Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.451
1.
Sci Rep ; 14(1): 10832, 2024 05 11.
Article En | MEDLINE | ID: mdl-38734755

Sodium-glucose co-transporters type 2 inhibitors (SLGT2i) are highly effective in controlling type 2 diabetes, but reported beneficial cardiovascular effects suggest broader actions on insulin resistance. Weight loss may be initially explained by glycosuria-induced net caloric output and secondary volumetric reduction, but its maintenance could be due to loss of visceral fat mass. Structured ultrasound (US) imaging of abdominal adipose tissue ("eco-obesity") is a recently described methodology used to measure 5 consecutive layers of abdominal fat, not assessable by DEXA or CT scan: superficial subcutaneous (SS), deep subcutaneous (DS), preperitoneal (PP), omental (Om) and right perirenal (RK). PP, Om and RK are predictors of metabolic syndrome (MS) with defined cut-off points. To assess the effect of SLGT2i on every fat depot we enrolled 29 patients with type 2 Diabetes (HbA1c 6.5-9%) and Obesity (IMC > 30 kg/m2) in an open-label, randomized, phase IV trial (EudraCT: 2019-000979-16): the Omendapa trial. Diabetes was diagnosed < 12 months before randomization and all patients were treatment naïve. 14 patients were treated with metformin alone (cohort A) and 15 were treated with metformin + dapaglifozin (cohort B). Anthropometric measures and laboratory tests for glucose, lipid profile, insulin, HOMA, leptin, ultrasensitive-CRP and microalbuminuria (MAL) were done at baseline, 3rd and 6th months. At 6th month, weight loss was -5.5 ± 5.2 kg (5.7% from initial weight) in cohort A and -8.4 ± 4.4 kg (8.6%) in cohort B. Abdominal circumference showed a -2.7 ± 3.1 cm and -5.4 ± 2.5 cm reduction, respectively (p = 0.011). Both Metformin alone (-19.4 ± 20.1 mm; -21.7%) or combined with Dapaglifozin (-20.5 ± 19.4 mm; -21.8%) induced significant Om fat reduction. 13.3% of cohort A patients and 21.4% of cohort's B reached Om thickness below the cut-off for MS criteria. RK fat loss was significantly greater in cohort B group compared to cohort A, at both kidneys. Only in the Met + Dapa group, we observed correlations between Om fat with leptin/CRP/MAL and RK fat with HOMA-IR. US is a useful clinical tool to assess ectopic fat depots. Both Metformin and Dapaglifozin induce fat loss in layers involved with MS but combined treatment is particularly effective in perirenal fat layer reduction. Perirenal fat should be considered as a potential target for cardiovascular dapaglifozin beneficial effects.


Benzhydryl Compounds , Diabetes Mellitus, Type 2 , Glucosides , Metformin , Obesity , Humans , Metformin/therapeutic use , Metformin/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Glucosides/therapeutic use , Glucosides/pharmacology , Female , Male , Obesity/drug therapy , Obesity/complications , Middle Aged , Benzhydryl Compounds/therapeutic use , Benzhydryl Compounds/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Aged , Drug Therapy, Combination , Adult
2.
J Med Life ; 17(1): 57-62, 2024 Jan.
Article En | MEDLINE | ID: mdl-38737651

Heart failure (HF) remains a significant problem for healthcare systems, requiring the use of intervention and multimodal management strategies. We aimed to assess the short-term effect of empagliflozin (EMPA) and metformin on cardiac function parameters, including ventricular dimension-hypertrophy, septal thickness, ejection fraction (EF), and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels in patients with HF and mildly reduced EF. A case-control study included 60 newly diagnosed patients with HF. Patients were divided into two groups: Group E received standard HF treatment (carvedilol, bumetanide, sacubitril-valsartan, spironolactone) plus EMPA 10 mg daily, and Group M received standard HF treatment plus metformin 500 mg daily. After three months of treatment, Group E had a significantly higher EF than Group M compared to initial measurements (a change of 9.2% versus 6.1%, respectively). We found similar results in the left ventricular end-systolic dimension (LVESD), with mean reductions of 0.72 mm for Group E and 0.23 mm for Group M. Regarding cardiac indicators, the level of NT-proBNP was considerably decreased in both groups. However, the reduction was significantly greater in group E than in group M compared to the initial level (mean reduction: 719.9 vs. 973.6, respectively). When combined with quadruple anti-heart failure therapy, metformin enhanced several echocardiographic parameters, showing effects similar to those of EMPA when used in the same treatment regimen. However, the benefits of EMPA were more pronounced, particularly regarding improvements in EF and LVESD.


Benzhydryl Compounds , Glucosides , Heart Failure , Metformin , Stroke Volume , Humans , Heart Failure/drug therapy , Heart Failure/physiopathology , Benzhydryl Compounds/therapeutic use , Benzhydryl Compounds/pharmacology , Glucosides/therapeutic use , Glucosides/pharmacology , Metformin/therapeutic use , Metformin/pharmacology , Stroke Volume/drug effects , Male , Female , Case-Control Studies , Middle Aged , Aged , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Echocardiography , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
3.
Pak J Pharm Sci ; 37(2): 337-347, 2024 Mar.
Article En | MEDLINE | ID: mdl-38767101

Heart failure is a condition in which the heart's one or both ventricles are unable to either receive an adequate amount of blood or eject an adequate amount of blood. Diabetes is considered one of the major risk factors for cardiovascular diseases. The current research is designed to evaluate the cardioprotective effects of dapagliflozin in streptozotocin and isoproterenol-induced comorbid rats. The COX-2, TNF-α, NF-КB, NLRP3, PPAR-γ, CKMB, TROP-I, AR, GP and SGLT were docked against dapagliflozin, propranolol and metformin. Dapagliflozin restored adequate blood flow and halted myofibril damage. Moreover, it's evident from this study that dapagliflozin significantly decreased serum concentration of various blood markers, decreased relative growth rate and QT interval prolongation, as compared to the negative control group. However, it improved the ventricular ejection fraction in rats of the treatment group. The GST, GSH and CAT levels were increased, as compared to normal. On the contrary, a decrease in LPO concentrations was observed. Evaluation of the coronal section of heart tissues showed the anti-inflammatory expressions evaluated through H & E staining and immunohistochemical techniques and with ELISA and PCR. In a nutshell, dapagliflozin reverses myocardial necrosis and apoptosis.


Benzhydryl Compounds , Glucosides , Heart Failure , Isoproterenol , NLR Family, Pyrin Domain-Containing 3 Protein , PPAR gamma , Signal Transduction , Streptozocin , Animals , Glucosides/pharmacology , Isoproterenol/toxicity , Heart Failure/chemically induced , Heart Failure/drug therapy , Heart Failure/metabolism , Benzhydryl Compounds/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , PPAR gamma/metabolism , Rats , Signal Transduction/drug effects , Male , Rats, Wistar , Diabetes Mellitus, Experimental/drug therapy , Cardiotonic Agents/pharmacology , Apoptosis/drug effects , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Myocardium/metabolism , Myocardium/pathology
4.
Biomolecules ; 14(5)2024 May 16.
Article En | MEDLINE | ID: mdl-38785999

Recently, the vascular protective effect of anti-diabetic agents has been receiving much attention. Sodium glucose cotransporter 2 (SGLT2) inhibitors had demonstrated reductions in cardiovascular (CV) events. However, the therapeutic effect of dapagliflozin on angiogenesis in peripheral arterial disease was unclear. This study aimed to explore the effect and mechanism of dapagliflozin on angiogenesis after hindlimb ischemia. We first evaluated the effect of dapagliflozin on post-ischemic angiogenesis in the hindlimbs of rats. Laser doppler imaging was used to detect the hindlimb blood perfusion. In addition, we used immunohistochemistry to detect the density of new capillaries after ischemia. The relevant signaling pathways of dapagliflozin affecting post-ischemic angiogenesis were screened through phosphoproteomic detection, and then the mechanism of dapagliflozin affecting post-ischemic angiogenesis was verified at the level of human umbilical vein endothelial cells (HUVECs). After subjection to excision of the left femoral artery, all rats were randomly distributed into two groups: the dapagliflozin group (left femoral artery resection, receiving intragastric feeding with dapagliflozin (1 mg/kg/d), for 21 consecutive days) and the model group, that is, the positive control group (left femoral artery resection, receiving intragastric feeding with citric acid-sodium citrate buffer solution (1 mg/kg/d), for 21 consecutive days). In addition, the control group, that is the negative control group (without left femoral artery resection, receiving intragastric feeding with citric acid-sodium citrate buffer solution (1 mg/kg/d), for 21 consecutive days) was added. At day 21 post-surgery, the dapagliflozin-treatment group had the greatest blood perfusion, accompanied by elevated capillary density. The results showed that dapagliflozin could promote angiogenesis after hindlimb ischemia. Then, the ischemic hindlimb adductor-muscle tissue samples from three rats of model group and dapagliflozin group were taken for phosphoproteomic testing. The results showed that the PI3K-Akt-eNOS signaling pathway was closely related to the effect of dapagliflozin on post-ischemic angiogenesis. Our study intended to verify this mechanism from the perspective of endothelial cells. In vitro, dapagliflozin enhanced the tube formation, migration, and proliferation of HUVECs under ischemic and hypoxic conditions. Additionally, the dapagliflozin administration upregulated the expression of angiogenic factors phosphorylated Akt (p-Akt) and phosphorylated endothelial nitric oxide synthase (p-eNOS), as well as vascular endothelial growth factor A (VEGFA), both in vivo and in vitro. These benefits could be blocked by either phosphoinositide 3-kinase (PI3K) or eNOS inhibitor. dapagliflozin could promote angiogenesis after ischemia. This effect might be achieved by promoting the activation of the PI3K-Akt-eNOS signaling pathway. This study provided a new perspective, new ideas, and a theoretical basis for the treatment of peripheral arterial disease.


Benzhydryl Compounds , Glucosides , Hindlimb , Human Umbilical Vein Endothelial Cells , Ischemia , Neovascularization, Physiologic , Nitric Oxide Synthase Type III , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Glucosides/pharmacology , Benzhydryl Compounds/pharmacology , Hindlimb/blood supply , Nitric Oxide Synthase Type III/metabolism , Ischemia/drug therapy , Ischemia/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Rats , Humans , Signal Transduction/drug effects , Male , Neovascularization, Physiologic/drug effects , Rats, Sprague-Dawley , Angiogenesis
5.
Sci Rep ; 14(1): 8043, 2024 04 05.
Article En | MEDLINE | ID: mdl-38580733

Bisphenol-A (BPA) is widely used in food packaging and household products, leading to daily human exposure and potential health risks including metabolic diseases like type 2 diabetes mellitus (T2DM). Understanding BPA's mechanisms and developing intervention strategies is urgent. Centella asiatica, a traditional herbal medicine containing pentacyclic triterpenoids, shows promise due to its antioxidant and anti-inflammatory properties, utilized for centuries in Ayurvedic therapy. We investigated the effect of Centella asiatica (CA) ethanol extract on BPA-induced pancreatic islet toxicity in male Swiss albino mice. BPA administration (10 and 100 µg/kg body weight, twice daily) for 21 days caused glucose homeostasis disturbances, insulin resistance, and islet dysfunction, which were partially mitigated by CA supplementation (200 and 400 mg/kg body weight). Additionally, heightened oxidative stress, elevated levels of proinflammatory cytokines, loss of mitochondrial membrane potential (MMP), abnormal cell cycle, and increased apoptosis were implicated in the detrimental impact of BPA on the endocrine pancreas which were effectively counteracted by CA supplementation. In summary, CA demonstrated a significant ability to mitigate BPA-induced apoptosis, modulate redox homeostasis, alleviate inflammation, preserve MMP, and regulate the cell cycle. As a result, CA emerged as a potent agent in neutralizing the diabetogenic effects of BPA to a considerable extent.


Centella , Diabetes Mellitus, Type 2 , Islets of Langerhans , Phenols , Mice , Animals , Male , Humans , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Islets of Langerhans/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Benzhydryl Compounds/pharmacology , Body Weight
6.
Oncol Res ; 32(5): 817-830, 2024.
Article En | MEDLINE | ID: mdl-38686050

Cancer frequently develops resistance to the majority of chemotherapy treatments. This study aimed to examine the synergistic cytotoxic and antitumor effects of SGLT2 inhibitors, specifically Canagliflozin (CAN), Dapagliflozin (DAP), Empagliflozin (EMP), and Doxorubicin (DOX), using in vitro experimentation. The precise combination of CAN+DOX has been found to greatly enhance the cytotoxic effects of doxorubicin (DOX) in MCF-7 cells. Interestingly, it was shown that cancer cells exhibit an increased demand for glucose and ATP in order to support their growth. Notably, when these medications were combined with DOX, there was a considerable inhibition of glucose consumption, as well as reductions in intracellular ATP and lactate levels. Moreover, this effect was found to be dependent on the dosages of the drugs. In addition to effectively inhibiting the cell cycle, the combination of CAN+DOX induces substantial modifications in both cell cycle and apoptotic gene expression. This work represents the initial report on the beneficial impact of SGLT2 inhibitor medications, namely CAN, DAP, and EMP, on the responsiveness to the anticancer properties of DOX. The underlying molecular mechanisms potentially involve the suppression of the function of SGLT2.


Apoptosis , Breast Neoplasms , Doxorubicin , Sodium-Glucose Transporter 2 Inhibitors , Female , Humans , Apoptosis/drug effects , Apoptosis/genetics , Benzhydryl Compounds/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Canagliflozin/pharmacology , Cell Cycle/drug effects , Cell Proliferation/drug effects , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Glucose/metabolism , Glucosides/pharmacology , MCF-7 Cells , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
7.
Mol Biol Rep ; 51(1): 562, 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38644407

BACKGROUND: Obesity is associated with a wide variety of metabolic disorders that impose significant burdens on patients and society. The "browning" phenomenon in white adipose tissue (WAT) has emerged as a promising therapeutic strategy to combat metabolic disturbances. However, though the anti-diabetic drug dapagliflozin (DAPA) is thought to promote "browning," the specific mechanism of this was previously unclear. METHODS: In this study, C57BL/6 J male mice were used to establish an obesity model by high-fat diet feeding, and 3T3-L1 cells were used to induce mature adipocytes and to explore the role and mechanism of DAPA in "browning" through a combination of in vitro and in vivo experiments. RESULTS: The results show that DAPA promotes WAT "browning" and improves metabolic disorders. Furthermore, we discovered that DAPA activated "browning" through the fibroblast growth factor receptors 1-liver kinase B1-adenosine monophosphate-activated protein kinase signaling pathway. CONCLUSION: These findings provide a rational basis for the use of DAPA in treating obesity by promoting the browning of white adipose tissue.


Adipose Tissue, White , Benzhydryl Compounds , Glucosides , Protein Serine-Threonine Kinases , Receptor, Fibroblast Growth Factor, Type 1 , Signal Transduction , Animals , Male , Mice , 3T3-L1 Cells , Adipocytes/metabolism , Adipocytes/drug effects , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , AMP-Activated Protein Kinases/metabolism , Benzhydryl Compounds/pharmacology , Diet, High-Fat , Glucosides/pharmacology , Mice, Inbred C57BL , Obesity/metabolism , Obesity/drug therapy , Protein Serine-Threonine Kinases/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Signal Transduction/drug effects
8.
Am J Physiol Cell Physiol ; 326(6): C1573-C1589, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38557357

Sodium-glucose cotransporter-2 inhibitors (SGLT2i) reduce blood pressure (BP) in patients with hypertension, yet the precise molecular mechanisms remain elusive. SGLT2i inhibits proximal tubule (PT) NHE3-mediated sodium reabsorption in normotensive rodents, yet no hypotensive effect is observed under this scenario. This study examined the effect of empagliflozin (EMPA) on renal tubular sodium transport in normotensive and spontaneously hypertensive rats (SHRs). It also tested the hypothesis that EMPA-mediated PT NHE3 inhibition in normotensive rats is associated with upregulation of distal nephron apical sodium transporters. EMPA administration for 14 days reduced BP in 12-wk-old SHRs but not in age-matched Wistar rats. PT NHE3 activity was inhibited by EMPA treatment in both Wistar and SHRs. In Wistar rats, EMPA increased NCC activity, mRNA expression, protein abundance, and phosphorylation levels, but not in SHRs. SHRs showed higher NKCC2 activity and an abundance of cleaved ENaC α and γ subunits compared with Wistar rats, none of which were affected by EMPA. Another set of male Wistar rats was treated with EMPA, the NCC inhibitor hydrochlorothiazide (HCTZ), and EMPA combined with HCTZ or vehicle for 14 days. In these rats, BP reduction was observed only with combined EMPA and HCTZ treatment, not with either drug alone. These findings suggest that NCC upregulation counteracts EMPA-mediated inhibition of PT NHE3 in male normotensive rats, maintaining their baseline BP. Moreover, the reduction of NHE3 activity without further upregulation of major apical sodium transporters beyond the PT may contribute to the BP-lowering effect of SGLT2i in experimental models and patients with hypertension.NEW & NOTEWORTHY This study suggests that reduced NHE3-mediated sodium reabsorption in the renal proximal tubule may account, at least in part, for the BP-lowering effect of SGLT2 inhibitors in the setting of hypertension. It also demonstrates that chronic treatment with SGLT2 inhibitors upregulates NCC activity, phosphorylation, and expression in the distal tubule of normotensive but not hypertensive rats. SGLT2 inhibitor-mediated upregulation of NCC seems crucial to counteract proximal tubule natriuresis in subjects with normal BP.


Benzhydryl Compounds , Glucosides , Hypertension , Rats, Inbred SHR , Rats, Wistar , Sodium-Glucose Transporter 2 Inhibitors , Sodium-Hydrogen Exchanger 3 , Up-Regulation , Animals , Male , Sodium-Hydrogen Exchanger 3/metabolism , Sodium-Hydrogen Exchanger 3/genetics , Sodium-Hydrogen Exchanger 3/antagonists & inhibitors , Hypertension/drug therapy , Hypertension/metabolism , Hypertension/physiopathology , Glucosides/pharmacology , Benzhydryl Compounds/pharmacology , Up-Regulation/drug effects , Rats , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Blood Pressure/drug effects , Solute Carrier Family 12, Member 3/metabolism , Solute Carrier Family 12, Member 3/genetics , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney/metabolism , Kidney/drug effects
9.
Curr Probl Cardiol ; 49(6): 102563, 2024 Jun.
Article En | MEDLINE | ID: mdl-38599557

Sodium-glucose co-transporter 2 (SGLT2) inhibitors have emerged as a novel category of blood glucose-lowering drugs in clinical recommendations for a wide range of diseases. SGLT2 inhibitors are promising anti-inflammatory agents by acting either indirectly via improving metabolism and reducing stress conditions or via direct modulation of inflammatory signaling pathways. The SGLT2 inhibitors empagliflozin and dapagliflozin better vascular function and avert vascular aging by decreasing the reactive oxygen species (ROS) content and increasing nitric oxide bioavailability, respectively. It was discovered that ipragliflozin has the ability to prevent dysfunction of the endothelium, and this effect was connected with oxidative stress. According to published data, SGLT2 inhibitors may delay vascular aging and arrest the development of endothelial dysfunction in animal models of type 2 diabetes (T2D) by reducing inflammation, oxidative stress, and glucose toxicity and increasing the survival of hyperglycemic endothelial cells. The adenosine monophosphate-activated protein kinase (AMPK) molecule plays a vital role in the regulation of bioenergy metabolism and is pivotal in our understanding of diabetes mellitus and other metabolic disorders. It has been hypothesized that SGLT2 inhibitors may indirectly affect AMPK to reduce mammalian target of rapamycin (mTOR) activity. Numerous studies have demonstrated that SGLT2 inhibitors can activate AMPK by restoring the AMP/ATP balance in favor of AMP, which is assumed to be the mechanism by which these medications have positive effects on the cardiac structure and microvessel.


Diabetes Mellitus, Type 2 , Signal Transduction , Sodium-Glucose Transporter 2 Inhibitors , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Humans , Signal Transduction/drug effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Animals , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/prevention & control , Inflammation/metabolism , Inflammation/drug therapy , Oxidative Stress/drug effects , Glucosides/therapeutic use , Glucosides/pharmacology , Sodium-Glucose Transporter 2/metabolism , Benzhydryl Compounds/therapeutic use , Benzhydryl Compounds/pharmacology
10.
Biomed Pharmacother ; 174: 116520, 2024 May.
Article En | MEDLINE | ID: mdl-38581924

A combination of liver and heart dysfunction worsens the prognosis of human survival. The aim of this study was to investigate whether empagliflozin (a sodium-glucose transporter-2 inhibitor) has beneficial effects not only on cardiac and renal function but also on hepatic function. Adult (6-month-old) male spontaneously hypertensive rats (SHR) were fed a high-fat diet (60% fat) for four months to induce hepatic steatosis and mild heart failure. For the last two months, the rats were treated with empagliflozin (empa, 10 mg.kg-1.day-1 in the drinking water). Renal function and oral glucose tolerance test were analyzed in control (n=8), high-fat diet (SHR+HF, n=10), and empagliflozin-treated (SHR+HF+empa, n=9) SHR throughout the study. Metabolic parameters and echocardiography were evaluated at the end of the experiment. High-fat diet feeding increased body weight and visceral adiposity, liver triglyceride and cholesterol concentrations, and worsened glucose tolerance. Although the high-fat diet did not affect renal function, it significantly worsened cardiac function in a subset of SHR rats. Empagliflozin reduced body weight gain but not visceral fat deposition. It also improved glucose sensitivity and several metabolic parameters (plasma insulin, uric acid, and HDL cholesterol). In the liver, empagliflozin reduced ectopic lipid accumulation, lipoperoxidation, inflammation and pro-inflammatory HETEs, while increasing anti-inflammatory EETs. In addition, empagliflozin improved cardiac function (systolic, diastolic and pumping) independent of blood pressure. The results of our study suggest that hepatoprotection plays a decisive role in the beneficial effects of empagliflozin in preventing the progression of cardiac dysfunction induced by high-fat diet feeding.


Benzhydryl Compounds , Diet, High-Fat , Glucosides , Liver , Rats, Inbred SHR , Sodium-Glucose Transporter 2 Inhibitors , Animals , Glucosides/pharmacology , Benzhydryl Compounds/pharmacology , Male , Diet, High-Fat/adverse effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Rats , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Cardiotonic Agents/pharmacology , Blood Pressure/drug effects , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Fatty Liver/prevention & control , Fatty Liver/drug therapy , Blood Glucose/metabolism , Blood Glucose/drug effects , Protective Agents/pharmacology , Hypertension/drug therapy
11.
Eur J Med Chem ; 269: 116343, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38513341

Sodium-dependent glucose transporters 2 (SGLT2) inhibitors are a class of small-molecule drugs that have gained significant attention in recent years for their potential clinical applications in the treatment of type 2 diabetes mellitus (T2DM). These inhibitors function by obstructing the kidneys' ability to reabsorb glucose, resulting in a rise in the excretion of glucose in urine (UGE) and subsequently lowering blood glucose levels. Several SGLT2 inhibitors, such as Dapagliflozin, Canagliflozin, and Empagliflozin, have been approved by regulatory authorities and are currently available for clinical use. These inhibitors have shown notable enhancements in managing blood sugar levels, reducing body weight, and lowering blood pressure in individuals with T2DM. Additionally, they have exhibited potential advantages in decreasing the likelihood of cardiovascular incidents and renal complications among this group of patients. This review article focuses on the synthesis and clinical application of small-molecule SGLT2 inhibitors, which have provided a new therapeutic approach for the management of T2DM.


Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Humans , Diabetes Mellitus, Type 2/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Glucose , Benzhydryl Compounds/pharmacology , Sodium/therapeutic use
12.
Toxicol Appl Pharmacol ; 485: 116892, 2024 Apr.
Article En | MEDLINE | ID: mdl-38492675

Metabolic syndrome (MetS) is largely coupled with chronic kidney disease (CKD). Glycogen synthase kinase-3ß (GSK-3ß) pathway drives tubular injury in animal models of acute kidney injury; but its contribution in CKD is still elusive. This study investigated the effect empagliflozin and/or pirfenidone against MetS-induced kidney dysfunction, and to clarify additional underpinning mechanisms particularly the GSK-3ß signaling pathway. Adult male rats received 10%w/v fructose in drinking water for 20 weeks to develop MetS, then treated with either drug vehicle, empagliflozin (30 mg/kg/day) and/or pirfenidone (100 mg/kg/day) via oral gavage for subsequent 4 weeks, concurrently with the high dietary fructose. Age-matched rats receiving normal drinking water were used as controls. After 24 weeks, blood and kidneys were harvested for subsequent analyses. Rats with MetS showed signs of kidney dysfunction, structural changes and interstitial fibrosis. Activation of GSK-3ß, decreased cyclinD1 expression and enhanced apoptotic signaling were found in kidneys of MetS rats. There was abundant alpha-smooth muscle actin (α-SMA) expression along with up-regulation of TGF-ß1/Smad3 in kidneys of MetS rats. These derangements were almost alleviated by empagliflozin or pirfenidone, with evidence that the combined therapy was more effective than either individual drug. This study emphasizes a novel mechanism underpinning the beneficial effects of empagliflozin and pirfenidone on kidney dysfunction associated with MetS through targeting GSK-3ß signaling which can mediate the regenerative capacity, anti-apoptotic effects and anti-fibrotic properties of such drugs. These findings recommend the possibility of using empagliflozin and pirfenidone as promising therapies for management of CKD in patients with MetS.


Benzhydryl Compounds , Glucosides , Glycogen Synthase Kinase 3 beta , Kidney Tubules , Metabolic Syndrome , Pyridones , Animals , Pyridones/pharmacology , Male , Glucosides/pharmacology , Glucosides/therapeutic use , Benzhydryl Compounds/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Rats , Metabolic Syndrome/drug therapy , Metabolic Syndrome/complications , Kidney Tubules/drug effects , Kidney Tubules/pathology , Kidney Tubules/metabolism , Regeneration/drug effects , Rats, Sprague-Dawley , Signal Transduction/drug effects
13.
J Cell Mol Med ; 28(6): e18176, 2024 Mar.
Article En | MEDLINE | ID: mdl-38454800

Senescent kidney can lead to the maladaptive repairment and predispose age-related kidney diseases. Here, we explore the renal anti-senescence effect of a known kind of drug, sodium-dependent glucose transporters 2 inhibitor (SGLT2i). After 4 months intragastrically administration with dapagliflozin on senescence-accelerated mouse prone 8 (SAMP8) strain mice, the physiologically effects (lowering urine protein, enhancing glomerular blood perfusion, inhibiting expression of senescence-related biomarkers) and structural changes (improving kidney atrophy, alleviating fibrosis, decreasing glomerular mesangial proliferation) indicate the potential value of delaying kidney senescence of SGLT2i. Senescent human proximal tubular epithelial (HK-2) cells induced by H2 O2 also exhibit lower senescent markers after dapagliflozin treatment. Further mechanism exploration suggests LTBP2 have the great possibility to be the target for SGLT2i to exert its renal anti-senescence role. Dapagliflozin down-regulate the LTBP2 expression in kidney tissues and HK-2 cells with senescent phenotypes. Immunofluorescence staining show SGLT2 and LTBP2 exist colocalization, and protein-docking analysis implies there is salt-bridge formation between them; these all indicate the possibility of weak-interaction between the two proteins. Apart from reducing LTBP2 expression in intracellular area induced by H2 O2 , dapagliflozin also decrease the concentration of LTBP2 in cell culture medium. Together, these results reveal dapagliflozin can delay natural kidney senescence in non-diabetes environment; the mechanism may be through regulating the role of LTBP2.


Kidney Diseases , Sodium-Glucose Transporter 2 Inhibitors , Mice , Humans , Animals , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Kidney/metabolism , Glucosides/therapeutic use , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , Kidney Diseases/metabolism , Latent TGF-beta Binding Proteins
14.
JCI Insight ; 9(6)2024 Feb 22.
Article En | MEDLINE | ID: mdl-38516890

Sodium-glucose cotransporter 2 (SGLT2) inhibitor, dapagliflozin (Dapa), exhibited nephroprotective effects in patients with chronic kidney disease (CKD). We assessed the efficacy of short-term Dapa administration following acute kidney injury (AKI) in preventing CKD. Male Wistar rats were randomly assigned to Sham surgery, bilateral ischemia for 30 minutes (abbreviated as IR), and IR + Dapa groups. Daily treatment with Dapa was initiated just 24 hours after IR and maintained for only 10 days. Initially, rats were euthanized at this point to study early renal repair. After severe AKI, Dapa promptly restored creatinine clearance (CrCl) and significantly reduced renal vascular resistance compared with the IR group. Furthermore, Dapa effectively reversed the mitochondrial abnormalities, including increased fission, altered mitophagy, metabolic dysfunction, and proapoptotic signaling. To study this earlier, another set of rats was studied just 5 days after AKI. Despite persistent renal dysfunction, our data reveal a degree of mitochondrial protection. Remarkably, a 10-day treatment with Dapa demonstrated effectiveness in preventing CKD transition in an independent cohort monitored for 5 months after AKI. This was evidenced by improvements in proteinuria, CrCl, glomerulosclerosis, and fibrosis. Our findings underscore the potential of Dapa in preventing maladaptive repair following AKI, emphasizing the crucial role of early intervention in mitigating AKI long-term consequences.


Acute Kidney Injury , Renal Insufficiency, Chronic , Reperfusion Injury , Animals , Humans , Male , Rats , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Glucose , Rats, Wistar , Renal Insufficiency, Chronic/drug therapy , Reperfusion Injury/complications , Reperfusion Injury/metabolism , Sodium/metabolism , Sodium-Glucose Transporter 2/drug effects , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use
15.
Diabetes ; 73(6): 926-940, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38471012

Sodium-glucose cotransporter 2 inhibitors, efficacious antidiabetic agents that have cardiovascular and renal benefits, can promote pancreatic ß-cell regeneration in type 2 diabetic mice. However, the underlying mechanism remains unclear. In this study, we aimed to use multiomics to identify the mediators involved in ß-cell regeneration induced by dapagliflozin. We showed that dapagliflozin lowered blood glucose level, upregulated plasma insulin level, and increased islet area in db/db mice. Dapagliflozin reshaped gut microbiota and modulated microbiotic and plasmatic metabolites related to tryptophan metabolism, especially l-tryptophan, in the diabetic mice. Notably, l-tryptophan upregulated the mRNA level of glucagon-like peptide 1 (GLP-1) production-related gene (Gcg and Pcsk1) expression and promoted GLP-1 secretion in cultured mouse intestinal L cells, and it increased the supernatant insulin level in primary human islets, which was eliminated by GPR142 antagonist. Transplant of fecal microbiota from dapagliflozin-treated mice, supplementation of l-tryptophan, or treatment with dapagliflozin upregulated l-tryptophan, GLP-1, and insulin or C-peptide levels and promoted ß-cell regeneration in db/db mice. Addition of exendin 9-39, a GLP-1 receptor (GLP-1R) antagonist, or pancreatic Glp1r knockout diminished these beneficial effects. In summary, treatment with dapagliflozin in type 2 diabetic mice promotes ß-cell regeneration by upregulating GLP-1 production, which is mediated via gut microbiota and tryptophan metabolism.


Benzhydryl Compounds , Gastrointestinal Microbiome , Glucagon-Like Peptide 1 , Glucosides , Insulin-Secreting Cells , Regeneration , Tryptophan , Animals , Benzhydryl Compounds/pharmacology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/drug effects , Glucagon-Like Peptide 1/metabolism , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Tryptophan/metabolism , Mice , Glucosides/pharmacology , Glucosides/therapeutic use , Regeneration/drug effects , Humans , Male , Insulin/metabolism , Blood Glucose/metabolism , Blood Glucose/drug effects , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/microbiology , Mice, Inbred C57BL , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Diabetes Mellitus, Experimental/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism
16.
Diabetes ; 73(6): 896-902, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38512770

Acute and chronic sodium-glucose cotransporter 2 (SGLT-2) inhibition increases endogenous glucose production (EGP). However, the organ-liver versus kidney-responsible for the increase in EGP has not been identified. In this study, 20 subjects with type 2 diabetes (T2D) and 12 subjects with normal glucose tolerance (NGT) received [3-3H]glucose infusion (to measure total EGP) combined with arterial and renal vein catheterization and para-aminohippuric acid infusion for determination of renal blood flow. Total EGP, net renal arteriovenous balance, and renal glucose production were measured before and 4 h after dapagliflozin (DAPA) and placebo administration. Following DAPA, EGP increased in both T2D and NGT from baseline to 240 min, while there was a significant time-related decrease after placebo in T2D. Renal glucose production at baseline was <5% of basal EGP in both groups and did not change significantly following DAPA in NGT or T2D. Renal glucose uptake (sum of tissue glucose uptake plus glucosuria) increased in both T2D and NGT following DAPA (P < 0.05 vs. placebo). The increase in renal glucose uptake was entirely explained by the increase in glucosuria. A single dose of DAPA significantly increased EGP, which primarily is explained by an increase in hepatic glucose production, establishing the existence of a novel renal-hepatic axis.


Benzhydryl Compounds , Diabetes Mellitus, Type 2 , Glucose , Glucosides , Kidney , Liver , Humans , Glucosides/therapeutic use , Glucosides/pharmacology , Benzhydryl Compounds/therapeutic use , Benzhydryl Compounds/pharmacology , Kidney/metabolism , Kidney/drug effects , Liver/metabolism , Liver/drug effects , Male , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Female , Glucose/metabolism , Middle Aged , Adult , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Blood Glucose/metabolism , Blood Glucose/drug effects
17.
Eur J Neurosci ; 59(10): 2436-2449, 2024 May.
Article En | MEDLINE | ID: mdl-38444104

Psychostimulant use disorders (PSUD) are prevalent; however, no FDA-approved medications have been made available for treatment. Previous studies have shown that dual inhibitors of the dopamine transporter (DAT) and sigma receptors significantly reduce the behavioral/reinforcing effects of cocaine, which have been associated with stimulation of extracellular dopamine (DA) levels resulting from DAT inhibition. Here, we employ microdialysis and fast scan cyclic voltammetry (FSCV) procedures to investigate the effects of dual inhibitors of DAT and sigma receptors in combination with cocaine on nucleus accumbens shell (NAS) DA dynamics in naïve male Sprague Dawley rats. In microdialysis studies, administration of rimcazole (3, 10 mg/kg; i.p.) or its structural analog SH 3-24 (1, 3 mg/kg; i.p.), compounds that are dual inhibitors of DAT and sigma receptors, significantly reduced NAS DA efflux stimulated by increasing doses of cocaine (0.1, 0.3, 1.0 mg/kg; i.v.). Using the same experimental conditions, in FSCV tests, we show that rimcazole pretreatments attenuated cocaine-induced stimulation of evoked NAS DA release but produced no additional effect on DA clearance rate. Under the same conditions, JJC8-091, a modafinil analog and dual inhibitor of DAT and sigma receptors, similarly attenuated cocaine-induced stimulation of evoked NAS DA release but produced no additional effect on DA clearance rate. Our results provide the neurochemical groundwork towards understanding actions of dual inhibitors of DAT and sigma receptors on DA dynamics that likely mediate the behavioral effects of psychostimulants like cocaine.


Cocaine , Dopamine Plasma Membrane Transport Proteins , Dopamine Uptake Inhibitors , Dopamine , Nucleus Accumbens , Rats, Sprague-Dawley , Receptors, sigma , Animals , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Receptors, sigma/metabolism , Receptors, sigma/antagonists & inhibitors , Male , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Dopamine Plasma Membrane Transport Proteins/drug effects , Dopamine/metabolism , Cocaine/pharmacology , Rats , Dopamine Uptake Inhibitors/pharmacology , Piperidines/pharmacology , Benzhydryl Compounds/pharmacology , Microdialysis/methods , Modafinil/pharmacology
18.
Biomed Pharmacother ; 174: 116477, 2024 May.
Article En | MEDLINE | ID: mdl-38522235

BACKGROUND: SGLT2i reduce cardiac hypertrophy, but underlying mechanisms remain unknown. Here we explore a role for serine/threonine kinases (STK) and sodium hydrogen exchanger 1(NHE1) activities in SGLT2i effects on cardiac hypertrophy. METHODS: Isolated hearts from db/db mice were perfused with 1 µM EMPA, and STK phosphorylation sites were examined using unbiased multiplex analysis to detect the most affected STKs by EMPA. Subsequently, hypertrophy was induced in H9c2 cells with 50 µM phenylephrine (PE), and the role of the most affected STK (p90 ribosomal S6 kinase (RSK)) and NHE1 activity in hypertrophy and the protection by EMPA was evaluated. RESULTS: In db/db mice hearts, EMPA most markedly reduced STK phosphorylation sites regulated by RSKL1, a member of the RSK family, and by Aurora A and B kinases. GO and KEGG analysis suggested that EMPA inhibits hypertrophy, cell cycle, cell senescence and FOXO pathways, illustrating inhibition of growth pathways. EMPA prevented PE-induced hypertrophy as evaluated by BNP and cell surface area in H9c2 cells. EMPA blocked PE-induced activation of NHE1. The specific NHE1 inhibitor Cariporide also prevented PE-induced hypertrophy without added effect of EMPA. EMPA blocked PE-induced RSK phosphorylation. The RSK inhibitor BIX02565 also suppressed PE-induced hypertrophy without added effect of EMPA. Cariporide mimicked EMPA's effects on PE-treated RSK phosphorylation. BIX02565 decreased PE-induced NHE1 activity, with no further decrease by EMPA. CONCLUSIONS: RSK inhibition by EMPA appears as a novel direct cardiac target of SGLT2i. Direct cardiac effects of EMPA exert their anti-hypertrophic effect through NHE-inhibition and subsequent RSK pathway inhibition.


Benzhydryl Compounds , Cardiomegaly , Glucosides , Ribosomal Protein S6 Kinases, 90-kDa , Sodium-Hydrogen Exchanger 1 , Animals , Sodium-Hydrogen Exchanger 1/metabolism , Sodium-Hydrogen Exchanger 1/antagonists & inhibitors , Glucosides/pharmacology , Cardiomegaly/drug therapy , Cardiomegaly/pathology , Cardiomegaly/prevention & control , Cardiomegaly/metabolism , Mice , Phosphorylation/drug effects , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Male , Benzhydryl Compounds/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Cell Line , Rats , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Mice, Inbred C57BL , Signal Transduction/drug effects
19.
Adv Pharmacol ; 99: 287-326, 2024.
Article En | MEDLINE | ID: mdl-38467484

Modafinil is a central nervous system stimulant approved for the treatment of narcolepsy and sleep disorders. Due to its wide range of biochemical actions, modafinil has been explored for other potential therapeutic uses. Indeed, it has shown promise as a therapy for cognitive disfunction resulting from neurologic disorders like ADHD, and as a smart drug in non-medical settings. The mechanism(s) of actions underlying the therapeutic efficacy of this agent remains largely elusive. Modafinil is known to inhibit the dopamine transporter, thus decreasing dopamine reuptake following neuronal release, an effect shared by addictive psychostimulants. However, modafinil is unique in that only a few cases of dependence on this drug have been reported, as compared to other psychostimulants. Moreover, modafinil has been tested, with some success, as a potential therapeutic agent to combat psychostimulant and other substance use disorders. Modafinil has additional, but less understood, actions on other neurotransmitter systems (GABA, glutamate, serotonin, norepinephrine, etc.). These interactions, together with its ability to activate selected brain regions, are likely one of the keys to understand its unique pharmacology and therapeutic activity as a CNS stimulant. In this chapter, we outline the pharmacokinetics and pharmacodynamics of modafinil that suggest it has an "atypical" CNS stimulant profile. We also highlight the current approved and off label uses of modafinil, including its beneficial effects as a treatment for sleep disorders, cognitive functions, and substance use disorders.


Central Nervous System Stimulants , Substance-Related Disorders , Humans , Modafinil/pharmacology , Modafinil/therapeutic use , Central Nervous System Stimulants/therapeutic use , Central Nervous System Stimulants/pharmacokinetics , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , Dopamine , Substance-Related Disorders/drug therapy
20.
Int J Mol Sci ; 25(5)2024 Feb 21.
Article En | MEDLINE | ID: mdl-38473752

Gliomas represent the most common and lethal category of primary brain tumors. Bisphenol A (BPA), a widely recognized endocrine disruptor, has been implicated in the progression of cancer. Despite its established links to various cancers, the association between BPA and glioma progression remains to be clearly defined. This study aimed to shed light on the impact of BPA on glioma cell proliferation and overall tumor progression. Our results demonstrate that BPA significantly accelerates glioma cell proliferation in a time- and dose-dependent manner. Furthermore, BPA has been found to enhance the invasive and migratory capabilities of glioma cells, potentially promoting epithelial-mesenchymal transition (EMT) characteristics within these tumors. Employing bioinformatics approaches, we devised a risk assessment model to gauge the potential glioma hazards associated with BPA exposure. Our comprehensive analysis revealed that BPA not only facilitates glioma invasion and migration but also inhibits apoptotic processes. In summary, our study offers valuable insights into the mechanisms by which BPA may promote tumorigenesis in gliomas, contributing to the understanding of its broader implications in oncology.


Glioma , Humans , Cell Line, Tumor , Benzhydryl Compounds/pharmacology , Phenols/pharmacology
...