Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47.059
1.
PLoS One ; 19(5): e0300371, 2024.
Article En | MEDLINE | ID: mdl-38753613

Chameleons (family Chamaeleonidae) are a distinctive group of reptiles, mainly found in Africa, which have high local endemism and face significant threats from the international wildlife trade. We review the scale and structure of international chameleon trade, with a focus on collection in and exports from Tanzania; a hotspot of chameleon diversity. Analysis used data from the CITES Trade Database 2000-2019, combined with assessment of online trade, and on-the-ground surveys in Tanzania in 2019. Between 2000 and 2019, 1,128,776 live chameleons from 108 species were reported as exported globally, with 193,093 of these (from 32 species) exported by Tanzania. Both global and Tanzanian chameleon exports declined across the study period, driven by decreased trade in generalist genera. Whilst the proportion of captive-bred individuals increased across time for the generalist taxa, the majority of range-restricted taxa in trade remained largely wild-sourced. For Tanzanian exports, 41% of chameleons were from one of the 23 endemic species, and 10 of the 12 Tanzanian endemic species in trade are categorised as threatened with extinction by IUCN. In terms of online trade, of the 42 Tanzanian species assessed, there was evidence of online sale for 83.3% species, and 69% were actively for sale with prices listed. Prices were on average highest for Trioceros species, followed by Kinyongia, Rieppeleon, Rhampholeon, and Chameleo. Field work in Tanzania provided evidence that the historic harvest of endemic chameleon species has been higher than the quantities of these species reported as exported by Tanzania in their annual trade reports to CITES. However, we found no field evidence for trade in 2020 and 2021, in line with Tanzanian regulations that applied a blanket ban on all exports of live wild animals. Literature evidence, however, suggests that illegal trade continued to Europe from seizures of Tanzanian chameleon species in Austria in 2021.


Animals, Wild , Commerce , Conservation of Natural Resources , Lizards , Animals , Tanzania , Endangered Species/statistics & numerical data , Endangered Species/trends , Biodiversity , Wildlife Trade
2.
PLoS One ; 19(5): e0303649, 2024.
Article En | MEDLINE | ID: mdl-38753680

Alalili system is one among the fewest remnant African indigenous and local knowledge systems that is traditionally practiced by Maasai pastoral communities to conserve certain portions of rangeland resources such as pastures and water for subsequent grazing during dry seasons. Despite its existence, East African rangelands face diverse threats from tenure security, unsustainable practices, climate, and land-use change that are notably endangering the biodiversity, livelihoods, and ecosystems in the landscape. Like other indigenous conservation systems, the sustainability of Alalili systems is being threatened, as Maasai communities are in transition due to continuous socio-cultural transformations coupled with increased livestock and human populations. We aimed to capture and document the existing occurrence and potential of Alalili systems as a pathway to improve resilience and sustain both biodiversity conservation and community livelihoods in rangeland areas of northern Tanzania. A cross-sectional research design was applied with the adoption of both purposive and stratified random sampling techniques to distinctively characterize the Alalili systems by land use and tenure types. Our results identified the existence of both communal and private Alalili systems. Their sizes varied significantly across types (t = 4.4646, p < 0.001) and land uses (F = 3.806, df = 3, p = 0.0123). While many (82%) of these Alalili systems are found in the communal land, our observations show a re-practice of Alalili systems in the private land is considered largely a re-emerging strategy for securing pastures in the face of local and global change. More than half (73%) of Alalili systems were found within game-controlled areas with little representation (about 8%) in non-protected land. Therefore, their sustainability is threatened by anthropogenic and climatic pressures, making their persistence more vulnerable to extinction. We recommend mainstreaming these practices into core pasture production and management areas, facilitating their reinforcement into policy and practices.


Biodiversity , Conservation of Natural Resources , Conservation of Natural Resources/methods , Tanzania , Humans , Animals , Ecosystem , Livestock , Cross-Sectional Studies , Africa, Eastern , East African People
3.
PLoS One ; 19(5): e0302435, 2024.
Article En | MEDLINE | ID: mdl-38753816

Laetoli, Tanzania is one of the most important palaeontological and palaeoanthropological localities in Africa. We report on a survey of the extant terrestrial gastropod faunas of the Laetoli-Endulen area, examine their ecological associations and re-examine the utility of Pliocene fossil molluscs in palaeoenvironmental reconstruction. Standardised collecting at 15 sites yielded 7302 individuals representing 58 mollusc species. Significant dissimilarities were found among the faunas of three broad habitat types: forest, woodland/bushland and open (grassland and scattered, xeric shrubland). Overall, more species were recorded in the woodland/bushland sites than in the forest sites. Open sites were less diverse. Environmental factors contributing most strongly to the separation of habitat types were aridity index and elevation. The results are supplemented with new mollusc data from the Mbulu Plateau south of Lake Eyasi, and compared to the list of species cumulatively recorded from the Ngorongoro area. Some regional variation is apparent and historical factors may explain the absence of some fossil taxa from Laetoli today. Differences in seasonality separated upland forest sites on the Mbulu plateau from those at Lemagurut at Laetoli. Indicator species were identified for each habitat. These included several large-bodied species analogous to the Laetoli Pliocene fossil species that were then used for palaeoenvironmental reconstruction. Based on the estimated aridity index, and adopting the widely used United Nations Environment Programme (UNEP) global climate classification, the four stratigraphic subunits of the Upper Laetolil Beds (3.6-3.85 Ma) would be placed in either the UNEP's Dry Sub-humid or Semi-arid climate classes, whereas the Upper Ndolanya Beds (2.66 Ma) and Lower Laetolil Beds (3.85-<4.36 Ma) would be assigned to the Humid and Semi-arid climate classes respectively. Pliocene precipitation at Laetoli is estimated as 847-965 mm per year, refining previous estimates. This is close or slightly higher than the present mean annual precipitation, and is likely to have corresponded to a mosaic of forest, woodland and bushland within a grassland matrix consistent with other reconstructions.


Climate , Ecosystem , Fossils , Paleontology , Animals , Tanzania , Hominidae/physiology , Mollusca/classification , Mollusca/physiology , Biodiversity
4.
Parasit Vectors ; 17(1): 234, 2024 May 22.
Article En | MEDLINE | ID: mdl-38773521

BACKGROUND: Snail-borne trematodes afflict humans, livestock, and wildlife. Recognizing their zoonotic potential and possible hybridization, a One Health approach is essential for effective control. Given the dearth of knowledge on African trematodes, this study aimed to map snail and trematode diversity, focusing on (i) characterizing gastropod snail species and their trematode parasites, (ii) determining infection rates of snail species as intermediate hosts for medically, veterinary, and ecologically significant trematodes, and (iii) comparing their diversity across endemic regions. METHODS: A cross-sectional study conducted in 2021 in Chiredzi and Wedza districts in Zimbabwe, known for high human schistosomiasis prevalence, involved malacological surveys at 56 sites. Trematode infections in snails were detected through shedding experiments and multiplex rapid diagnostic polymerase chain reactions (RD-PCRs). Morphological and molecular analyses were employed to identify snail and trematode species. RESULTS: Among 3209 collected snail specimens, 11 species were identified, including schistosome and fasciolid competent snail species. We report for the first time the invasive exotic snail Tarebia granifera in Zimbabwe, which was highly abundant, mainly in Chiredzi, occurring at 29 out of 35 sites. Shedding experiments on 1303 snails revealed a 2.24% infection rate, with 15 trematode species identified through molecular genotyping. Five species were exclusive to Chiredzi: Bolbophorus sp., Schistosoma mansoni, Schistosoma mattheei, Calicophoron sp., and Uvulifer sp. Eight were exclusive to Wedza, including Trichobilharzia sp., Stephanoprora amurensis, Spirorchid sp., and Echinostoma sp. as well as an unidentified species of the Plagiorchioidea superfamily. One species, Tylodelphys mashonensis, was common to both regions. The RD-PCR screening of 976 non-shedding snails indicated a 35.7% trematode infection rate, including the presence of schistosomes (1.1%) Fasciola nyanzae (0.6%). In Chiredzi, Radix natalensis had the highest trematode infection prevalence (33.3%), while in Wedza, R. natalensis (55.4%) and Bulinus tropicus (53.2%) had the highest infection prevalence. CONCLUSIONS: Our xenomonitoring approach unveiled 15 trematode species, including nine new records in Zimbabwe. Schistosoma mansoni persists in the study region despite six mass deworming rounds. The high snail and parasite diversity, including the presence of exotic snail species that can impact endemic species and biomedically important trematodes, underscores the need for increased monitoring.


Fresh Water , Introduced Species , Snails , Trematoda , Animals , Zimbabwe/epidemiology , Snails/parasitology , Trematoda/genetics , Trematoda/classification , Trematoda/isolation & purification , Trematoda/physiology , Cross-Sectional Studies , Fresh Water/parasitology , One Health , Humans , Trematode Infections/parasitology , Trematode Infections/veterinary , Trematode Infections/epidemiology , Biodiversity , Prevalence , Schistosomiasis/epidemiology , Schistosomiasis/parasitology , Schistosomiasis/veterinary
6.
Commun Biol ; 7(1): 611, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773323

Human impacts lead to widespread changes in the abundance, diversity and traits of shark assemblages, altering the functioning of coastal ecosystems. The functional consequences of shark declines are often poorly understood due to the absence of empirical data describing long-term change. We use data from the Queensland Shark Control Program in eastern Australia, which has deployed mesh nets and baited hooks across 80 beaches using standardised methodologies since 1962. We illustrate consistent declines in shark functional richness quantified using both ecological (e.g., feeding, habitat and movement) and morphological (e.g., size, morphology) traits, and this corresponds with declining ecological functioning. We demonstrate a community shift from targeted apex sharks to a greater functional richness of non-target species. Declines in apex shark functional richness and corresponding changes in non-target species may lead to an anthropogenically induced trophic cascade. We suggest that repairing diminished shark populations is crucial for the stability of coastal ecosystems.


Biodiversity , Sharks , Sharks/physiology , Animals , Queensland , Ecosystem , Population Dynamics , Australia , Oceans and Seas
7.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Article En | MEDLINE | ID: mdl-38697936

In polar regions, global warming has accelerated the melting of glacial and buried ice, resulting in meltwater run-off and the mobilization of surface nutrients. Yet, the short-term effects of altered nutrient regimes on the diversity and function of soil microbiota in polyextreme environments such as Antarctica, remains poorly understood. We studied these effects by constructing soil microcosms simulating augmented carbon, nitrogen, and moisture. Addition of nitrogen significantly decreased the diversity of Antarctic soil microbial assemblages, compared with other treatments. Other treatments led to a shift in the relative abundances of these microbial assemblages although the distributional patterns were random. Only nitrogen treatment appeared to lead to distinct community structural patterns, with increases in abundance of Proteobacteria (Gammaproteobateria) and a decrease in Verrucomicrobiota (Chlamydiae and Verrucomicrobiae).The effects of extracellular enzyme activities and soil parameters on changes in microbial taxa were also significant following nitrogen addition. Structural equation modeling revealed that nutrient source and extracellular enzyme activities were positive predictors of microbial diversity. Our study highlights the effect of nitrogen addition on Antarctic soil microorganisms, supporting evidence of microbial resilience to nutrient increases. In contrast with studies suggesting that these communities may be resistant to change, Antarctic soil microbiota responded rapidly to augmented nutrient regimes.


Bacteria , Carbon , Microbiota , Nitrogen , Nutrients , Soil Microbiology , Soil , Antarctic Regions , Nitrogen/metabolism , Bacteria/genetics , Bacteria/enzymology , Bacteria/metabolism , Nutrients/metabolism , Soil/chemistry , Carbon/metabolism , Biodiversity , RNA, Ribosomal, 16S/genetics
8.
J Environ Manage ; 359: 121053, 2024 May.
Article En | MEDLINE | ID: mdl-38723501

Biodiversity preservation is a primary challenge of the 21st century, focusing on restoring unobstructed river flows and mitigating the effects of barriers, supported by European biodiversity strategies up to 2030. Maintaining ecological continuity, such as unblocking fishways clogged by floating debris disrupting natural fish migration paths, remains a challenge despite conventional protective methods. This study, taking a vertical slot fish pass in Wroclaw on the Odra River as a case study and based on research on bridge piers, suggests modifying pier shapes from rectangular to rounded in order to reduce debris accumulation. Field studies, utilizing an OTT MF Pro flow meter, were conducted to validate the numerical model. The measured flow rate in the field was 3.15 [m³·s-1], while the numerical modeling yielded a flow of 3.19 [m³·s-1]. Focusing on optimizing the shape of cross-wall piers to enhance fish migration conditions, the study examined six different pier configurations, analyzing flow speed in the main slot, crucial for migration. Using 2D hydraulic modeling with Iber, it assessed the migratory potential of different pier designs by analyzing hydraulic conditions and comparing them with the swimming capabilities of fish species native to the Odra River. Results indicate that rounding the pier edges positively affects flow speeds in the main slot, enhancing fish migration possibilities, contributing to fish pass functionality improvement and supporting broader biodiversity and ecosystem health goals.


Animal Migration , Biodiversity , Fishes , Rivers , Animals , Fishes/physiology , Conservation of Natural Resources
9.
PLoS One ; 19(5): e0303250, 2024.
Article En | MEDLINE | ID: mdl-38718003

The spatial patterns of taxonomic diversity of annelid polychaete species from the continental shelf in the Southern Gulf of Mexico were examined in this study. We used taxonomic distinctness and its spatial variations to explore the diversity patterns and how they change between Southern Gulf of Mexico regions. In addition, using taxonomic distinctness as a dissimilarity measure and Ward's Clustering, we characterized three distinct faunal assemblages. We also investigated patterns of richness, taxonomic distinctness, and distance decay of similarity between sampling stations as a ß-diversity measure. Finally, we examined the spatial relationships between polychaete assemblages and environmental variables to test the relative importance of spatial and environmental components in annelid polychaete community structure from the Southern Gulf of Mexico. We used a combination of eigenvector-based multivariate analyses (dbMEMs) and distance-based redundancy analysis (dbRDA) to quantify the relative importance of these explanatory variables on the spatial variations of taxonomic distinctness. The significance level of spatial and environmental components to the distribution of polychaete species showed that the combined effect of spatial processes and sediment characteristics explained a higher percentage of the variance than those parameters could alone.


Biodiversity , Polychaeta , Animals , Gulf of Mexico , Polychaeta/classification , Ecosystem , Geologic Sediments
10.
Science ; 384(6696): 618-621, 2024 May 10.
Article En | MEDLINE | ID: mdl-38723064

Experience tells us how to maximize debt-for-nature effectiveness.


Biodiversity , Climate Change , Conservation of Natural Resources/economics
11.
Sci Rep ; 14(1): 10827, 2024 05 11.
Article En | MEDLINE | ID: mdl-38734762

The creation of protected areas (PAs) is not always based on science; consequently, some aquatic species may not receive the same level of protection as terrestrial ones. The objective of this study was to identify priority areas for the conservation of chelonians in the Brazilian Amazon basin and assess the contribution of PAs, distinguishing between Full Protection Areas, Sustainable Use Areas, and Indigenous Lands for group protection. The entire species modeling procedure was carried out using Species Distribution Models. Location records were obtained from platforms such as SpeciesLink, GBIF, the Hydroatlas database, and WorldClim for bioclimatic variables adjusted with algorithms like Maximum Entropy, Random Forest, Support Vector Machine, and Gaussian-Bayesian. Indigenous lands cover more than 50% of the distribution areas of chelonian species in the Brazilian Amazon. Protected areas with higher conservation importance (Full Protection Areas and Sustainable Use Areas) hold less than 15% of the combined species distribution. Researchers face significant challenges when making decisions with models, especially in conservation efforts involving diverse taxa that differ significantly from one another within a group of individuals.


Conservation of Natural Resources , Turtles , Brazil , Conservation of Natural Resources/methods , Animals , Biodiversity , Ecosystem
12.
Commun Biol ; 7(1): 559, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734859

In nature, parasite species often coinfect the same host. Yet, it is not clear what drives the natural dynamics of coinfection prevalence. The prevalence of coinfections might be affected by interactions among coinfecting species, or simply derive from parasite diversity. Identifying the relative impact of these parameters is crucial for understanding patterns of coinfections. We studied the occurrence and likelihood of coinfections in natural populations of water fleas (Daphnia magna). Coinfection prevalence was within the bounds expected by chance and parasite diversity had a strong positive effect on the likelihood of coinfections. Additionally, coinfection prevalence increased over the season and became as common as a single infection. Our results demonstrate how patterns of coinfection, and particularly their temporal variation, are affected by overlapping epidemics of different parasites. We suggest that monitoring parasite diversity can help predict where and when coinfection prevalence will be high, potentially leading to increased health risks to their hosts.


Coinfection , Host-Parasite Interactions , Animals , Coinfection/epidemiology , Coinfection/parasitology , Daphnia/microbiology , Daphnia/parasitology , Prevalence , Seasons , Biodiversity , Siphonaptera
13.
Sci Rep ; 14(1): 10544, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719860

The increasing amount of weeds surviving herbicide represents a very serious problem for crop management. The interaction between microbial community of soil and herbicide resistance, along with the potential evolutive consequences, are still poorly known and need to be investigated to better understand the impact on agricultural management. In our study, we analyzed the microbial composition of soils in 32 farms, located in the Northern Italy rice-growing area (Lombardy) with the aim to evaluate the relationship between the microbial composition and the incidence of resistance to acetolactate synthase (ALS) and acetyl-CoA carboxylase (ACCase) inhibiting herbicides in Echinochloa species. We observed that the coverage of weeds survived herbicide treatment was higher than 60% in paddy fields with a low microbial biodiversity and less than 5% in those with a high microbial biodiversity. Fungal communities showed a greater reduction in richness than Bacteria. In soils with a reduced microbial diversity, a significant increase of some bacterial and fungal orders (i.e. Lactobacillales, Malasseziales and Diaporthales) was observed. Interestingly, we identified two different microbial profiles linked to the two conditions: high incidence of herbicide resistance (H-HeR) and low incidence of herbicide resistance (L-HeR). Overall, the results we obtained allow us to make hypotheses on the greater or lesser probability of herbicide resistance occurrence based on the composition of the soil microbiome and especially on the degree of biodiversity of the microbial communities.


Acetolactate Synthase , Acetyl-CoA Carboxylase , Echinochloa , Herbicide Resistance , Herbicides , Soil Microbiology , Italy/epidemiology , Herbicides/pharmacology , Acetolactate Synthase/antagonists & inhibitors , Acetolactate Synthase/genetics , Echinochloa/drug effects , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/antagonists & inhibitors , Plant Weeds/drug effects , Microbiota/drug effects , Biodiversity , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Soil/chemistry , Fungi/drug effects , Fungi/isolation & purification , Fungi/genetics
14.
Commun Biol ; 7(1): 552, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720028

Global biodiversity gradients are generally expected to reflect greater species replacement closer to the equator. However, empirical validation of global biodiversity gradients largely relies on vertebrates, plants, and other less diverse taxa. Here we assess the temporal and spatial dynamics of global arthropod biodiversity dynamics using a beta-diversity framework. Sampling includes 129 sampling sites whereby malaise traps are deployed to monitor temporal changes in arthropod communities. Overall, we encountered more than 150,000 unique barcode index numbers (BINs) (i.e. species proxies). We assess between site differences in community diversity using beta-diversity and the partitioned components of species replacement and richness difference. Global total beta-diversity (dissimilarity) increases with decreasing latitude, greater spatial distance and greater temporal distance. Species replacement and richness difference patterns vary across biogeographic regions. Our findings support long-standing, general expectations of global biodiversity patterns. However, we also show that the underlying processes driving patterns may be regionally linked.


Arthropods , Biodiversity , Animals , Arthropods/classification , Arthropods/physiology , Geography , Spatio-Temporal Analysis
15.
Sci Rep ; 14(1): 10552, 2024 05 08.
Article En | MEDLINE | ID: mdl-38720052

Urbanization gradients are increasingly used in ecological studies to discover responses of species communities to different intensities of human-induced habitat transformation. Here, we investigated patterns of bat communities against the background of different urbanization levels using a priori defined urbanization categories based on distance classes (5 km intervals) along a linear transect from the urban core of the city of Berlin westwards into the rural outskirts of the state of Brandenburg. Using linear-mixed effects models, we found that "distance class", as a proxy for urbanization level, is a meaningful and suitable predictor of bat species richness and diversity. We observed an unexpectedly sudden increase in bat species richness and diversity and changes in species-specific activity levels relatively close to the urban center at the transition between urban and peri-urban areas. This change suggests a relevant influence of the peri-urban areas as a "buffer zone" for specific bat species not able to adapt to the heavily modified inner core of the metropolitan area. Although we could demonstrate that anthropogenic noise and artificial light have the potential to predict the variability of bat species activity along the urban-rural gradient, the actual influence on observed shifts in the bat community needs further research.


Biodiversity , Chiroptera , Urbanization , Animals , Chiroptera/physiology , Berlin , Ecosystem , Humans , Rural Population , Cities
16.
Sci Rep ; 14(1): 10525, 2024 05 08.
Article En | MEDLINE | ID: mdl-38720057

The narrow zone of soil around the plant roots with maximum microbial activity termed as rhizosphere. Rhizospheric bacteria promote the plant growth directly or indirectly by providing the nutrients and producing antimicrobial compounds. In this study, the rhizospheric microbiota of peanut plants was characterized from different farms using an Illumina-based partial 16S rRNA gene sequencing to evaluate microbial diversity and identify the core microbiome through culture-independent (CI) approach. Further, all rhizospheric bacteria that could grow on various nutrient media were identified, and the diversity of those microbes through culture-dependent method (CD) was then directly compared with their CI counterparts. The microbial population profiles showed a significant correlation with organic carbon and concentration of phosphate, manganese, and potassium in the rhizospheric soil. Genera like Sphingomicrobium, Actinoplanes, Aureimonas _A, Chryseobacterium, members from Sphingomonadaceae, Burkholderiaceae, Pseudomonadaceae, Enterobacteriaceae family, and Bacilli class were found in the core microbiome of peanut plants. As expected, the current study demonstrated more bacterial diversity in the CI method. However, a higher number of sequence variants were exclusively present in the CD approach compared to the number of sequence variants shared between both approaches. These CD-exclusive variants belonged to organisms that are more typically found in soil. Overall, this study portrayed the changes in the rhizospheric microbiota of peanuts in different rhizospheric soil and environmental conditions and gave an idea about core microbiome of peanut plant and comparative bacterial diversity identified through both approaches.


Arachis , Bacteria , Metagenomics , Microbiota , RNA, Ribosomal, 16S , Rhizosphere , Soil Microbiology , Arachis/microbiology , India , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Metagenomics/methods , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Farms , Plant Roots/microbiology , Phylogeny , Metagenome , Biodiversity
17.
BMC Ecol Evol ; 24(1): 58, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720266

BACKGROUND: Karst caves serve as natural laboratories, providing organisms with extreme and constant conditions that promote isolation, resulting in a genetic relationship and living environment that is significantly different from those outside the cave. However, research on cave creatures, especially Opiliones, remains scarce, with most studies focused on water, soil, and cave sediments. RESULTS: The structure of symbiotic bacteria in different caves were compared, revealing significant differences. Based on the alpha and beta diversity, symbiotic bacteria abundance and diversity in the cave were similar, but the structure of symbiotic bacteria differed inside and outside the cave. Microorganisms in the cave play an important role in material cycling and energy flow, particularly in the nitrogen cycle. Although microbial diversity varies inside and outside the cave, Opiliones in Beijing caves and Hainan Island exhibited a strong similarity, indicating that the two environments share commonalities. CONCLUSIONS: The karst cave environment possesses high microbial diversity and there are noticeable differences among different caves. Different habitats lead to significant differences in the symbiotic bacteria in Opiliones inside and outside the cave, and cave microorganisms have made efforts to adapt to extreme environments. The similarity in symbiotic bacteria community structure suggests a potential similarity in host environments, providing an explanation for the appearance of Sinonychia martensi in caves in the north.


Bacteria , Caves , Ecosystem , Symbiosis , Caves/microbiology , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , China , Microbiota/physiology , Biodiversity
18.
Lancet Planet Health ; 8(5): e285-e296, 2024 May.
Article En | MEDLINE | ID: mdl-38729669

BACKGROUND: An increasing body of research has examined the link between biodiversity of birds and human mental health, but most studies only use cross-sectional data. Few studies have used longitudinal or repeated cross-sectional data to investigate the mental health benefits of bird diversity. The aim of this study is to analyse the relationship between bird diversity and mental health at the national level using a unique repeated cross-sectional dataset. METHODS: I used repeated cross-sectional health data from the German National Cohort health study, collected between March, 2014, and September, 2019, and annual bird citizen science data to investigate the effects of bird-diversity exposure on mental health. Mental health was measured using the summary score of the Patient Health Questionnaire depression module 9 (SumPHQ) and the Short Form Health Survey-12 Mental Health Component Scale. As a proxy for bird diversity, I created a unique indicator called reporting-rate richness and combined it with the health data. Reporting-rate richness measures the number of bird species within postcode areas across Germany in probabilities while accounting for variation in survey efforts. Alternative indicators of bird diversity, such as bird-species richness or abundance, were also calculated. Associations between bird diversity and mental health were estimated using linear regression with region and time fixed effects, adjusted for a range of sociodemographic and environmental confounders and spatial autocorrelation. Interaction terms between income levels and reporting-rate richness were also analysed to examine the moderating effect of socioeconomic status. FINDINGS: I did the analyses for an unbalanced (n=176 362) and balanced (n=125 423) dataset, with the balanced dataset comprising only regions (postcode areas) in which health data were available for each year. The linear fixed-effects regression analysis indicated a significant negative association between reporting-rate richness and SumPHQ, as observed in both the unbalanced dataset (ß -0·02, p=0·017) and the balanced dataset (ß -0·03, p=0·0037). Similarly, regression results with both datasets showed a positive relationship between reporting-rate richness and Mental Health Component Scale (MCS; unbalanced ß 0·02, p=0·0086; balanced ß 0·03, p=0·0018). The moderator analyses revealed a significant influence of socioeconomic status on the relationship between reporting-rate richness and mental health. The robustness of these findings was confirmed through sensitivity analyses. INTERPRETATION: The results suggest that a greater likelihood of having many different bird species in a person's area of residence might positively contribute to mental health, especially for people with lower socioeconomic status. These findings could have implications for biodiversity conservation and health policy decisions, as governments are facing challenges such as global biodiversity loss and growing public mental health problems. FUNDING: None.


Biodiversity , Birds , Mental Health , Humans , Cross-Sectional Studies , Mental Health/statistics & numerical data , Animals , Germany , Male , Female , Middle Aged , Adult , Aged , Young Adult
19.
Parasit Vectors ; 17(1): 201, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711091

PURPOSE: The rising burden of mosquito-borne diseases in Europe extends beyond urban areas, encompassing rural and semi-urban regions near managed and natural wetlands evidenced by recent outbreaks of Usutu and West Nile viruses. While wetland management policies focus on biodiversity and ecosystem services, few studies explore the impact on mosquito vectors. METHODS: Our research addresses this gap, examining juvenile mosquito and aquatic predator communities in 67 ditch sites within a South England coastal marsh subjected to different wetland management tiers. Using joint distribution models, we analyse how mosquito communities respond to abiotic and biotic factors influenced by wetland management. RESULTS: Of the 12 mosquito species identified, Culiseta annulata (Usutu virus vector) and Culex pipiens (Usutu and West Nile virus vector) constitute 47% of 6825 larval mosquitoes. Abundant predators include Coleoptera (water beetles) adults, Corixidae (water boatmen) and Zygoptera (Damselfy) larvae. Models reveal that tier 3 management sites (higher winter water levels, lower agricultural intensity) associated with shade and less floating vegetation are preferred by specific mosquito species. All mosquito species except Anopheles maculipennis s.l., are negatively impacted by potential predators. Culiseta annulata shows positive associations with shaded and turbid water, contrary to preferences of Corixidae predators. CONCLUSIONS: Tier 3 areas managed for biodiversity, characterised by higher seasonal water levels and reduced livestock grazing intensity, provide favourable habitats for key mosquito species that are known vectors of arboviruses, such as Usutu and West Nile. Our findings emphasise the impact of biodiversity-focused wetland management, altering mosquito breeding site vegetation to enhance vector suitability. Further exploration of these trade-offs is crucial for comprehending the broader implications of wetland management.


Biodiversity , Culicidae , Mosquito Vectors , Wetlands , Animals , Mosquito Vectors/physiology , Mosquito Vectors/virology , Culicidae/classification , Culicidae/physiology , Culicidae/virology , Ecosystem , Larva/physiology , Seasons , United Kingdom , Culex/physiology , Culex/virology , Culex/classification , England
20.
Microbiome ; 12(1): 79, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711157

BACKGROUND: Disturbances alter the diversity and composition of microbial communities. Yet a generalized empirical assessment of microbiome responses to disturbance across different environments is needed to understand the factors driving microbiome recovery, and the role of the environment in driving these patterns. RESULTS: To this end, we combined null models with Bayesian generalized linear models to examine 86 time series of disturbed mammalian, aquatic, and soil microbiomes up to 50 days following disturbance. Overall, disturbances had the strongest effect on mammalian microbiomes, which lost taxa and later recovered their richness, but not their composition. In contrast, following disturbance, aquatic microbiomes tended away from their pre-disturbance composition over time. Surprisingly, across all environments, we found no evidence of increased compositional dispersion (i.e., variance) following disturbance, in contrast to the expectations of the Anna Karenina Principle. CONCLUSIONS: This is the first study to systematically compare secondary successional dynamics across disturbed microbiomes, using a consistent temporal scale and modeling approach. Our findings show that the recovery of microbiomes is environment-specific, and helps to reconcile existing, environment-specific research into a unified perspective. Video Abstract.


Bacteria , Bayes Theorem , Microbiota , Soil Microbiology , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Mammals/microbiology , Biodiversity , Water Microbiology
...