Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Sci Rep ; 11(1): 20659, 2021 10 19.
Article En | MEDLINE | ID: mdl-34667205

Gut lactobacilli and bifidobacteria on the immune homeostasis. Therefore, to understand the mechanism in vivo, we selected human fecal Lactobacillus rhamnosus NK210 and Bifidobacterium longum NK219, which strongly suppressed the IFN-γ to IL-10 expression (IIE) ratio in lipopolysaccharide-stimulated macrophages. Thereafter, we examined their effects on the endotoxin, antibiotics, or antitumor drug-stimulated immune imbalance in mice. Intraperitoneal injection of lipopolysaccharide and oral gavage of ampicillin increased IFN-γ and TNF-α expression in the spleen, colon, and hippocampus, while IL-10 expression decreased. However, intraperitoneal injection of cyclophosphamide suppressed IFN-γ, TNF-α, and IL-10 expression. LPS exposure induced splenic natural killer cell cytotoxicity against YAC-1 cells (sNK-C) and peritoneal macrophage phagocytosis against Candida albicans (pMA-P) activities, while cyclophosphamide and ampicillin treatments suppressed sNK-C and pMA-P activities. However, LPS, ampicillin, cyclophosphamide all increased IIE and TNF-α to IL-10 expression (TIE) ratios. Oral administration of NK210 and/or NK219 significantly reduced LPS-induced sNK-C, pMA-P, and IFN-γ expression, while cyclophosphamide- or ampicillin-suppressed sNK-C and pMA-P activities, cyclophosphamide-suppressed IFN-γ, TNF-α, and IL-10 expression, and ampicillin-suppressed IL-10 expression increased. Nevertheless, they suppressed LPS-, ampicillin-, or cyclophosphamide-induced IIE and TIE ratios, cognitive impairment, and gut dysbiosis. In particular, NK219, but not NK210, increased the IIE expression ratio in vitro and in vivo, and enhanced sNK-C and pMA-P activities in normal control mice, while cognitive function and gut microbiota composition were not significantly affected. These findings suggest that NK210, Lactobacillus sp, and NK219, Bifidobacterium additively or synergistically alleviate gut dysbiosis, inflammation, and cognitive impairment with immune imbalance by controlling IIE and TIE ratios.


Bifidobacterium longum/metabolism , Dysbiosis/therapy , Lacticaseibacillus rhamnosus/metabolism , Animals , Bifidobacterium/metabolism , Bifidobacterium longum/pathogenicity , Cognitive Dysfunction/microbiology , Cognitive Dysfunction/therapy , Colitis/microbiology , Colitis/therapy , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Humans , Inflammation/metabolism , Interferon-gamma/antagonists & inhibitors , Interferon-gamma/metabolism , Interleukin-10/metabolism , Lactobacillus/metabolism , Lacticaseibacillus rhamnosus/pathogenicity , Male , Mice , Mice, Inbred C57BL , Probiotics/administration & dosage , Tumor Necrosis Factor-alpha/metabolism
2.
PLoS One ; 16(4): e0249817, 2021.
Article En | MEDLINE | ID: mdl-33857178

The purpose of this research is to investigate the relationship between the microbiota of the gastrointestinal (GI) system and relative gene expression of miRNAs and mRNAs in the brain. C57BL/6 mice and Balb/c mice are fed Bifidobacterium longum, a well-characterized probiotic bacterial species shown to change behavior and improve sociability of Balb/c mice. After feeding, RNA was extracted from whole brains and PCR arrays were utilized to determine changes in the gene expression of brain-specific miRNAs. The results of these PCR arrays reveal that the relative gene expression of mmu-mir-652-3p is sensitive to B. longum probiotic treatment in C57BL/6 mice. qPCR was performed to measure expression of Dab1, an mRNA target of this miRNA. Dab1 expression is also dependent on B. longum. The goal of this study is to further understand the relationship between the gut microbiota and its impacts on neurological gene expression and brain function.


Bifidobacterium longum/pathogenicity , Brain/metabolism , Gastrointestinal Microbiome , MicroRNAs/genetics , Animals , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , MicroRNAs/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Probiotics
3.
Genomics ; 112(1): 769-773, 2020 01.
Article En | MEDLINE | ID: mdl-31226482

B. longum LTBL16 is a potential probiotic strain that was isolated from healthy centenarians in Bama, China. In vitro experiments show that B. longum LTBL16 has a strong antioxidant activity and the complete genome of B. longum LTBL16 was sequenced in this work. The genome consists of one 2,430,682 bp circular chromosome that is plasmid free. The circular chromosome has a GC content of 61.23% and contains 2071 coding sequences (CDSs), 4 rRNA manipulators and 55 tRNA coding genes. Genetic analysis showed that at least five protein-coding genes were associated with antioxidant activity, and the abundance of these genes may be related to free radical scavenging rates and oxygen tolerance. In addition, the safety of B. longum LTBL16 was evaluated using a virulence factor database and antibiotic resistance gene database. The results indicate that B. longum LTBL16 has the good potential for the development and utilization as a probiotic.


Antioxidants , Bifidobacterium longum/genetics , Genome, Bacterial , Aged, 80 and over , Bifidobacterium longum/classification , Bifidobacterium longum/drug effects , Bifidobacterium longum/pathogenicity , Drug Resistance, Bacterial/genetics , Humans , Phylogeny , Probiotics , Sequence Analysis, DNA , Virulence Factors/genetics
4.
Am J Gastroenterol ; 114(7): 1152-1162, 2019 07.
Article En | MEDLINE | ID: mdl-30998517

OBJECTIVES: Accumulating evidence indicates that the gut microbiota communicates with the central nervous system, possibly through neural, endocrine, and immune pathways, and influences brain function. B. longum 1714™ has previously been shown to attenuate cortisol output and stress responses in healthy subjects exposed to an acute stressor. However, the ability of B. longum 1714™ to modulate brain function in humans is unclear. METHODS: In a randomized, double-blinded, placebo-controlled trial, the effects of B. longum 1714™ on neural responses to social stress, induced by the "Cyberball game," a standardized social stress paradigm, were studied. Forty healthy volunteers received either B. longum 1714™ or placebo for 4 weeks at a dose of 1 × 10 cfu/d. Brain activity was measured using magnetoencephalography and health status using the 36-item short-form health survey. RESULTS: B. longum 1714™ altered resting-state neural oscillations, with an increase in theta band power in the frontal and cingulate cortex (P < 0.05) and a decrease in beta-3 band in the hippocampus, fusiform, and temporal cortex (P < 0.05), both of which were associated with subjective vitality changes. All groups showed increased social stress after a 4-week intervention without an effect at behavioral level due to small sample numbers. However, only B. longum 1714™ altered neural oscillation after social stress, with increased theta and alpha band power in the frontal and cingulate cortex (P < 0.05) and supramarginal gyrus (P < 0.05). DISCUSSION: B. longum 1714™ modulated resting neural activity that correlated with enhanced vitality and reduced mental fatigue. Furthermore, B. longum 1714™ modulated neural responses during social stress, which may be involved in the activation of brain coping centers to counter-regulate negative emotions.


Bifidobacterium longum/pathogenicity , Brain/diagnostic imaging , Gastrointestinal Microbiome/physiology , Magnetic Resonance Imaging/methods , Probiotics/therapeutic use , Stress, Psychological/etiology , Analysis of Variance , Bifidobacterium longum/drug effects , Brain/physiopathology , Double-Blind Method , Female , Healthy Volunteers , Humans , Male , Statistics, Nonparametric , Stress, Psychological/diagnosis , Young Adult
5.
Int J Mol Sci ; 19(5)2018 May 09.
Article En | MEDLINE | ID: mdl-29747442

Over the past decade, a variety of lactic acid bacteria have been commercially available to and steadily used by consumers. However, recent studies have shown that some lactic acid bacteria produce toxic substances and display properties of virulence. To establish safety guidelines for lactic acid bacteria, the Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO) has suggested that lactic acid bacteria be characterized and proven safe for consumers’ health via multiple experiments (e.g., antibiotic resistance, metabolic activity, toxin production, hemolytic activity, infectivity in immune-compromised animal species, human side effects, and adverse-outcome analyses). Among the lactic acid bacteria, Bifidobacterium and Lactobacillus species are probiotic strains that are most commonly commercially produced and actively studied. Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI have been used in global functional food markets (e.g., China, Germany, Jordan, Korea, Lithuania, New Zealand, Poland, Singapore, Thailand, Turkey, and Vietnam) as nutraceutical ingredients for decades, without any adverse events. However, given that the safety of some newly screened probiotic species has recently been debated, it is crucial that the consumer safety of each commercially utilized strain be confirmed. Accordingly, this paper details a safety assessment of B. bifidum BGN4 and B. longum BORI via the assessment of ammonia production, hemolysis of blood cells, biogenic amine production, antimicrobial susceptibility pattern, antibiotic resistance gene transferability, PCR data on antibiotic resistance genes, mucin degradation, genome stability, and possession of virulence factors. These probiotic strains showed neither hemolytic activity nor mucin degradation activity, and they did not produce ammonia or biogenic amines (i.e., cadaverine, histamine or tyramine). B. bifidum BGN4 and B. longum BORI produced a small amount of putrescine, commonly found in living cells, at levels similar to or lower than that found in other foods (e.g., spinach, ketchup, green pea, sauerkraut, and sausage). B. bifidum BGN4 showed higher resistance to gentamicin than the European Food Safety Authority (EFSA) cut-off. However, this paper shows the gentamicin resistance of B. bifidum BGN4 was not transferred via conjugation with L. acidophilus ATCC 4356, the latter of which is highly susceptible to gentamicin. The entire genomic sequence of B. bifidum BGN4 has been published in GenBank (accession no.: CP001361.1), documenting the lack of retention of plasmids capable of transferring an antibiotic-resistant gene. Moreover, there was little genetic mutation between the first and 25th generations of B. bifidum BGN4. Tetracycline-resistant genes are prevalent among B. longum strains; B. longum BORI has a tet(W) gene on its chromosome DNA and has also shown resistance to tetracycline. However, this research shows that its tetracycline resistance was not transferred via conjugation with L. fermentum AGBG1, the latter of which is highly sensitive to tetracycline. These findings support the continuous use of B. bifidum BGN4 and B. longum BORI as probiotics, both of which have been reported as safe by several clinical studies, and have been used in food supplements for many years.


Ammonia/metabolism , Bifidobacterium bifidum/physiology , Bifidobacterium longum/physiology , Animals , Anti-Bacterial Agents/pharmacology , Bifidobacterium bifidum/drug effects , Bifidobacterium bifidum/growth & development , Bifidobacterium bifidum/pathogenicity , Bifidobacterium longum/drug effects , Bifidobacterium longum/growth & development , Bifidobacterium longum/pathogenicity , Biogenic Amines/metabolism , Drug Resistance, Microbial/drug effects , Hemolysis , Humans , Microbial Sensitivity Tests , Virulence Factors/metabolism
...