Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 299
1.
Clin Rheumatol ; 43(3): 959-969, 2024 Mar.
Article En | MEDLINE | ID: mdl-38305937

OBJECTIVE: Fibroblast-like synoviocytes (FLS) play a critical role on the exacerbation and deterioration of rheumatoid arthritis (RA). Aberrant activation of FLS pyroptosis signaling is responsible for the hyperplasia of synovium and destruction of cartilage of RA. This study investigated the screened traditional Chinese medicine berberine (BBR), an active alkaloid extracted from the Coptis chinensis plant, that regulates the pyroptosis of FLS and secretion of inflammatory factors in rheumatoid arthritis. METHODS: First, BBR was screened using a high-throughput drug screening strategy, and its inhibitory effect on RA-FLS was verified by in vivo and in vitro experiments. Second, BBR was intraperitoneally administrated into the collagen-induced arthritis rat model, and the clinical scores, arthritis index, and joint HE staining were evaluated. Third, synovial tissues of CIA mice were collected, and the expression of NLRP3, cleaved-caspase-1, GSDMD-N, Mst1, and YAP was detected by Western blot. RESULTS: The administration of BBR dramatically alleviated the severity of collagen-induced arthritis rat model with a decreased clinical score and inflammation reduction. In addition, BBR intervention significantly attenuates several pro-inflammatory cytokines (interleukin-1ß, interleukin-6, interleukin-17, and interleukin-18). Moreover, BBR can reduce the pyroptosis response (caspase-1, NLR family pyrin domain containing 3, and gasdermin D) of the RA-FLS in vitro, activating the Hippo signaling pathway (Mammalian sterile 20-like kinase 1, yes-associated protein, and transcriptional enhanced associate domains) so as to inhibit the pro-inflammatory effect of RA-FLS. CONCLUSION: These results support the role of BBR in RA and may have therapeutic implications by directly repressing the activation, migration of RA-FLS, which contributing to the attenuation of the progress of CIA. Therefore, targeting PU.1 might be a potential therapeutic approach for RA. Besides, BBR inhibited RA-FLS pyroptosis by downregulating of NLRP3 inflammasomes (NLRP3, caspase-1) and eased the pro-inflammatory activities via activating the Hippo signaling pathway, thereby improving the symptom of CIA.


Arthritis, Experimental , Arthritis, Rheumatoid , Berberine , Rats , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Berberine/pharmacology , Berberine/therapeutic use , Berberine/metabolism , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/metabolism , Synovial Membrane/metabolism , Caspases/metabolism , Caspases/pharmacology , Caspases/therapeutic use , Fibroblasts/metabolism , Cells, Cultured , Cell Proliferation , Mammals
2.
Chem Biol Drug Des ; 103(1): e14420, 2024 01.
Article En | MEDLINE | ID: mdl-38230770

The cognitive dysfunction caused by prediabetes causes great difficulties in human life, and the terrible thing is that the means to prevent the occurrence of this disease are very limited at present, Berberine has shown the potential to treat diabetes and cognitive dysfunction, but it still needs to be further explored to clarify the mechanism of its therapeutic effect. Therefore, the aim of this study was to investigate the effects and mechanisms of Berberine on prediabetes-induced cognitive dysfunction. Prediabetes rat model was induced by a high-fat diet and a normal diet was used as a control. They were fed for 20 weeks. At week 13, the model rats were given 100 mg/kg Berberine by gavage for 7 weeks. The cognitive function of rats was observed. At the same time, OGTT, fasting blood glucose, blood lipids, insulin and other metabolic parameters, oxidative stress, and apoptosis levels were measured. The results showed that the model rats showed obvious glucose intolerance, elevated blood lipids, and insulin resistance, and the levels of oxidative stress and apoptosis were significantly increased. However, after the administration of Berberine, the blood glucose and lipid metabolism of prediabetic rats were significantly improved, and the oxidative stress level and apoptosis level of hippocampal tissue were significantly reduced. In conclusion, Berberine can alleviate the further development of diabetes in prediabetic rats, reduce oxidative stress and apoptosis in hippocampal tissue, and improve cognitive impairment in prediabetic rats.


Berberine , Cognitive Dysfunction , Insulin Resistance , Prediabetic State , Humans , Rats , Animals , Prediabetic State/drug therapy , Prediabetic State/metabolism , Berberine/pharmacology , Berberine/therapeutic use , Berberine/metabolism , Cognitive Dysfunction/drug therapy , Diet, High-Fat/adverse effects , Lipids , Apoptosis , Hippocampus/metabolism
3.
Int J Biol Macromol ; 256(Pt 2): 127987, 2024 Jan.
Article En | MEDLINE | ID: mdl-37979767

Inflammatory bowel disease (IBD) can cause intestinal microbial imbalance and aggravate intestinal inflammation. Mixed fructan is more easily fermented by colonic microorganisms and can be used as colonic drug delivery materials. Here, we constructed a mixed fructan based nanoparticle with dual targeted stimulation of pH and intestinal flora to effectively deliver berberine for the treatment of ulcerative colitis (UC). The complex of fructan based nanoparticle and berberine (BBRNPs) significantly ameliorated the inflammatory response of sodium dextran sulfate (DSS)-induced colitis in mice by inhibiting the activation of NF-κB/STAT-3 pathway and increasing tight junction protein expression in vivo. Importantly, BBRNPs improved the responsiveness of colitis microbiome and effectively regulated the relative homeostasis of harmful flora Enterobacteriaceae and Escherichia-shigolla, and beneficial flora Ruminococcaceae and Akkermansiaceae. This study provides a promising strategy for the effective treatment of UC and expands the application of branched fructan in pharmaceutics.


Berberine , Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Mice , Animals , Berberine/pharmacology , Berberine/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis/drug therapy , Colon , Hydrogen-Ion Concentration , Dextran Sulfate/adverse effects , Disease Models, Animal , Mice, Inbred C57BL
4.
Life Sci ; 336: 122347, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38103728

AIMS: The increasing resistance to anti-seizure medications (ASMs) and the ambiguous mechanisms of epilepsy highlight the pressing demand for the discovery of pioneering lead compounds. Berberine (BBR) has received significant attention in recent years within the field of chronic metabolic disorders. However, the reports on the treatment of epilepsy with BBR are not systematic and the mechanism remains unclear. MAIN METHODS: In this study, the seizure behaviors of mice were recorded following subcutaneous injection of pentetrazol (PTZ). Non-targeted metabolomics was used to analyze the serum metabolites based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Meanwhile, multivariate statistical methods were used for metabolite identification and pathway analysis. Furthermore, network pharmacology, molecular docking, and quantitative real-time PCR assay were used for the target identification. KEY FINDINGS: BBR had anti-seizure effects on PTZ-induced seizure mice after long-term treatment. Tryptophan metabolism and phenylalanine metabolism were involved in regulating the therapeutic effects of BBR. SIGNIFICANCE: This study reveals the potential mechanism of BBR for epilepsy treatment based on non-targeted metabolomics and network pharmacology, which provides evidence for uncovering the pathogenesis of epilepsy, suggesting that BBR is a potential lead compound for anti-epileptic treatment.


Berberine , Epilepsy , Mice , Animals , Berberine/pharmacology , Berberine/therapeutic use , Berberine/metabolism , Network Pharmacology , Molecular Docking Simulation , Metabolomics/methods , Pentylenetetrazole/toxicity , Epilepsy/chemically induced , Epilepsy/drug therapy , Seizures/chemically induced , Seizures/drug therapy
5.
Biomed Pharmacother ; 170: 116012, 2024 Jan.
Article En | MEDLINE | ID: mdl-38113631

BACKGROUND: Depression, a global neuropsychiatric disorder, brings a serious burden to patients and society as its incidence continues to rise. Berberine is one of the main compounds of a variety of Chinese herbal medicines and has been shown to have multiple pharmacological effects. However, whether berberine can exert antidepressant effects in vivo and in vitro and its related mechanisms remain to be explored. METHODS: The chronic restraint stress (CRS) method and corticosterone (CORT) were applied to simulate depression-like behavior in vivo and neuronal apoptosis in vitro, respectively. The antidepressant effects of berberine were evaluated by behavioral tests and changes in the content of monoamine neurotransmitters. Inflammatory cytokines were detected and immunofluorescence staining was used to observe the expression levels of apoptosis-related proteins. RT-qPCR and Western blot were used to examine the mRNA and protein expression (or phosphorylation) levels of biomarkers of the PI3K/AKT/CREB/BDNF signaling pathways. RESULTS: Behavioral tests and levels of neurotransmitters proved that berberine could effectively ameliorate depression-like symptoms in CRS mice. Meanwhile, the results of ELISA and immunofluorescence staining showed that berberine could alleviate inflammatory status and reduce cell apoptosis in vivo and in vitro. Moreover, the changes of the PI3K/AKT/CREB/BDNF signaling pathway induced by CRS or CORT in mouse hippocampus or HT-22 cells were significantly reversed by berberine. CONCLUSION: Our current study suggested that berberine could exert antidepressant effects in vitro and in vivo, which may be associated with the PI3K/AKT/CREB/BDNF signaling pathway.


Berberine , Proto-Oncogene Proteins c-akt , Humans , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Berberine/pharmacology , Berberine/therapeutic use , Berberine/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Signal Transduction , Depression/drug therapy , Depression/metabolism , Corticosterone/metabolism , Neurotransmitter Agents/metabolism , Hippocampus
6.
Ren Fail ; 45(2): 2290930, 2023.
Article En | MEDLINE | ID: mdl-38073545

Diabetic kidney disease (DKD) is a primary cause of end-stage renal disease. Proteinuria is a clinical indicator of the different stages of DKD, and podocyte injury is a major cause of proteinuria. Podocyte-specific proteins (PSPs) play important roles in the normal filtration of podocytes. Studies have shown that natural active compounds (NACs) can ameliorate proteinuria; however, the mechanism related to PSPs needs to be explored. In this study, the five stages of DKD related to proteinuria and the functions of PSPs are displayed separately. Mechanisms for ameliorating proteinuria and improving the PSPs of the 15 NACs are summarized. The in vitro and in vivo mechanistic research showed that five compounds, astragaloside IV, ligustrazine, berberine, emodin and resveratrol, exerted renal protective effects via AMPK signaling, icariin and berberine via TLR4 signaling, hirudin and baicalin via MAPK signaling, curcumin and baicalin via NF-κB signaling, and emodin via protein kinase RNA-like endoplasmic reticulum kinase signaling. The 13 PSPs were divided into five categories: actin cytoskeleton, basal domain, apical domain, slit diaphragm, and others. In conclusion, anti-inflammatory effects, anti-oxidative stress, and enhanced autophagy are the main mechanisms underlying the ameliorative effects of NACs. Podocyte apoptosis is mainly related to nephrin and podocin, which are the most studied slit diaphragm PSPs.


Berberine , Diabetes Mellitus , Diabetic Nephropathies , Emodin , Podocytes , Humans , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Emodin/pharmacology , Berberine/metabolism , Berberine/pharmacology , Proteinuria/drug therapy , Proteinuria/etiology , Proteinuria/metabolism
7.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article En | MEDLINE | ID: mdl-38139133

Berberine (BBR) is a natural alkaloid with multiple biotical effects that has potential as a treatment for fatty liver hemorrhagic syndrome (FLHS). However, the mechanism underlying the protective effect of BBR against FLHS remains unclear. The present study aimed to investigate the effect of BBR on FLHS induced by a high-energy, low-protein (HELP) diet and explore the involvement of the gut microbiota and bile acid metabolism in the protective effects. A total of 90 healthy 140-day-old Hy-line laying hens were randomly divided into three groups, including a control group (fed a basic diet), a HELP group (fed a HELP diet), and a HELP+BBR group (high-energy, high-protein diet supplemented with BBR instead of maize). Our results show that BBR supplementation alleviated liver injury and hepatic steatosis in laying hens. Moreover, BBR supplementation could significantly regulate the gut's microbial composition, increasing the abundance of Actinobacteria and Romboutsia. In addition, the BBR supplement altered the profile of bile acid. Furthermore, the gut microbiota participates in bile acid metabolism, especially taurochenodeoxycholic acid and α-muricholic acid. BBR supplementation could regulate the expression of genes and proteins related to glucose metabolism, lipid synthesis (FAS, SREBP-1c), and bile acid synthesis (FXR, CYP27a1). Collectively, our findings demonstrate that BBR might be a potential feed additive for preventing FLHS by regulating the gut microbiota and bile acid metabolism.


Berberine , Fatty Liver , Gastrointestinal Microbiome , Animals , Female , Berberine/pharmacology , Berberine/therapeutic use , Berberine/metabolism , Diet, Protein-Restricted , Chickens , Fatty Liver/drug therapy , Fatty Liver/etiology , Fatty Liver/prevention & control , Liver/metabolism , Bile Acids and Salts/metabolism
8.
J Mol Model ; 29(11): 353, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37907772

CONTEXT: Parkinson's disease is a chronic neurodegenerative condition that has no cure, characterized by the progressive degeneration of specific brain cells responsible for producing dopamine, a crucial neurotransmitter for controlling movement and muscle coordination. Parkinson's disease is estimated to affect around 1% of the world's population over the age of 60, but it can be diagnosed at younger ages. One of the treatment strategies for Parkinson's disease involves the use of drugs that aim to increase dopamine levels or simulate the action of dopamine in the brain. A class of commonly prescribed drugs are the so-called monoamine oxidase B (MAO-B) inhibitors due to the fact that this enzyme is responsible for metabolizing dopamine, thus reducing its levels in the brain. Studies have shown that berberine-derived alkaloids have the ability to selectively inhibit MAO-B activity, resulting in increased dopamine availability in the brain. In this context, berberine derivatives 13-hydroxy-discretinine and 7,8-dihydro-8-hydroxypalmatine, isolated from Guatteria friesiana, were evaluated via density functional theory followed by ADME studies, docking and molecular dynamic simulations with MAO-B, aiming to evaluate their anti-Parkinson potential, which have not been reported yet. Docking simulations with HSA were carried out aiming to evaluate the transport of these molecules through the circulatory system. METHODS: The 3D structures of the berberine-derived alkaloids were modeled via the DFT approach at B3LYP-D3(BJ)/6-311 + + G(2df, 2pd) theory level using Gaussian 09 software. Solvation free energies were determined through Truhlar's solvation model. MEP and ALIE maps were generated with Multiwfn software. Autodock Vina software was used for molecular docking simulations and analysis of the interactions in the binding sites. The 3D structure of MAO-B was obtained from the Protein Data Bank website under PDB code 2V5Z. For the interaction of studied alkaloids with human serum albumin (HSA) drug sites, 3D structures with PDB codes 2BXD, 2BXG, and 4L9K were used. Molecular dynamics simulations were carried out using GROMACS 2019.4 software, with the GROMOS 53A6 force field at 100 ns simulation time. The estimation of the ligand's binding free energies was obtained via molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method.


Berberine , Guatteria , Parkinson Disease , Humans , Berberine/metabolism , Berberine/pharmacology , Dopamine , Molecular Docking Simulation , Molecular Dynamics Simulation , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Parkinson Disease/drug therapy
9.
Basic Clin Pharmacol Toxicol ; 133(6): 757-769, 2023 Dec.
Article En | MEDLINE | ID: mdl-37811696

Berberine acts via multiple pathways to alleviate fibrosis in various tissues and shows renoprotective effects. However, its role and underlying mechanisms in renal fibrosis remain unclear. Herein, we aimed to investigate the protective effects and molecular mechanisms of berberine against unilateral ureteric obstruction-induced renal fibrosis. The results indicated that berberine treatment (50 mg/kg/day) markedly alleviated histopathological alterations, collagen deposition and inflammatory cell infiltration in kidney tissue and restored mouse renal function. Mechanistically, berberine intervention inhibited NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation and the levels of the inflammatory cytokine IL-1ß in the kidneys of unilateral ureteric obstruction mice. In addition, berberine relieved unilateral ureteric obstruction-induced renal injury by activating adenosine monophosphate-activated protein kinase (AMPK) signalling and promoting fatty acid ß-oxidation. In vitro models showed that berberine treatment prevented the TGF-ß1-induced profibrotic phenotype of hexokinase 2 (HK-2) cells, characterized by loss of an epithelial phenotype (alpha smooth muscle actin [α-SMA]) and acquisition of mesenchymal marker expression (E-cadherin), by restoring abnormal fatty acid ß-oxidation and upregulating the expression of the fatty acid ß-oxidation related-key enzymes or regulators (phosphorylated-AMPK, peroxisome proliferator activated receptor alpha [PPARα] and carnitine palmitoyltransferase 1A [CPT1A]). Collectively, berberine alleviated renal fibrosis by inhibiting NLRP3 inflammasome activation and protected tubular epithelial cells by reversing defective fatty acid ß-oxidation. Our findings might be exploited clinically to provide a potential novel therapeutic strategy for renal fibrosis.


Berberine , Kidney Diseases , Ureteral Obstruction , Mice , Animals , Ureteral Obstruction/complications , Ureteral Obstruction/drug therapy , Berberine/pharmacology , Berberine/therapeutic use , Berberine/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , AMP-Activated Protein Kinases/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/etiology , Kidney Diseases/prevention & control , Kidney , Transforming Growth Factor beta1/metabolism , Inflammation/pathology , Fibrosis , Fatty Acids/metabolism , Fatty Acids/pharmacology , Fatty Acids/therapeutic use
10.
Amino Acids ; 55(12): 1867-1878, 2023 Dec.
Article En | MEDLINE | ID: mdl-37814030

Hepatic stellate cell (HSC) activation is the key process in hepatic fibrosis (HF) development. Targeted death of HSCs could be effective in the prevention and treatment of HF. Phosphatidylethanolamine-binding protein (PEBP)1 can trigger ferroptosis by mediating peroxide production, but how it modulates HSC ferroptosis is not known. We screened natural small molecules that could bind with PEBP1, and investigated the mechanism by which it promotes HSC ferroptosis. The maximum binding energy of berberine with PEBP1 was - 8.51 kcal/mol, indicating that berberine could bind strongly with PEBP1. Berberine binding to PEBP1 could promote HSC ferroptosis via synergy of its actions with those of sorafenib, but it could not induce ferroptosis alone. Combined administration of berberine enhanced the ferroptotic effects of low-dose sorafenib upon HSCs. Herein, we revealed that PEBP1 might be a target that could enhance the effects of sorafenib, which could provide a new therapeutic approach for HF treatment.


Berberine , Ferroptosis , Humans , Sorafenib/pharmacology , Sorafenib/metabolism , Sorafenib/therapeutic use , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Berberine/pharmacology , Berberine/metabolism , Berberine/therapeutic use , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Phosphatidylethanolamine Binding Protein/genetics , Phosphatidylethanolamine Binding Protein/metabolism
11.
Int J Pharm ; 643: 123283, 2023 Aug 25.
Article En | MEDLINE | ID: mdl-37536642

After spinal cord injury (SCI), local inflammatory response and fibrous scar formation severely hinder nerve regeneration. Berberine (Ber) has a powerful regulatory effect on the local microenvironment, but its limited solubility and permeability through the blood-brain barrier severely limit its systemic efficacy. Human umbilical cord mesenchymal stem cells (hUC-MSCs)-derived small extracellular vesicles (sEVs) are natural nanocarriers with high cargo loading capacity, and can cross the blood-brain barrier. Most importantly, sEVs can improve drug solubility and drug utilization. Therefore, they can overcome many defects of Ber application. This experiment aimed to design a Ber-carrying hUC-MSCs-derived sEVs and GelMA hydrogel. Ber was loaded into sEVs (sEVs-Ber) by ultrasonic co-incubation with a drug loading capacity (LC) of 15.07%. The unhindered release of up to 80% of sEVs-Ber from GelMA hydrogel was accomplished for up to 14 days. And they could be directly absorbed by local cells of injury, allowing for direct local delivery of the drug and enhancing its efficacy. The experimental results confirmed injecting GelMA-sEVs-Ber into spinal cord defects could exert anti-inflammatory effects by regulating the expression of inflammatory factors. It also demonstrated the anti-fibrotic effect of Ber in SCI for the first time. The modulatory effects of sEVs and Ber on the local microenvironment significantly promoted nerve regeneration and recovery of motor function in post-SCI rats. These results demonstrated that the GelMA-sEVs-Ber dual carrier system is a promising therapeutic strategy for SCI repair.


Berberine , Extracellular Vesicles , Spinal Cord Injuries , Rats , Humans , Animals , Hydrogels/metabolism , Berberine/metabolism , Rats, Sprague-Dawley , Spinal Cord Injuries/drug therapy , Extracellular Vesicles/metabolism , Spinal Cord/metabolism
12.
In Vivo ; 37(5): 2105-2127, 2023.
Article En | MEDLINE | ID: mdl-37652508

BACKGROUND/AIM: High-fat diets induce shifts in the gut microbial community structure in patients or animals with non-alcoholic steatohepatitis (NASH). The objective of this study was to investigate the influence of metformin (MET) and berberine (BER) on the intestinal microbiota of rats with NASH. MATERIALS AND METHODS: Forty specific pathogen-free male Sprague-Dawley rats were randomized into 4 groups. Model rats were fed high-fat diets to create NASH models. MET or BER rats were administrated MET or BER, respectively, at the onset of induction of NASH. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), cholesterol, and triglycerides were examined. Plasma endotoxin levels were measured using the turbidimetric endotoxin assay. The incidence of bacterial translocation describes the passage of bacteria of the gastrointestinal tract through the intestinal mucosa barrier to mesenteric lymph nodes and other organs. Hematoxylin and eosin and oil red O staining were used for histopathological analysis. High throughput 16S rRNA sequencing was carried out for analyzing the composition of intestinal microbiota. RESULTS: High-fat diets caused NASH after 16-week induction. Administration of MET and BER ameliorated NASH by attenuating hepatic steatosis and inflammation and decreasing the plasma levels of endotoxin. MET and BER restored the composition of the intestinal microbiota disrupted by NASH. Both MET and BER altered the abundance of Atopobiaceae, Brevibacterium, Christensenellaceae, Coriobacteriales, Papillibacter, Pygmaiobacter, and Rikenellaceae RC9 in rats with NASH. The screened intestinal microbiota may be responsible for the improvement in fat accumulation and glucose metabolism. CONCLUSION: MET and BER demonstrated beneficial effects on the intestinal microbiota, which was disturbed in NASH. This finding may explain the functional mechanism of MET and BER in NASH.


Berberine , Gastrointestinal Microbiome , Metformin , Non-alcoholic Fatty Liver Disease , Humans , Rats , Male , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Berberine/pharmacology , Berberine/metabolism , Metformin/pharmacology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Rats, Sprague-Dawley , Diet, High-Fat/adverse effects , Endotoxins/metabolism , Endotoxins/pharmacology , Liver/pathology , Disease Models, Animal
13.
Fitoterapia ; 168: 105554, 2023 Jul.
Article En | MEDLINE | ID: mdl-37270161

Infectious diseases have remained a burgeoning cause of death and disability since long. Staphylococcus aureus (S. aureus) is a severe bacterial pathogen causing nosocomial and community infections. It exhibits widespread resistance to antibiotics posing a significant threat to their efficacy. For combating this challenge, different strategies may include modifying existing antibiotics, developing new antibacterial agents, and combining treatments with resistance mechanism inhibitors. Resistance in S. aureus occurs through horizontal gene transfer or chromosomal mutations. Acquisition mechanisms involve enzymatic modification, efflux, target bypass, and drug displacement. Mutations can impact drug targets, activate efflux pumps, or alter cell wall composition to impede drug access. Overcoming S. aureus resistance requires innovative approaches to preserve antibiotic effectiveness. The present study involves the virtual screening of phytochemicals of diverse chemical classes from Zinc database against the antibiotic resistant targets of S. aureus like ß-Lactamase, Penicillin Binding Protein 2a (PBP2a), Dihydrofolate reductase (DHFR), DNA gyrase, Multidrug ABC transporter SAV1866, Undecaprenyl diphosphate synthase (UPPS), etc. Thymol, eugenol, gallic acid, l-ascorbic acid, curcumin, berberine and quercetin were identified as potential molecules based on their docking score, binding interactions. These molecules were further analyzed for the ADMET and drug likeness properties using pkCSM, SwissADME and Qikprop tools. Further in vitro evaluation of these molecules against antibiotic-resistant strains of S. aureus, both alone and in combination with antibiotics revealed significant findings. Curcumin demonstrated the lowest MIC values (31.25-62.5 µg/ml) when tested individually. Thymol, berberine, and quercetin displayed MIC values within the range of 125-250 µg/ml, while eugenol and gallic acid exhibited MIC values ranging from 500 to 1000 µg/ml. Notably, thymol exhibited potent synergy with all four antibiotics against clinical isolates of S. aureus, with Fractional inhibitory concentration index (FICI) values consistently below 0.5, highlighting its exceptional antibacterial activity, especially in combination with amoxicillin.


Berberine , Curcumin , Methicillin-Resistant Staphylococcus aureus , Staphylococcus aureus , Thymol , Eugenol/metabolism , Curcumin/metabolism , Quercetin/pharmacology , Quercetin/metabolism , Berberine/metabolism , Molecular Structure , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Resistance, Bacterial , Microbial Sensitivity Tests
14.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(4): 552-559, 2023 Apr 20.
Article Zh | MEDLINE | ID: mdl-37202190

OBJECTIVE: To evaluate the regulatory effect of berberine on autophagy and apoptosis balance of fibroblast-like synoviocytes (FLSs) from patients with in rheumatoid arthritis (RA) and explore the mechanism. METHODS: The inhibitory effect of 10, 20, 30, 40, 50, 60, 70, and 80 µmol/L berberine on RA-FLS proliferation was assessed using CCK-8 method. Annexin V/PI and JC-1 immunofluorescence staining was used to analyze the effect of berberine (30 µmol/L) on apoptosis of 25 ng/mL TNF-α- induced RA-FLSs, and Western blotting was performed to detect the changes in the expression levels of autophagy- and apoptosis-related proteins. The cells were further treated with the autophagy inducer RAPA and the autophagy inhibitor chloroquine to observe the changes in autophagic flow by laser confocal detection of mCherry-EGFP-LC3B. RA-FLSs were treated with the reactive oxygen species (ROS) mimic H2O2 or the ROS inhibitor NAC, and the effects of berberine on ROS, mTOR and p-mTOR levels were observed. RESULTS: The results of CCK-8 assay showed that berberine significantly inhibited the proliferation of RA-FLSs in a time- and concentration-dependent manner. Flow cytometry and JC-1 staining showed that berberine (30 µmol/L) significantly increased apoptosis rate (P < 0.01) and reduced the mitochondrial membrane potential of RA-FLSs (P < 0.05). Berberine treatment obviously decreased the ratios of Bcl-2/Bax (P < 0.05) and LC3B-II/I (P < 0.01) and increased the expression of p62 protein in the cells (P < 0.05). Detection of mCherry-EGFP-LC3B autophagy flow revealed obvious autophagy flow block in berberine-treated RA-FLSs. Berberine significantly reduced the level of ROS in TNF-α-induced RA-FLSs and upregulated the expression level of autophagy-related protein p-mTOR (P < 0.01); this effect was regulated by ROS level, and the combined use of RAPA significantly reduced the pro-apoptotic effect of berberine in RA-FLSs (P < 0.01). CONCLUSION: Berberine can inhibit autophagy and promote apoptosis of RA-FLSs by regulating the ROS-mTOR pathway.


Arthritis, Rheumatoid , Berberine , Synoviocytes , Humans , Berberine/pharmacology , Berberine/metabolism , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism , Hydrogen Peroxide/metabolism , Cell Proliferation , Arthritis, Rheumatoid/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Fibroblasts , Autophagy , Cells, Cultured
15.
Mol Biochem Parasitol ; 254: 111562, 2023 06.
Article En | MEDLINE | ID: mdl-37084956

Current chemotherapy against the Surra organism, Trypanosoma evansi has several limitations in terms of efficacy, toxicity, availability and emerging resistance. These reasons make the search of new chemo-preventive and chemo-therapeutic agent with high potency and low toxicity. Alkaloid phyto-molecules, berberine has shown promising anti-kinetoplastid activity against T. cruzi, T. congolense, T. brucei, Leishmania donovani and L. tropica. However, till date, there is no investigation of therapeutic efficacy of berberine chloride (BC) against T. evansi. The IC50 value of BC for growth inhibition of T. evansi at 24 h of culture was calculated as 12.15 µM. The specific selectivity index (SSI) of BC was calculated as 19.01 and 10.43 against Vero cell line and Equine PBMC's, respectively. Thirteen drug target genes affecting various metabolic pathways were studied to investigate the mode of trypanocidal action of BC. In transcript analysis, the mRNA expression of arginine kinase 1 remained refractory to exposure with BC, which provides metabolic plasticity in adverse environmental conditions. In contrary, rest all the drug target gene were down-regulated, which indicates that drug severely affect DNA replication, cell proliferation, energy homeostasis, redox homeostasis and calcium homeostasis of T. evansi, leading to the death of parasite in low concentrations. It is the first attempt to investigate in vitro anti-trypanosomal activity of BC against T. evansi. These data imply that phytochemicals as alternative strategies can be explored in the future as an alternative treatment for Surra in animal.


Berberine , Chagas Disease , Trypanosoma , Trypanosomiasis , Animals , Horses , Berberine/pharmacology , Berberine/metabolism , Berberine/therapeutic use , Chlorides/metabolism , Chlorides/therapeutic use , Leukocytes, Mononuclear , Trypanosoma/genetics , Trypanosoma/metabolism , Trypanosomiasis/drug therapy
16.
Redox Biol ; 62: 102704, 2023 06.
Article En | MEDLINE | ID: mdl-37086629

Nuclear factor (NF)-κB plays a pivotal role in the regulation of inflammatory response in macrophages. Berberine (BBR), which is an active constituent isolated from Coptis rhizome, possesses a prominent anti-inflammatory activity. Here we show that BBR changes the global acetylation landscape in LPS-induced protein acetylation of macrophages and reduces the acetylation of NF-κB subunit p65 at site Lys310(p65Lys310), leading to the inhibition of NF-κB translocation and transcriptional activity to suppress the expressions of inflammatory factors. BBR resists the inflammatory response in acute LPS-stimulated mice through downregulation of p65Lys310 acetylation in peritoneal macrophages. In obese mice, BBR alleviates the metabolic disorder and inflammation with the reduced acetylation of p65Lys310 in white adipose tissue. Furthermore, we demonstrate that BBR acts as a regulator of p65Lys310 by inhibiting the expression of p300 in macrophages. Our findings elucidate a new molecular mechanism for the anti-inflammatory effect of BBR via the p300/p65Lys310 axis.


Berberine , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Berberine/pharmacology , Berberine/metabolism , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Acetylation , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Anti-Inflammatory Agents/pharmacology
17.
Lab Invest ; 103(4): 100041, 2023 04.
Article En | MEDLINE | ID: mdl-36870291

Alcoholic fatty liver disease (AFLD) is an early stage of alcohol-related liver disease characterized by abnormal lipid metabolism in hepatocytes. To date, to our knowledge, there have been no effective strategies for preventing or treating alcohol-related liver disease besides alcohol abstinence. Berberine (BBR) is the main bioactive ingredient extracted from traditional Chinese medicines, such as Coptis and Scutellaria, which protect liver function and relieve liver steatosis. However, the potential role of BBR in AFLD remains unclear. Therefore, this study investigated the protective effects of BBR against Gao-binge model-induced AFLD in 6- to 8-week-old C57BL/6J male mice in vivo and ethyl alcohol (EtOH)-induced alpha mouse liver 12 (AML-12) cells in vitro. The results showed that BBR (200 mg/kg) attenuated alcoholic liver injury and suppressed lipid accumulation and metabolism disorders in vivo. Consistently, BBR effectively inhibited the expression of sterol regulatory element-binding transcription factor 1C, sterol regulatory element-binding transcription factor 2, fatty acid synthase, and 3-hydroxy-3-methylglutaryl-CoenzymeA reductase in EtOH-stimulated AML-12 cells in vitro and promoted the expression of sirtuin 1 (SIRT1) in EtOH-fed mice and EtOH-treated AML-12 cells. Furthermore, SIRT1 silencing attenuated the hepatic steatosis alleviation potential of BBR treatment. Mechanistically, molecular docking revealed the binding effect of BBR and adenosine monophosphate-activated protein kinase (AMPK). The results of further studies showed that a decrease in AMPK activity was accompanied by a significant inhibition of SIRT1 expression. SIRT1 silencing attenuated the protective effect of BBR, whereas the inhibition of its expression had no apparent effect on AMPK phosphorylation, suggesting that SIRT1 acts downstream of AMPK in AFLD. Collectively, BBR ameliorated abnormal lipid metabolism and alleviated EtOH-induced liver injury via the AMPK/SIRT1 pathway in AFLD mice.


Berberine , Fatty Liver , Leukemia, Myeloid, Acute , Male , Mice , Animals , Sirtuin 1/metabolism , Lipid Metabolism , Berberine/pharmacology , Berberine/therapeutic use , Berberine/metabolism , AMP-Activated Protein Kinases/metabolism , Molecular Docking Simulation , Mice, Inbred C57BL , Liver/metabolism , Fatty Liver/drug therapy , Fatty Liver/metabolism , Ethanol/toxicity , Transcription Factors/metabolism , Sterols/metabolism , Sterols/pharmacology , Leukemia, Myeloid, Acute/metabolism
18.
Histol Histopathol ; 38(9): 1009-1016, 2023 Sep.
Article En | MEDLINE | ID: mdl-36861878

Diabetic nephropathy (DN) has become one of the major fatal factors in diabetic patients. The aim of this study was to elucidate the function and mechanism by which berberine exerts renoprotective effects in DN. In this work, we first demonstrated that urinary iron concentration, serum ferritin and hepcidin levels were increased and total antioxidant capacity was significantly decreased in DN rats, while these changes could be partially reversed by berberine treatment. Berberine treatment also alleviated DN-induced changes in the expression of proteins involved in iron transport or iron uptake. In addition, berberine treatment also partially blocked the expression of renal fibrosis markers induced by DN, including MMP2, MMP9, TIMP3, ß-arrestin-1, and TGF-ß1. In conclusion, the results of this study suggest that berberine may exert renoprotective effects by ameliorating iron overload and oxidative stress and reducing DN.


Berberine , Diabetes Mellitus , Diabetic Nephropathies , Iron Overload , Rats , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Kidney/metabolism , Berberine/pharmacology , Berberine/metabolism , Rats, Sprague-Dawley , Oxidative Stress , Iron Overload/drug therapy , Iron Overload/metabolism , Iron/metabolism , Diabetes Mellitus/metabolism
19.
Molecules ; 28(4)2023 Feb 16.
Article En | MEDLINE | ID: mdl-36838862

Metabolic-associated fatty liver disease (MAFLD) is one of the most common chronic liver diseases, which in turn triggers mild inflammation, metabolic dysfunction, fibrosis, and even cancer. Accumulating evidence has suggested that Berberine (BBR) could significantly improve MAFLD progression. Clock and Bmal1 as heterodimer proteins highly participated in the development of MAFLD, but whether BBR targets Clock and Bmal1 in MAFLD remains poorly understood. The result suggested that the protein levels of Clock and Bmal1 were decreased in MAFLD mice, which was negatively correlated with elevated reactive oxygen species (ROS) accumulation, the H2O2 level, liver inflammation, metabolic dysfunction, and insulin resistance. The mRNA and protein levels of Clock and Bmal1 were also decreased in glucosamine-induced HepG2 cells, which were are negatively related to glucose uptake, the ROS level, and the H2O2 level. More importantly, Bmal1 siRNA could mimic the effect of glucosamine in HepG2 cells. Interestingly, Berberine (BBR) could rescue metabolism disorder and redox homeostasis through enhancing Clock and Bmal1 expression in vivo and in vitro. Therefore, BBR might be an effective natural compound for alleviating redox homeostasis, metabolism disorder, and liver pathological changes in MAFLD by activating Clock and Bmal1 expression.


Berberine , Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Animals , Mice , ARNTL Transcription Factors/genetics , Berberine/metabolism , Glucosamine , Homeostasis , Hydrogen Peroxide/metabolism , Inflammation/metabolism , Liver/metabolism , Metabolic Diseases/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Humans , Hep G2 Cells
20.
Endocrinology ; 164(4)2023 02 11.
Article En | MEDLINE | ID: mdl-36825874

Berberine (BBR), which is a compound derived from the Chinese medicinal plant Coptis chinensis, promotes weight loss, but the molecular mechanisms are not well understood. Here, we show that BBR increases the serum level of growth differentiation factor 15 (GDF15), which is a stress response cytokine that can reduce food intake and lower body weight in diet-induced obese (DIO) mice. The body weight and food intake of DIO mice were decreased after BBR treatment, and the weight change was negatively correlated with the serum GDF15 level. Further studies show that BBR induced GDF15 mRNA expression and secretion in the brown adipose tissue (BAT) of DIO mice and primary mouse brown adipocytes. In addition, we found that BBR upregulates GDF15 mRNA expression and secretion by activating the integrated stress response (ISR) in primary mouse brown adipocytes. Overall, our findings show that BBR lowers body weight by inducing GDF15 secretion via the activation of the ISR in BAT.


Adipocytes, Brown , Berberine , Animals , Mice , Adipocytes, Brown/metabolism , Berberine/metabolism , Berberine/pharmacology , Growth Differentiation Factor 15/genetics , Obesity/metabolism , Body Weight , Adipose Tissue, Brown/metabolism , RNA, Messenger/metabolism
...