Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.442
1.
Pestic Biochem Physiol ; 201: 105849, 2024 May.
Article En | MEDLINE | ID: mdl-38685233

Beta-cypermethrin (ß-CYP) consists of four chiral isomers, acting as an environmental estrogen and causing reproductive toxicity, neurotoxicity, and dysfunctions in multiple organ systems. This study investigated the toxic effects of ß-CYP, its isomers, metabolite 3-phenoxybenzoic acid (3-PBA), and 17ß-estradiol (E2) on HTR-8/SVneo cells. We focused on the toxic mechanisms of ß-CYP and its specific isomers. Our results showed that ß-CYP and its isomers inhibit HTR-8/SVneo cell proliferation similarly to E2, with 100 µM 1S-trans-αR displaying significant toxicity after 48 h. Notably, 1S-trans-αR, 1R-trans-αS, and ß-CYP were more potent in inducing apoptosis and cell cycle arrest than 1R-cis-αS and 1S-cis-αR at 48 h. AO/EB staining and flow cytometry indicated dose-dependent apoptosis in HTR-8/SVneo cells, particularly at 100 µM 1R-trans-αS. Scratch assays revealed that ß-CYP and its isomers variably reduced cell migration. Receptor inhibition assays demonstrated that post-ICI 182780 treatment, which inhibits estrogen receptor α (ERα) or estrogen receptor ß (ERß), ß-CYP, its isomers, and E2 reduced HTR-8/SVneo cell viability, whereas milrinone, a phosphodiesterase 3 A (PDE3A) inhibitor, increased viability. Molecular docking studies indicated a higher affinity of ß-CYP, its isomers, and E2 for PDE3A than for ERα or ERß. Consequently, ß-CYP, its isomers, and E2 consistently led to decreased cell viability. Transcriptomics and RT-qPCR analyses showed differential expression in treated cells: up-regulation of Il24 and Ptgs2, and down-regulation of Myo7a and Pdgfrb, suggesting the PI3K-AKT signaling pathway as a potential route for toxicity. This study aims to provide a comprehensive evaluation of the cytotoxicity of chiral pesticides and their mechanisms.


Apoptosis , Pyrethrins , Humans , Pyrethrins/toxicity , Pyrethrins/pharmacology , Apoptosis/drug effects , Cell Line , Molecular Docking Simulation , Estradiol/pharmacology , Cell Proliferation/drug effects , Insecticides/toxicity , Insecticides/pharmacology , Insecticides/chemistry , Isomerism , Cell Movement/drug effects , Benzoates/pharmacology , Benzoates/chemistry , Stereoisomerism , Cell Survival/drug effects , Estrogen Receptor alpha/metabolism , Cell Cycle Checkpoints/drug effects
2.
ACS Sens ; 9(5): 2550-2557, 2024 May 24.
Article En | MEDLINE | ID: mdl-38659220

Acidification of the airway surface liquid in the respiratory system could play a role in the pathology of Cystic Fibrosis, but its low volume and proximity to the airway epithelium make it a challenging biological environment in which to noninvasively collect pH measurements. To address this challenge, we explored surface enhanced Raman scattering microsensors (SERS-MS), with a 4-mercaptobenzoic acid (MBA) pH reporter molecule, as pH sensors for the airway surface liquid of patient-derived in vitro models of the human airway. Using air-liquid interface (ALI) cultures to model the respiratory epithelium, we show that SERS-MS facilitates the optical measurement of trans-epithelial pH gradients between the airway surface liquid and the basolateral culture medium. SERS-MS also enabled the successful quantification of pH changes in the airway surface liquid following stimulation of the Cystic Fibrosis transmembrane conductance regulator (CFTR, the apical ion channel that is dysfunctional in Cystic Fibrosis airways). Finally, the influence of CFTR mutations on baseline airway surface liquid pH was explored by using SERS-MS to measure the pH in ALIs grown from Cystic Fibrosis and non-Cystic Fibrosis donors.


Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Spectrum Analysis, Raman , Humans , Spectrum Analysis, Raman/methods , Hydrogen-Ion Concentration , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Sulfhydryl Compounds/chemistry , Benzoates/chemistry
3.
Chem Pharm Bull (Tokyo) ; 72(3): 294-297, 2024.
Article En | MEDLINE | ID: mdl-38462461

Aiming to synthesize a cyclic hexaamide, 4-bromo-3-(isobutylamino)benzoic acid was subjected to self-condensation reactions in the presence of either dichlorotriphenylphosphorane in 1,1,2,2-tetrachloroethane or tetrachlorosilane in pyridine. However, instead of the targeted cyclic hexaamide, the cyclic triamide and the cyclic tetraamide were obtained. The cyclic hexaamide was successfully synthesized via the self-condensation of the dimer, which was synthesized in five steps from 4-bromo-3-(isobutylamino)benzoic acid. A thorough screening of the self-condensation conditions was performed to improve the yield of the target macrocycle. In addition, the linear hexamer was synthesized by stepwise deprotection and condensation, and its cyclization afforded the cyclic hexaamide in good yield.


Benzoates , Benzoic Acid , Cyclization , Amides/chemistry , Benzoates/chemistry
4.
Chem Biodivers ; 21(2): e202301706, 2024 Feb.
Article En | MEDLINE | ID: mdl-38079052

Based on the one strain many compounds strategy, a new brominated isocoumarin, 5-bromo-6,8-dihydroxy-3,7-dimethylisocoumarin (1), along with four new natural products, methyl 3-bromo-2,4-dihydroxy-6-methylbenzoate (2), methyl 2-bromo-4,6-dihydroxybenzoate (3), (E)-3-(3-bromo-4-hydroxyphenyl) acrylic acid (4) and 4-hydroxy-3-methyl-6-phenyl-2H-pyran-2-one (5), and four known compounds, methyl orsellinate (6), 4-hydroxy-3-methyl-6-(1-methyl-1-propenyl)-2H-pyran-2-one (7), pilobolusate (8) and cis-ferulic acid (9), were isolated from the ethyl acetate extract of the fungus Aspergillus sp. WXF1904 under the condition of adding bromine salt to the production medium. The structures of the new compounds were established by analysis of NMR and MS data. Compounds (1-9) were evaluated for inhibitory activity of acetylcholinesterase and pancreatic lipase, the new compound 1, known compounds 6 and 7 displayed weak inhibitory activity against acetylcholinesterase, compounds 2, 5, 7 and 8 showed weak inhibitory activity against pancreatic lipase.


Acetylcholinesterase , Isocoumarins , Aspergillus/chemistry , Fungi , Isocoumarins/chemistry , Lipase , Molecular Structure , Benzoates/chemistry
6.
Asian Pac J Cancer Prev ; 24(9): 2973-2981, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37774047

OBJECTIVE: This study is aimed to acquiring new compounds of Eugenyl benzoate (2-methoxy-4-(prop-2-en-1-yl)phenyl benzoate) derivatives that can inhibit HT29 colorectal cancer cells. METHODS: In this research, we used several chemical reactions to synthesize novel compounds, such as Esterification, Demethylation, Halohydrin, and Sharpless reaction. Cytotoxicity assays were performed to test the inhibitory activity of compounds against HT29 colon cancer cells. QSAR analysis were carried out to analyse the relationship of chemical structure of the novel compounds with their cytotoxic activity. RESULT: Ten novel compounds were successfully synthesized and tested in vitro against the HT29 cell. The IC50 of the novel compounds were between 26.56 µmol/ml - 286.81 µmol/ml which compound 4-[(2S)-2,3-dihydroxypropyl]-2-methoxyphenyl 2-hydroxybenzoate (9) showed as best active compound as BCL-2 inhibitors better than other synthesized compounds and Eugenol as well. QSAR analysis of the in vitro results gave a Log equation: 1/IC50 = -0.865-0.210 (LogP)2 + 1,264 (logP)-0.994 CMR (n = 10; r = 0.706; SE: 0.21; F = 0.497, sig = 7.86). The equation shows the log variable P and CMR affect IC50. The properties of hydrophobicity (log P) are more instrumental than the ones of steric (CMR). CONCLUSION: The active compound (9) given best activities as BCL-2 inhibitors than other eugenol derivatives. QSAR indicates the logP and CMR have effect on its colorectal cytotoxic activity which the hydrophobicity parameter (logP) plays more role than the steric parameter (CMR).


Antineoplastic Agents , Colorectal Neoplasms , Humans , Molecular Docking Simulation , Quantitative Structure-Activity Relationship , Eugenol , Antineoplastic Agents/chemistry , Benzoates/pharmacology , Benzoates/chemistry , Colorectal Neoplasms/drug therapy , Proto-Oncogene Proteins c-bcl-2 , Molecular Structure , Drug Screening Assays, Antitumor
7.
Org Lett ; 25(27): 5140-5144, 2023 07 14.
Article En | MEDLINE | ID: mdl-37390327

An efficient and straightforward phosphine-promoted tandem aza-Michael addition/intramolecular Wittig reaction was developed for the synthesis of polyfunctionalized 2-azetines. After demonstrating that this transformation could be made catalytic in phosphine through in situ reduction of phosphine oxide with phenylsilane, different post-transformation steps have been demonstrated, including an original [2 + 2] photodimerization. Preliminary biological tests highlighted that these fluorinated 1,2-dihydroazete-2,3-dicarboxylates exhibited significant cytotoxicity against the human tumor cell line.


Azetines , Phosphines , Humans , Carboxylic Acids , Catalysis , Benzoates/chemistry
8.
Phys Chem Chem Phys ; 25(26): 17639-17656, 2023 Jul 05.
Article En | MEDLINE | ID: mdl-37366119

Amphiphilic amino acids represent promising scaffolds for biologically active soft matter. In order to understand the bulk self-assembly of amphiphilic amino acids into thermotropic liquid crystalline phases and their biological properties a series of tyrosine ionic liquid crystals (ILCs) was synthesized, carrying a benzoate unit with 0-3 alkoxy chains at the tyrosine unit and a cationic guanidinium head group. Investigation of the mesomorphic properties by polarizing optical microscopy (POM), differential scanning calorimetry (DSC) and X-ray diffraction (WAXS, SAXS) revealed smectic A bilayers (SmAd) for ILCs with 4-alkoxy- and 3,4-dialkoxybenzoates, whereas ILCs with 3,4,5-trisalkoxybenzoates showed hexagonal columnar mesophases (Colh), while different counterions had only a minor influence. Dielectric measurements revealed a slightly higher dipole moment of non-mesomorphic tyrosine-benzoates as compared to their mesomorphic counterparts. The absence of lipophilic side chains on the benzoate unit was important for the biological activity. Thus, non-mesomorphic tyrosine benzoates and crown ether benzoates devoid of additional side chains at the benzoate unit displayed the highest cytotoxicities (against L929 mouse fibroblast cell line) and antimicrobial activity (against Escherichia coli ΔTolC and Staphylococcus aureus) and promising selectivity ratio in favour of antimicrobial activity.


Anti-Infective Agents , Ionic Liquids , Liquid Crystals , Animals , Mice , Amino Acids , Liquid Crystals/chemistry , Scattering, Small Angle , X-Ray Diffraction , Amines , Tyrosine , Benzoates/chemistry
9.
Sci Rep ; 12(1): 18655, 2022 11 04.
Article En | MEDLINE | ID: mdl-36333403

N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB), a widely used labeling agent to introduce the 4-[18F]fluorobenzoyl-prosthetic group, is normally obtained in three consecutive steps from [18F]fluoride ion. Here, we describe an efficient one-step labeling procedure of [18F]SFB starting from a tin precursor. This method circumvents volatile radioactive side-products and simplifies automatization. [18F]SFB was obtained after HPLC purification in a yield of 42 + 4% and a radiochemical purity (RCP) > 99% (n = 6). In addition, we investigate the automation of the coupling of [18F]SFB to a nanobody (cAbBcII10, targeting ß-lactamase enzyme) and purification by size exclusion chromatography (PD-10 desalting column) to remove unconjugated reagent. Production and use of [18F]SFB were implemented on a radiosynthesis unit (Neptis®). The fully automated radiosynthesis process including purification and formulation required 160 min of synthesis time. [18F]SFB-labeled nanobody was obtained in a yield of 21 + 2% (activity yield 12 + 1% non-decay corrected) and a radiochemical purity (RCP) of > 95% (n = 3). This approach simplifies [18F]SFB synthesis to one-step, enhances the yield in comparison to the previous report and enables the production of radiolabeled nanobody on the same synthesis module.


Fluorine Radioisotopes , Single-Domain Antibodies , Fluorine Radioisotopes/chemistry , Halogenation , Isotope Labeling/methods , Succinimides/chemistry , Fluorides , Benzoates/chemistry , Radiopharmaceuticals/chemistry , Positron-Emission Tomography/methods
10.
Protein Sci ; 31(12): e4499, 2022 12.
Article En | MEDLINE | ID: mdl-36335585

As a key regulator for hormone activity, human aldo-keto reductase family 1 member C3 (AKR1C3) plays crucial roles in the occurrence of various hormone-dependent or independent malignancies. It is a promising target for treating castration-resistant prostate cancer (CRPC). However, the development of AKR1C3 specific inhibitors remains challenging due to the high sequence similarity to its isoform AKR1C2. Here, we performed a combined in silico study to illuminate the inhibitory preference of 3-(3,4-dihydroisoquinolin-2(1H)-ylsulfonyl)benzoic acids for AKR1C3 over AKR1C2, of which compound 38 can achieve up to 5000-fold anti-AKR1C3 selectivity. Our umbrella sampling (US) simulations together with end-point binding free energy calculation MM/GBSA uncover that the high inhibition selectivity originates from the different binding modes, namely "Inward" and "Outward," of this compound series in AKR1C3 and AKR1C2, respectively. In AKR1C3/38, the tetrahydroquinoline moiety of 38 is accommodated inside the SP1 pocket and interacts favorably with surrounding residues, while, in AKR1C2/38, the SP1 pocket is too small to hold the bulky tetrahydroquinoline group that instead moves out of the pocket with 38 transitioning from an "Inward" to an "Outward" state. Further 3D-QSAR and energy decomposition analyses suggest that SP1 in AKR1C3 prefers to bind with a rigid bicyclic moiety and the modification of the R3 group has important implication for the compound's activity. This work is the first attempt to elucidate the selectivity mechanism of inhibitors toward AKR1C3 at the atomic level, which is anticipated to propel the development of next-generation AKR1C3 inhibitors with enhanced efficacy and reduced "off-target" effect for CRPC therapy.


Hydroxyprostaglandin Dehydrogenases , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Aldo-Keto Reductase Family 1 Member C3/metabolism , Hydroxyprostaglandin Dehydrogenases/metabolism , 3-Hydroxysteroid Dehydrogenases/metabolism , Benzoates/chemistry , Computer Simulation , Protein Isoforms , Hormones
11.
Chemistry ; 28(67): e202201895, 2022 Dec 01.
Article En | MEDLINE | ID: mdl-36043399

The cytochrome P450 (CYP) family of heme monooxygenases catalyse the selective oxidation of C-H bonds under ambient conditions. The CYP199A4 enzyme from Rhodopseudomonas palustris catalyses aliphatic oxidation of 4-cyclohexylbenzoic acid but not the aromatic oxidation of 4-phenylbenzoic acid, due to the distinct mechanisms of aliphatic and aromatic oxidation. The aromatic substrates 4-benzyl-, 4-phenoxy- and 4-benzoyl-benzoic acid and methoxy-substituted phenylbenzoic acids were assessed to see if they could achieve an orientation more amenable to aromatic oxidation. CYP199A4 could catalyse the efficient benzylic oxidation of 4-benzylbenzoic acid. The methoxy-substituted phenylbenzoic acids were oxidatively demethylated with low activity. However, no aromatic oxidation was observed with any of these substrates. Crystal structures of CYP199A4 with 4-(3'-methoxyphenyl)benzoic acid demonstrated that the substrate binding mode was like that of 4-phenylbenzoic acid. 4-Phenoxy- and 4-benzoyl-benzoic acid bound with the ether or ketone oxygen atom hydrogen-bonded to the heme aqua ligand. We also investigated whether the substitution of phenylalanine residues in the active site could permit aromatic hydroxylation. Mutagenesis of the F298 residue to a valine did not significantly alter the substrate binding position or enable the aromatic oxidation of 4-phenylbenzoic acid; however the F182L mutant was able to catalyse 4-phenylbenzoic acid oxidation generating 2'-hydroxy-, 3'-hydroxy- and 4'-hydroxy metabolites in a 83 : 9 : 8 ratio, respectively. Molecular dynamics simulations, in which the distance and angle of attack were considered, demonstrated that in the F182L variant, in contrast to the wild-type enzyme, the phenyl ring of 4-phenylbenzoic acid attained a productive geometry for aromatic oxidation to occur.


Bacterial Proteins , Cytochrome P-450 Enzyme System , Hydroxylation , Substrate Specificity , Bacterial Proteins/metabolism , Cytochrome P-450 Enzyme System/metabolism , Protein Engineering , Heme/chemistry , Oxidation-Reduction , Benzoates/chemistry
12.
J Org Chem ; 87(5): 2997-3006, 2022 03 04.
Article En | MEDLINE | ID: mdl-35113555

Our recent experimental and theoretical investigations have shown that fluorene C-H bonds can be activated through a mechanism in which the proton and electron are transferred from the C-H bond to a separate base and oxidant in a concerted, elementary step. This multisite proton-coupled electron transfer (MS-PCET) mechanism for C-H bond activation was shown to be facilitated by shorter proton donor-acceptor distances. With the goal of intentionally modulating this donor-acceptor distance, we have now studied C-H MS-PCET in the 3-methyl-substituted fluorenyl benzoate (2-Flr-3-Me-BzO-). This derivative was readily oxidized by ferrocenium oxidants by initial C-H MS-PCET, with rate constants that were 6-21 times larger than those for 2-Flr-BzO- with the same oxidants. Structural comparisons by X-ray crystallography and by computations showed that addition of the 3-methyl group caused the expected steric compression; however, the relevant C···O- proton donor-acceptor distance was longer, due to a twist of the carboxylate group. The structural changes induced by the 3-Me group increased the basicity of the carboxylate, weakened the C-H bond, and reduced the reorganization energy for C-H bond cleavage. Thus, the rate enhancement for 2-Flr-3-Me-BzO- was due to effects on the thermochemistry and kinetic barrier, rather than from compression of the C···O- proton donor-acceptor distance. These results highlight both the challenges of controlling molecules on the 0.1 Å length scale and the variety of parameters that affect PCET rate constants.


Electrons , Protons , Benzoates/chemistry , Carboxylic Acids/chemistry , Electron Transport , Kinetics , Oxidants/chemistry , Thermodynamics
13.
Carbohydr Polym ; 279: 119010, 2022 Mar 01.
Article En | MEDLINE | ID: mdl-34980354

Cellulose might be a promising material for surface-enhanced Raman scattering (SERS) substrates due to its wide availability, low cost, ease of fabrication, high flexibility and low optical activity. This work shows, for the first time development of the cellulose-based substrate, that owes its SERS activity to the presence of gold nanorods in its internal structure, and not only on the surface, as it is shown elsewhere, thus ensuring superior stability of the obtained material. This flexible cellulose-based substrate exhibiting plasmonic activity, provide easy and reproducible detection of different analytes via SERS technique. The substrate was prepared by introduction of gold nanorods into the cellulose fibers matrix using an eco-friendly process based on N-Methylmorpholine-N-Oxide. Au-modified cellulose fibers were used for the detection of p-Mercaptobenzoic acid and Bovine Serum Albumin by the SERS method. The obtained results show that this substrate offers large signal enhancement of 6-orders of magnitude, and high signal reproducibility with a relative standard deviation of 8.3%. Additionally, washing tests (90 °C, 20 h) showed superior stability of the as prepared plasmonic fibers, thus proving the good reusability of the substrates and the long shelf life.


Benzoates/analysis , Cellulose/chemistry , Gold/chemistry , Nanotubes/chemistry , Serum Albumin, Bovine/analysis , Sulfhydryl Compounds/analysis , Benzoates/chemistry , Serum Albumin, Bovine/chemistry , Spectrum Analysis, Raman , Sulfhydryl Compounds/chemistry
14.
J Med Chem ; 65(3): 2262-2287, 2022 02 10.
Article En | MEDLINE | ID: mdl-34995458

Through regulation of the epigenome, the bromodomain and extra terminal (BET) family of proteins represent important therapeutic targets for the treatment of human disease. Through mimicking the endogenous N-acetyl-lysine group and disrupting the protein-protein interaction between histone tails and the bromodomain, several small molecule pan-BET inhibitors have progressed to oncology clinical trials. This work describes the medicinal chemistry strategy and execution to deliver an orally bioavailable tetrahydroquinoline (THQ) pan-BET candidate. Critical to the success of this endeavor was a potency agnostic analysis of a data set of 1999 THQ BET inhibitors within the GSK collection which enabled identification of appropriate lipophilicity space to deliver compounds with a higher probability of desired oral candidate quality properties. SAR knowledge was leveraged via Free-Wilson analysis within this design space to identify a small group of targets which ultimately delivered I-BET567 (27), a pan-BET candidate inhibitor that demonstrated efficacy in mouse models of oncology and inflammation.


Aminoquinolines/chemistry , Drug Design , Proteins/metabolism , Administration, Oral , Aminoquinolines/metabolism , Aminoquinolines/pharmacokinetics , Aminoquinolines/therapeutic use , Animals , Benzoates/chemistry , Benzoates/metabolism , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dogs , Half-Life , Humans , Male , Mice , Molecular Conformation , Molecular Dynamics Simulation , Neoplasms/drug therapy , Proteins/antagonists & inhibitors , Rats , Structure-Activity Relationship
15.
J Enzyme Inhib Med Chem ; 37(1): 109-117, 2022 Dec.
Article En | MEDLINE | ID: mdl-34894976

Invasive fungal infections including Candidiasis and Aspergillosis are associated with considerable morbidity and mortality in immunocompromised individuals, such as cancer patients. Aurora B is a key mitotic kinase required for the cell division of eukaryotes from fungus to man. Here, we identified a novel Aurora B inhibitor GSK650394 that can inhibit the recombinant Aurora B from human and Aspergillus fumigatus, with IC50 values of 5.68 and 1.29 µM, respectively. In HeLa and HepG2 cells, GSK650394 diminishes the endogenous Aurora B activity and causes cell cycle arrest in G2/M phase. Further cell-based assays demonstrate that GSK650394 efficiently suppresses the proliferation of both cancer cells and Aspergillus fumigatus. Finally, the molecular docking calculation and site-directed mutagenesis analyses reveal the molecular mechanism of Aurora B inhibition by GSK650394. Our work is expected to provide new insight into the combinational therapy of cancer and Aspergillus fumigatus infection.


Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Aspergillus fumigatus/drug effects , Aurora Kinase B/antagonists & inhibitors , Benzoates/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Drug Discovery , Antifungal Agents/chemistry , Antineoplastic Agents/chemistry , Aurora Kinase B/metabolism , Benzoates/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Tumor Cells, Cultured
16.
Chem Biol Interact ; 352: 109772, 2022 Jan 25.
Article En | MEDLINE | ID: mdl-34896366

In the present study it was hypothesized that 5-((4-methoxyphenyl)thio)benzo[c][1,2,5] thiodiazole (MTDZ), a new acetylcholinesterase inhibitor, exerts antinociceptive action and reduces the oxaliplatin (OXA)-induced peripheral neuropathy and its comorbidities (anxiety and cognitive deficits). Indeed, the acute antinociceptive activity of MTDZ (1 and 10 mg/kg; per oral route) was observed for the first time in male Swiss mice in formalin and hot plate tests and on mechanical withdrawal threshold induced by Complete Freund's Adjuvant (CFA). To evaluate the MTDZ effect on OXA-induced peripheral neuropathy and its comorbidities, male and female Swiss mice received OXA (10 mg/kg) or vehicle intraperitoneally, on days 0 and 2 of the experimental protocol. Oral administration of MTDZ (1 mg/kg) or vehicle was performed on days 2-14. OXA caused cognitive impairment, anxious-like behaviour, mechanical and thermal hypersensitivity in animals, with females more susceptible to thermal sensitivity. MTDZ reversed the hypersensitivity, cognitive impairment and anxious-like behaviour induced by OXA. Here, the negative correlation between the paw withdrawal threshold caused by OXA and acetylcholinesterase (AChE) activity was demonstrated in the cortex, hippocampus, and spinal cord. OXA inhibited the activity of total ATPase, Na+ K+ - ATPase, Ca2+ - ATPase and altered Mg2+ - ATPase in the cortex, hippocampus, and spinal cord. OXA exposure increased reactive species (RS) levels and superoxide dismutase (SOD) activity in the cortex, hippocampus, and spinal cord. MTDZ modulated ion pumps and reduced the oxidative stress induced by OXA. In conclusion, MTDZ is an antinociceptive molecule promising to treat OXA-induced neurotoxicity since it reduced nociceptive and anxious-like behaviours, and cognitive deficit in male and female mice.


Benzoates/therapeutic use , Cholinesterase Inhibitors/therapeutic use , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/enzymology , Thiadiazoles/therapeutic use , Thiazoles/therapeutic use , Adenosine Triphosphatases/metabolism , Analgesics/chemistry , Analgesics/therapeutic use , Animals , Anxiety/chemically induced , Anxiety/drug therapy , Benzoates/chemistry , Carbamates , Cerebral Cortex/drug effects , Cerebral Cortex/enzymology , Cholinesterase Inhibitors/chemistry , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Disease Models, Animal , Female , Hippocampus/drug effects , Hippocampus/enzymology , Indoles , Male , Mice , Oxaliplatin/toxicity , Oxidative Stress/drug effects , Peripheral Nervous System Diseases/chemically induced , Spinal Cord/drug effects , Spinal Cord/enzymology , Thiadiazoles/chemistry , Thiazoles/chemistry
17.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article En | MEDLINE | ID: mdl-34769135

The nature and mechanisms of interaction between two selected methyl benzoate derivatives (methyl o-methoxy p-methylaminobenzoate-I and methyl o-hydroxy p-methylaminobenzoate-II) and model transport protein bovine serum albumin (BSA) was studied using steady-state and time-resolved spectroscopic techniques. In order to understand the role of Trp residue of BSA in the I-BSA and II-BSA interaction, the effect of free Trp amino acid on the both emission modes (LE-locally excited (I and II) and ESIPT-excited state intramolecular proton transfer (II)) was investigated as well. Experimental results show that the investigated interactions (with both BSA and Trp) are mostly conditioned by the ground and excited state complex formation processes. Both molecules form stable complexes with BSA and Trp (with 1:1 stoichiometry) in the ground and excited states. The binding constants were in the order of 104 M-1. The absorption- and fluorescence-titration experiments along with the time-resolved fluorescence measurements show that the binding of the I and II causes fluorescence quenching of BSA through the static mechanism, revealing a 1:1 interaction. The magnitude and the sign of the thermodynamic parameters, ΔH, ΔS, and ΔG, determined from van't Hoff relationship, confirm the predominance of the hydrogen-bonding interactions for the binding phenomenon. To improve and complete knowledge of methyl benzoate derivative-protein interactions in relation to supramolecular solvation dynamics, the time-dependent fluorescence Stokes' shifts, represented by the normalized spectral response function c(t), was studied. Our studies reveal that the solvation dynamics that occurs in subpicosecond time scale in neat solvents of different polarities is slowed down significantly when the organic molecule is transferred to BSA cavity.


Benzoates/chemistry , Serum Albumin, Bovine/chemistry , Spectrum Analysis
18.
J Inorg Biochem ; 225: 111589, 2021 12.
Article En | MEDLINE | ID: mdl-34530333

The synthesis, characterization and catalytic activities of two homodinuclear Cu(II) and Zn(II) complexes of a carboxylate-rich ligand, N,N'-Bis[2-carboxybenzomethyl]-N,N' -Bis[carboxymethyl]-1,3-diaminopropan-2-ol (H5ccdp) ligand towards the hydrolysis of (p-nitrophenyl phosphate) (PNPP) and bis(p-nitrophenyl) phosphate (BNPP) substrates in aqueous systems are described. Kinetic investigations were carried out using UV-Vis spectrophotometric techniques at 25 °C and 37 °C and different pH (7-10) conditions. The kinetic studies revealed that the turnover rate (kcat) values among the PNPP hydrolysis systems, the highest and the lowest kcat values were displayed by [Cu2(ccdp)(µ-OAc)]2- at 2.34 × 10-6 s-1 (pH 8 and 37 °C) and 2.13 × 10-8 s-1 (pH 8 and 25 °C), respectively. However, similar comparisons among the BNPP hydrolysis revealed that highest and the lowest kcat values were displayed by [Zn2(ccdp)(µ-OAc)]2- at 4.64 × 10-8 s-1 (pH 9 and 37 °C) and 2.38 × 10-9 (pH 9 and 25 °C). Significantly enough, the catalyst-substrate adduct species containing a metal bound PNPP and BNPP have been detected by ESI-MS techniques. Additionally, a PNPP-bound copper complex has been isolated and crystalized using single crystal X-ray diffraction technique. Based on the structural and activity information obtained in this study, reaction mechanisms for the hydrolysis of PNPP have been proposed.


Benzoates/chemistry , Coordination Complexes/chemistry , Nitrophenols/chemistry , Organophosphorus Compounds/chemistry , Benzoates/chemical synthesis , Catalysis , Coordination Complexes/chemical synthesis , Copper/chemistry , Hydrolysis , Kinetics , Ligands , Molecular Structure , Zinc/chemistry
19.
Nat Commun ; 12(1): 5492, 2021 09 17.
Article En | MEDLINE | ID: mdl-34535643

Soluble guanylate cyclase (sGC) is the receptor for nitric oxide (NO) in human. It is an important validated drug target for cardiovascular diseases. sGC can be pharmacologically activated by stimulators and activators. However, the detailed structural mechanisms, through which sGC is recognized and positively modulated by these drugs at high spacial resolution, are poorly understood. Here, we present cryo-electron microscopy structures of human sGC in complex with NO and sGC stimulators, YC-1 and riociguat, and also in complex with the activator cinaciguat. These structures uncover the molecular details of how stimulators interact with residues from both ß H-NOX and CC domains, to stabilize sGC in the extended active conformation. In contrast, cinaciguat occupies the haem pocket in the ß H-NOX domain and sGC shows both inactive and active conformations. These structures suggest a converged mechanism of sGC activation by pharmacological compounds.


Enzyme Activators/pharmacology , Soluble Guanylyl Cyclase/metabolism , Animals , Benzoates/chemistry , Benzoates/pharmacology , Binding Sites , Cell Line , Cryoelectron Microscopy , Enzyme Activation/drug effects , Enzyme Activators/chemistry , Humans , Indazoles/chemistry , Indazoles/pharmacology , Models, Molecular , Nitric Oxide/pharmacology , Protein Multimerization , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Soluble Guanylyl Cyclase/chemistry , Soluble Guanylyl Cyclase/ultrastructure
20.
Angew Chem Int Ed Engl ; 60(49): 25905-25913, 2021 12 01.
Article En | MEDLINE | ID: mdl-34555238

Many bioconjugation strategies for DNA oligonucleotides and antibodies suffer limitations, such as site-specificity, stoichiometry and hydrolytic instability of the conjugates, which makes them unsuitable for biological applications. Here, we report a new platform for the preparation of DNA-antibody bioconjugates with a simple benzoylacrylic acid pentafluorophenyl ester reagent. Benzoylacrylic-labelled oligonucleotides prepared with this reagent can be site-specifically conjugated to a range of proteins and antibodies through accessible cysteine residues. The homogeneity of the prepared DNA-antibody bioconjugates was confirmed by a new LC-MS protocol and the bioconjugate probes were used in fluorescence or super-resolution microscopy cell imaging experiments. This work demonstrates the versatility and robustness of our bioconjugation protocol that gives site-specific, well-defined and plasma-stable DNA-antibody bioconjugates for biological applications.


Acrylates/chemistry , Antibodies/chemistry , Benzoates/chemistry , DNA/chemistry , Oligonucleotides/chemistry , Chromatography, Liquid , Humans , Mass Spectrometry
...