily as pattern recognition receptors by specifically binding to peptidoglycans expressed on microbial surfaces. We cloned a full-length cDNA for a PGRP from the Asian corn borer Ostrinia furnacalis (Guenée) and designated it as PGRP1. PGRP1 mRNA was mainly detected in the fat bodies and hemocytes. Its transcript levels increased significantly upon bacterial and fungal challenges. Purified recombinant PGRP1 exhibited binding activity to the gram-positive Micrococcus luteus, gram-negative Escherichia coli, entomopathogenic fungi Beauveria bassiana, and yeast Pichia pastoris. The binding further induced their agglutination. Additionally, PGRP1 preferred to bind to Lys-type peptidoglycans rather than DAP-type peptidoglycans. The addition of recombinant PGRP1 to O. furnacalis plasma resulted in a significant increase in phenoloxidase activity. The injection of recombinant PGRP1 into larvae led to a significantly increased expression of several antimicrobial peptide genes. Taken together, our results suggest that O. furnacalis PGRP1 potentially recognizes the invading microbes and is involved in the immune response in O. furnacalis.


Immunity, Innate , Insect Proteins/metabolism , Lepidoptera/genetics , Peptidoglycan/metabolism , Animals , Beauveria/pathogenicity , Fat Body/metabolism , Hemocytes/metabolism , Insect Proteins/genetics , Lepidoptera/immunology , Lepidoptera/microbiology , Micrococcus luteus/pathogenicity , Monophenol Monooxygenase/metabolism , Peptidoglycan/genetics , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/metabolism , Saccharomycetales/pathogenicity
19.
Sci Rep ; 11(1): 13915, 2021 07 06.
Article En | MEDLINE | ID: mdl-34230511

Beauveria bassiana is one of the most widely studied and used entomopathogenic fungus as biopesticide. In the biological control of pests, B. bassiana will persist in the soil after application, and will inevitably contact with earthworms, especially the epigeic earthworm species. So, what are the effects of earthworm and its epidermal mucus on the activity of B. bassiana? We employed the epigeic earthworm Eisenia fetida, B. bassiana TST05 strain, and the insect Atrijuglans hetaohei mature larvae to study the impact of earthworm epidermal mucus on the vitality and pathogenicity of B. bassiana to insect. Methods included scanning electron microscope observation, detection of spore germination, fungal extracellular enzyme activity, and infection testing to A. hetaohei. The results showed that the B. bassiana spores may attach to the cuticle of E. fetida but they could be covered by the epidermal mucus and became rough and shrunken. After treatment with the epidermal mucus, the spore germination and extracellular enzymes of B. bassiana was significantly inhibited. Inoculation of A. hetaohei larvae with a mixture of B. bassiana and mucus showed that the mucus could reduce the pathogenicity of B. bassiana to the insect, resulting in a slower disease course and lower mortality. It was concluded that the epidermal mucus of the earthworm E. fetida can inhibit the activity of B. bassiana, as well as the infectivity and pathogenicity of fungus to target insects. However, after treatment with epidermal mucus the surviving B. bassiana still had certain infectivity to insects. This is of great significance for the application of B. bassiana in biological control of pests.


Beauveria/pathogenicity , Epidermis/chemistry , Mucus/chemistry , Oligochaeta/chemistry , Animals , Beauveria/growth & development , Beauveria/ultrastructure , Extracellular Space/enzymology , Larva/microbiology , Spores, Fungal/physiology
20.
Microbiol Spectr ; 9(1): e0020321, 2021 09 03.
Article En | MEDLINE | ID: mdl-34319134

Morphological transition is an important adaptive mechanism in the host invasion process. Wor1 is a conserved fungal regulatory protein that controls the phenotypic switching and pathogenicity of Candida albicans. By modulating growth conditions, we simulated three models of Beauveria bassiana morphological transitions, including CTH (conidia to hyphae), HTC (hyphae to conidia), and BTB (blastospore to blastospore). Disruption of BbWor1 (an ortholog of Wor1) resulted in a distinct reduction in the time required for conidial germination (CTH), a significant increase in hyphal growth, and a decrease in the yield of conidia (HTC), indicating that BbWor1 positively controls conidium production and negatively regulates hyphal growth in conidium-hypha switching. Moreover, ΔBbWor1 prominently decreased blastospore yield, shortened the G0/G1 phase, and prolonged the G2/M phase under the BTB model. Importantly, BbWor1 contributed to conidium-hypha switching and blastospore propagation via different genetic pathways, and yeast one-hybrid testing demonstrated the necessity of BbWor1 to control the transcription of an allergen-like protein gene (BBA_02580) and a conidial wall protein gene (BBA_09998). Moreover, the dramatically weakened virulence of ΔBbWor1 was examined by immersion and injection methods. Our findings indicate that BbWor1 is a vital participant in morphological transition and pathogenicity in entomopathogenic fungi. IMPORTANCE As a well-known entomopathogenic fungus, Beauveria bassiana has a complex life cycle and involves transformations among single-cell conidia, blastospores, and filamentous hyphae. This study provides new insight into the regulation of the fungal cell morphological transitions by simulating three models. Our research identified BbWor1 as a core transcription factor of morphological differentiation that positively regulates the production of conidia and blastospores but negatively regulates hyphal growth. More importantly, BbWor1 affects fungal pathogenicity and the global transcription profiles within three models of growth stage transformation. The present study lays a foundation for the exploration of the transition mechanism of entomopathogenic fungi and provides material for the morphological study of fungi.


Beauveria/growth & development , Fungal Proteins/metabolism , Hyphae/metabolism , Spores, Fungal/metabolism , Transcription Factors/metabolism , Animals , Beauveria/genetics , Beauveria/metabolism , Beauveria/pathogenicity , Fungal Proteins/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Fungal , Hyphae/genetics , Hyphae/growth & development , Moths/microbiology , Spores, Fungal/genetics , Spores, Fungal/growth & development , Transcription Factors/genetics , Virulence
...