Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Fungal Biol ; 128(4): 1859-1867, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38876538

RESUMEN

Volatile organic compounds (VOCs) produced by yeasts can positively affect crops, acting as antifungals or biostimulants. In this study, Aureobasidium pullulans and Metschnikowia pulcherrima were evaluated as potential antagonists of Trichoderma spp., common fungal pathogen in mushroom cultivation. To assess the biocontrol ability and biostimulant properties of the selected yeast species, in vitro co-culture and VOCs exposure assays were conducted. In both assays, VOCs produced by Aureobasidium spp. showed the stronger antifungal activity with a growth inhibition up to 30 %. This result was further confirmed by the higher volatilome alcohol content revealed by solid phase microextraction-gas chromatography mass spectrometry (SPME/GC-MS). Overall, Aureobasidium strains can be potentially used as biocontrol agent in Pleorotus ostreatus and Cyclocybe cylindracea mycelial growth, without affecting their development as demonstrated by VOCs exposure assay and Fourier-transform infrared spectroscopy (FT-IR). Conversely, M. pulcherrima was characterized by a lower or absent antifungal properties and by a volatilome composition rich in isobutyl acetate, an ester often recognized as plant growth promoter. As confirmed by FT-IR, Lentinula mycelia exposed to M. pulcherrima VOCs showed a higher content of proteins and lipids, suggesting an improvement of some biochemical properties. Our study emphasizes that VOCs produced by specific yeast strains are potentially powerful alternative to synthetic fungicide in the vegetative growth of mushroom-forming fungi and also able to modify their biochemical composition.


Asunto(s)
Agaricales , Cromatografía de Gases y Espectrometría de Masas , Micelio , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Micelio/crecimiento & desarrollo , Micelio/efectos de los fármacos , Micelio/química , Agaricales/química , Agaricales/crecimiento & desarrollo , Agaricales/efectos de los fármacos , Agaricales/metabolismo , Antifúngicos/farmacología , Antifúngicos/metabolismo , Agentes de Control Biológico/farmacología , Agentes de Control Biológico/química , Metschnikowia/crecimiento & desarrollo , Metschnikowia/efectos de los fármacos , Metschnikowia/metabolismo , Antibiosis , Aureobasidium , Trichoderma/crecimiento & desarrollo , Trichoderma/química , Trichoderma/metabolismo , Microextracción en Fase Sólida
3.
Z Naturforsch C J Biosci ; 79(5-6): 125-136, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38760917

RESUMEN

Chitin, the most prevalent polymer in nature, a significant structural polysaccharide that comes in second only to cellulose. Chitin is a crucial component of fungal cell walls and also present in many other creatures, such as viruses, plants, animals, insect exoskeletons, and crustacean shells. Chitin presents itself as a promising target for the development of biopesticides. It focuses on unraveling the unique structures and biochemical pathways associated with chitin, aiming to identify vulnerabilities that can be strategically leveraged for effective and environmentally sustainable pest control. It involves a comprehensive analysis of chitinase enzymes, chitin biosynthesis, and chitin-related processes across diverse organisms. By elucidating the molecular intricacies involved in chitin metabolism, this review seeks to unveil potential points of intervention that can disrupt essential biological processes in target pests without harming non-target species. This holistic approach to understanding chitin-related pathways aims to inform the design and optimization of biopesticides with enhanced specificity and reduced ecological impact. The outcomes of this study hold great promise for advancing innovative and eco-friendly pest management strategies. By targeting chitin structures and pathways, biopesticides developed based on these findings may offer a sustainable and selective alternative to conventional chemical pesticides, contributing to the ongoing efforts towards more environmentally conscious and effective pest control solutions.


Asunto(s)
Quitina , Quitinasas , Quitina/metabolismo , Quitina/química , Animales , Quitinasas/metabolismo , Quitinasas/química , Agentes de Control Biológico/metabolismo , Agentes de Control Biológico/química , Control Biológico de Vectores/métodos , Insectos/metabolismo , Hongos/metabolismo , Plaguicidas/química , Plaguicidas/metabolismo
4.
J Am Soc Mass Spectrom ; 35(6): 1168-1177, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38708575

RESUMEN

The present study aims to explore the potential application of proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) for real-time monitoring of microbial volatile organic compounds (MVOCs). This investigation can be broadly divided into two parts. First, a selection of 14 MVOCs was made based on previous research that characterized the MVOC emissions of Trichoderma atroviride, which is a filamentous fungus widely used as a biocontrol agent. The analysis of gas-phase standards using PTR-ToF-MS allowed for the categorization of these 14 MVOCs into two groups: the first group primarily undergoes nondissociative proton transfer, resulting in the formation of protonated parent ions, while the second group mainly undergoes dissociative proton transfer, leading to the formation of fragment ions. In the second part of this investigation, the emission of MVOCs from samples of T. atroviride was continuously monitored over a period of five days using PTR-ToF-MS. This also included the first quantitative online analysis of 6-amyl-α-pyrone (6-PP), a key MVOC emitted by T. atroviride. The 6-PP emissions of T. atroviride cultures were characterized by a gradual increase over the first two days of cultivation, reaching a plateau-like maximum with volume mixing ratios exceeding 600 ppbv on days three and four. This was followed by a marked decrease, where the 6-PP volume mixing ratios plummeted to below 50 ppbv on day five. This observed sudden decrease in 6-PP emissions coincided with the start of sporulation of the T. atroviride cultures as well as increasing intensities of product ions associated with 1-octen-3-ol and 3-octanone, whereas both these MVOCs were previously associated with sporulation in T. atroviride. The study also presents the observations and discussion of further MVOC emissions from the T. atroviride samples and concludes with a critical assessment of the possible applications and limitations of PTR-ToF-MS for the online monitoring of MVOCs from biological samples in real time.


Asunto(s)
Hypocreales , Espectrometría de Masas , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Espectrometría de Masas/métodos , Hypocreales/química , Protones , Agentes de Control Biológico/química , Agentes de Control Biológico/análisis , Trichoderma/química , Trichoderma/metabolismo , Pironas/análisis , Pironas/química
5.
J Agric Food Chem ; 72(20): 11381-11391, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728113

RESUMEN

RNA interference (RNAi)-based biopesticides offer an attractive avenue for pest control. Previous studies revealed high RNAi sensitivity in Holotrichia parallela larvae, showcasing its potential for grub control. In this study, we aimed to develop an environmentally friendly RNAi method for H. parallela larvae. The double-stranded RNA (dsRNA) of the V-ATPase-a gene (HpVAA) was loaded onto layered double hydroxide (LDH). The dsRNA/LDH nanocomplex exhibited increased environmental stability, and we investigated the absorption rate and permeability of dsRNA-nanoparticle complexes and explored the RNAi controlling effect. Silencing the HpVAA gene was found to darken the epidermis of H. parallela larvae, with growth cessation or death or mortality, disrupting the epidermis and midgut structure. Quantitative reverse transcription-polymerase chain reaction and confocal microscopy confirmed the effective absorption of the dsRNA/LDH nanocomplex by peanut plants, with distribution in roots, stems, and leaves. Nanomaterial-mediated RNAi silenced the target genes, leading to the death of pests. Therefore, these findings indicate the successful application of the nanomaterial-mediated RNAi system for underground pests, thus establishing a theoretical foundation for developing a green, safe, and efficient pest control strategy.


Asunto(s)
Larva , Interferencia de ARN , ARN Bicatenario , Animales , Larva/crecimiento & desarrollo , Larva/genética , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Hidróxidos/química , Hidróxidos/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/química , Arachis/genética , Arachis/química , Arachis/crecimiento & desarrollo , Arachis/metabolismo , Control Biológico de Vectores , Escarabajos/genética , Escarabajos/crecimiento & desarrollo , Tecnología Química Verde , Agentes de Control Biológico/química , Agentes de Control Biológico/metabolismo , Nanopartículas/química
6.
J Pept Sci ; 30(6): e3570, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38317283

RESUMEN

Chemical pesticides remain the predominant method for pest management in numerous countries. Given the current landscape of agriculture, the development of biopesticides has become increasingly crucial. The strategy empowers farmers to efficiently manage pests and diseases, while prioritizing minimal adverse effects on the environment and human health, hence fostering sustainable management. In recent years, there has been a growing interest and optimism surrounding the utilization of peptide biopesticides for crop protection. These sustainable and environmentally friendly substances have been recognized as viable alternatives to synthetic pesticides due to their outstanding environmental compatibility and efficacy. Numerous studies have been conducted to synthesize and identify peptides that exhibit activity against significant plant pathogens. One of the peptide classes is cyclotides, which are cyclic cysteine-rich peptides renowned for their wide range of sequences and functions. In this review, we conducted a comprehensive analysis of cyclotides, focusing on their structural attributes, developmental history, significant biological functions in crop protection, techniques for identification and investigation, and the application of biotechnology to enhance cyclotide synthesis. The objective is to emphasize the considerable potential of cyclotides as the next generation of plant protection agents on the global scale.


Asunto(s)
Agricultura , Ciclotidas , Ciclotidas/química , Agricultura/métodos , Agentes de Control Biológico/química , Plaguicidas/química , Humanos
7.
Environ Res ; 239(Pt 2): 117419, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37852466

RESUMEN

There is currently an escalating global demand for the utilization of plant and natural extracts as pesticides due to their minimal health risks. Cyanobacteria are highly valuable organisms with significant potential in agriculture and are of great interest for the development of agrochemical agents as biopesticides. The flexibility and adaptability of Cyanobacteria to various environmental conditions are facilitated by the presence of specialized enzymes involved in the production of biologically active diverse secondary metabolites, including alkaloids, lipopolysaccharides, non-protein amino acids, non-ribosomal peptides, polyketides, terpenoids, and others. This review focuses on the metabolites synthesized from cyanobacteria that have demonstrated effectiveness as antibacterial, antiviral, antifungal agents, insecticides, herbicides, and more. The potential role of cyanobacteria as an alternative to chemical pesticides for environmental conservation is discussed.


Asunto(s)
Cianobacterias , Insecticidas , Plaguicidas , Agentes de Control Biológico/química , Agentes de Control Biológico/metabolismo , Dióxido de Carbono , Plaguicidas/metabolismo , Insecticidas/química , Cianobacterias/metabolismo , Antibacterianos
8.
Pest Manag Sci ; 79(7): 2433-2442, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36811278

RESUMEN

BACKGROUND: Synthetic insecticides are the most useful tools for preventing losses caused by insect pest's infestation during storage. However, the use of pesticides should be limited because of the development of insect resistance and their adverse effects on human health and environment. In the last decades, natural insecticidal products, principally essential oils (EOs) and their active components, exhibited potential alternatives for pest control. Nevertheless, due to their volatile nature, encapsulation could be considered as the most appropriate solution. Therefore, this work aims to investigate the fumigant ability of inclusion complexes of Rosmarinus officinalis EO and its major constituents (1,8-cineole, α-pinene and camphor) with 2-hydroxypropyl-beta-cyclodextrin (HP-ß-CD) against Ectomyelois ceratoniae (Pyralidae) larvae. RESULTS: The encapsulation within HP-ß-CD reduced greatly the release rate of the encapsulated molecules. Therefore, free compounds were more toxic than those encapsulated. Moreover, results revealed that encapsulated volatiles exhibited interesting insecticidal toxicity towards E. ceratoniae larvae. In fact, after 30 days mortality rates were 53.85, 94.23, 3.85 and 42.31% for α-pinene, 1,8-cineole, camphor and EO, respectively, encapsulated within HP-ß-CD. In addition, results showed also that 1,8-cineole free and encapsulated was more effective toward E. ceratoniae larvae than the other tested volatiles. Additionally, the HP-ß-CD/volatiles complexes exhibited best persistence compared to the volatiles components. The half-life of the encapsulated α-pinene, 1,8-cineole, camphor and EO (7.83, 8.75, 6.87 and 11.20 days) was significantly longer than that of the free ones (3.46, 5.02, 3.38 and 5.58 days). CONCLUSION: These results sustain the utility of R. officinalis EO and its main components encapsulated in CDs as treatment to stored-date commodities. © 2023 Society of Chemical Industry.


Asunto(s)
Agentes de Control Biológico , Ciclodextrinas , Insecticidas , Mariposas Nocturnas , Aceites Volátiles , Rosmarinus , Animales , Humanos , 2-Hidroxipropil-beta-Ciclodextrina/farmacología , Alcanfor/farmacología , Eucaliptol , Insecticidas/farmacología , Larva , Aceites Volátiles/farmacología , Aceites Volátiles/química , Agentes de Control Biológico/química , Agentes de Control Biológico/farmacología
9.
Mar Drugs ; 20(3)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35323512

RESUMEN

Four new dimeric sorbicillinoids (1-3 and 5) and a new monomeric sorbicillinoid (4) as well as six known analogs (6-11) were purified from the fungal strain Hypocrea jecorina H8, which was obtained from mangrove sediment, and showed potent inhibitory activity against the tea pathogenic fungus Pestalotiopsis theae (P. theae). The planar structures of 1-5 were assigned by analyses of their UV, IR, HR-ESI-MS, and NMR spectroscopic data. All the compounds were evaluated for growth inhibition of tea pathogenic fungus P. theae. Compounds 5, 6, 8, 9, and 10 exhibited more potent inhibitory activities compared with the positive control hexaconazole with an ED50 of 24.25 ± 1.57 µg/mL. The ED50 values of compounds 5, 6, 8, 9, and 10 were 9.13 ± 1.25, 2.04 ± 1.24, 18.22 ± 1.29, 1.83 ± 1.37, and 4.68 ± 1.44 µg/mL, respectively. Additionally, the effects of these compounds on zebrafish embryo development were also evaluated. Except for compounds 5 and 8, which imparted toxic effects on zebrafish even at 0.625 µM, the other isolated compounds did not exhibit significant toxicity to zebrafish eggs, embryos, or larvae. Taken together, sorbicillinoid derivatives (6, 9, and 10) from H. jecorina H8 displayed low toxicity and high anti-tea pathogenic fungus potential.


Asunto(s)
Ascomicetos/efectos de los fármacos , Agentes de Control Biológico , Hypocreales/química , Policétidos , Animales , Ascomicetos/crecimiento & desarrollo , Agentes de Control Biológico/química , Agentes de Control Biológico/aislamiento & purificación , Agentes de Control Biológico/farmacología , Agentes de Control Biológico/toxicidad , Camellia sinensis/microbiología , Embrión no Mamífero , Estructura Molecular , Policétidos/química , Policétidos/aislamiento & purificación , Policétidos/farmacología , Policétidos/toxicidad , Pez Cebra
10.
Viruses ; 14(2)2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35215777

RESUMEN

Ralstonia solanacearum is a pathogen that causes bacterial wilt producing severe damage in staple solanaceous crops. Traditional control has low efficacy and/or environmental impact. Recently, the bases of a new biotechnological method by lytic bacteriophages vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 with specific activity against R. solanacearum were established. However, some aspects remain unknown, such as the survival and maintenance of the lytic activity after submission to a preservation method as the lyophilization. To this end, viability and stability of lyophilized vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 and their capacity for bacterial wilt biocontrol have been determined against one pathogenic Spanish reference strain of R. solanacearum in susceptible tomato plants in different conditions and making use of various cryoprotectants. The assays carried out have shown satisfactory results with respect to the viability and stability of the bacteriophages after the lyophilization process, maintaining high titers throughout the experimental period, and with respect to the capacity of the bacteriophages for the biological control of bacterial wilt, controlling this disease in more than 50% of the plants. The results offer good prospects for the use of lyophilization as a conservation method for the lytic bacteriophages of R. solanacearum in view of their commercialization as biocontrol agents.


Asunto(s)
Bacteriófagos/química , Bacteriófagos/crecimiento & desarrollo , Agentes de Control Biológico/química , Conservación de Alimentos/métodos , Enfermedades de las Plantas/prevención & control , Ralstonia solanacearum/virología , Solanum lycopersicum/microbiología , Conservación de Alimentos/economía , Liofilización , Frutas/economía , Frutas/microbiología , Solanum lycopersicum/economía , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/fisiología
11.
Carbohydr Polym ; 282: 119111, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35123746

RESUMEN

Novel bio-based nanocomposites were developed as carriers for loading and sustained-release of vanillin (Van.) and cinnamaldehyde (Cinn.) antioxidants. The composites were obtained by intercalation of chitosan (CS) into sodium montmorillonite (CS/Mt), incorporation of chitosan with polyaniline (CS/PANI) and chitosan/polyaniline/exfoliated montmorillonite (CS/PANI/Mt). The structure and morphology of composites were characterized by FTIR, XRD, SEM and TEM. The release data of Van. and Cinn. from CS and CS/Mt obeyed well zero-order equation. However, Higuchi and Korsmeyer-Peppas models fitted well the release data from CS/PANI and CS/Mt composites. Their antifungal activity was examined towards Fusarium oxysporum and Pythium debaryanum. In vitro assay, CS, Cinn., Van., CS/PANI and CS/PANI/Cinn., have a strong inhibitory effect on the linear growth of the target pathogens, even at lower concentrations. Greenhouse assay indicated that seedling treatment by the loaded CS/PANI/Cinn and CS/Mt/Cinn. reduced both disease index and disease incidence parameters of both pathogens and possessed seedlings growth promoting potential of tomato compared to untreated-infected controls.


Asunto(s)
Acroleína/análogos & derivados , Antioxidantes/administración & dosificación , Benzaldehídos/administración & dosificación , Agentes de Control Biológico/administración & dosificación , Quitosano/administración & dosificación , Fusarium/efectos de los fármacos , Nanocompuestos/administración & dosificación , Enfermedades de las Plantas/prevención & control , Pythium/efectos de los fármacos , Solanum lycopersicum/microbiología , Acroleína/administración & dosificación , Acroleína/química , Adsorción , Compuestos de Anilina/administración & dosificación , Compuestos de Anilina/química , Antioxidantes/química , Bentonita/administración & dosificación , Bentonita/química , Benzaldehídos/química , Agentes de Control Biológico/química , Quitosano/química , Liberación de Fármacos , Fusarium/crecimiento & desarrollo , Solanum lycopersicum/crecimiento & desarrollo , Nanocompuestos/química , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Pythium/crecimiento & desarrollo
12.
J Toxicol Environ Health A ; 85(2): 43-55, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34459359

RESUMEN

Monilinia fructicola (Wint.) Honey is a plant pathogenic fungus that infects stone fruits such as peach, nectarine and plum, which are high demand cultivars found in Brazil. This pathogen may remain latent in the host, showing no apparent signs of disease, and consequently may spread to different countries. The aim of this study was to evaluate the activity of hydroalcoholic extract (HydE) obtained from Lactarius deliciosus (L.) Sf. Gray a mushroom, against M. fructicola phytopathogenic-induced mycelial growth. In addition, the purpose of this study was to examine phytotoxicity attributed to HydE using Brassica oleracea seeds, as well as cytotoxic analysis of this extract on cells of mouse BALB/c monocyte macrophage cell line (J774A.1 cell line) (ATCC TIB-67). The L. deliciosus HydE inhibited fungal growth and reduced phytopathogen mycelial development at a concentration of 1.25 mg/ml. Our results demonstrated that the extract exhibited phytotoxicity as evidenced by (1) interference on germination percentage and rate index, (2) decreased root and initial growth measures, and (3) lower fresh weight of seedlings but no cytotoxicity in Vero cell lines. Data suggest that the use of the L. deliciosus extracts may be beneficial for fungal control without any apparent adverse actions on mouse BALB/c monocyte macrophage cell line (J774A.1 cell line) viability.


Asunto(s)
Antifúngicos/farmacología , Basidiomycota/química , Agentes de Control Biológico/farmacología , Animales , Antifúngicos/química , Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Agentes de Control Biológico/química , Brasil , Línea Celular , Supervivencia Celular/efectos de los fármacos , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Frutas/microbiología , Germinación/efectos de los fármacos , Ratones , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Fenol/análisis , Enfermedades de las Plantas/microbiología , Semillas/crecimiento & desarrollo , Semillas/microbiología
13.
J Sci Food Agric ; 102(2): 696-706, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34173241

RESUMEN

BACKGROUND: Microorganism for biological control of fruit diseases is an eco-friendly alternative to the use of chemical fungicides. RESULTS: This is the first study evaluating the electrospraying process to encapsulate the biocontrol yeast Meyerozyma caribbica. The effect of encapsulating material [Wey protein concentrate (WPC), Fibersol® and Trehalose], its concentration and storage temperature on the cell viability of M. caribbica, and in vitro and in vivo control of Colletotrichum gloeosporioides was evaluated. The processing with commercial resistant maltodextrin (Fibersol®) 30% (w/v) as encapsulating material showed the highest initial cell viability (95.97 ± 1.01%). The storage at 4 ± 1 °C showed lower losses of viability compared to 25 ± 1 °C. Finally, the encapsulated yeast with Fibersol 30% w/v showed inhibitory activity against anthracnose in the in vitro and in vivo tests, similar to yeast fresh cells. CONCLUSION: Electrospraying was a highly efficient process due to the high cell viability, and consequently, a low quantity of capsules is required for the postharvest treatment of fruits. Additionally, the yeast retained its antagonistic power during storage. © 2021 Society of Chemical Industry.


Asunto(s)
Agentes de Control Biológico/química , Agentes de Control Biológico/farmacología , Carica/microbiología , Colletotrichum/efectos de los fármacos , Composición de Medicamentos/métodos , Mangifera/microbiología , Saccharomycetales/química , Antibiosis , Colletotrichum/crecimiento & desarrollo , Composición de Medicamentos/instrumentación , Frutas/microbiología , Viabilidad Microbiana , Saccharomycetales/fisiología
14.
Microbiol Spectr ; 9(3): e0066321, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34908505

RESUMEN

Trichoderma spp. represent one of the most important fungal genera to mankind and in natural environments. The genus harbors prolific producers of wood-decaying enzymes, biocontrol agents against plant pathogens, plant-growth-promoting biofertilizers, as well as model organisms for studying fungal-plant-plant pathogen interactions. Pursuing highly accurate, contiguous, and chromosome-level reference genomes has become a primary goal of fungal research communities. Here, we report the chromosome-level genomic sequences and whole-genome annotation data sets of four strains used as biocontrol agents or biofertilizers (Trichoderma virens Gv29-8, Trichoderma virens FT-333, Trichoderma asperellum FT-101, and Trichoderma atroviride P1). Our results provide comprehensive categorization, correct positioning, and evolutionary detail of both nuclear and mitochondrial genomes, including telomeres, AT-rich blocks, centromeres, transposons, mating-type loci, nuclear-encoded mitochondrial sequences, as well as many new secondary metabolic and carbohydrate-active enzyme gene clusters. We have also identified evolutionarily conserved core genes contributing to plant-fungal interactions, as well as variations potentially linked to key behavioral traits such as sex, genome defense, secondary metabolism, and mycoparasitism. The genomic resources we provide herein significantly extend our knowledge not only of this economically important fungal genus, but also fungal evolution and basic biology in general. IMPORTANCE Telomere-to-telomere and gapless reference genome assemblies are necessary to ensure that all genomic variants are studied and discovered, including centromeres, telomeres, AT-rich blocks, mating type loci, biosynthetic, and metabolic gene clusters. Here, we applied long-range sequencing technologies to determine the near-completed genome sequences of four widely used biocontrol agents or biofertilizers: Trichoderma virens Gv29-8 and FT-333, Trichoderma asperellum FT-101, and Trichoderma atroviride P1. Like those of three Trichoderma reesei wild isolates [QM6a, CBS999.97(MAT1-1) and CBS999.97(MAT1-2)] we reported previously, these four biocontrol agent genomes each contain seven nuclear chromosomes and a circular mitochondrial genome. Substantial intraspecies and intragenus diversities are also discovered, including single nucleotide polymorphisms, chromosome shuffling, as well as genomic relics derived from historical transposition events and repeat-induced point (RIP) mutations.


Asunto(s)
Agentes de Control Biológico/química , Genoma Fúngico , Trichoderma/crecimiento & desarrollo , Trichoderma/genética , Evolución Molecular , Fertilizantes/análisis , Variación Genética , Filogenia , Plantas/microbiología , Metabolismo Secundario , Trichoderma/clasificación , Trichoderma/metabolismo
15.
Molecules ; 26(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34770769

RESUMEN

The objective of this study was to assess the biological activity of essential oils (EOs) of four Juniperus species obtained via two different distillation methods and their potential as biopesticides. The studied factors were juniper species (Juniperus communis L., J. oxycedrus L., J. pygmaea C. Koch., and J. sibirica Burgsd), plant sex (male (M) and female (F)), and distillation method (hydrodistillation via a standard Clevenger apparatus (ClevA) and semi-commercial (SCom) steam distillation). The hypothesis was that the EO will have differential antioxidant, antimicrobial, and insecticidal activities as a function of plant species, plant sex, and distillation method. The two distillation methods resulted in similar EO composition within a given species. However, there were differences in the EO content (yield) due to the sex of the plant, and also differences in the proportions of some EO components. The concentration of α-pinene, ß-caryophyllene, δ-cadinene and δ-cadinol was dissimilar between the EO of M and F plants within all four species. Additionally, M and F plants of J. pygmaea, and J. sibirica had significantly different concentrations of sabinene within the respective species. The EOs obtained via ClevA extraction showed higher antioxidant capacity within a species compared with those from SCom extraction. All of the tested EOs had significant repellent and insecticidal activity against the two aphid species Rhopalosiphum padi (bird cherry-oat aphid) and Sitobion avenae (English grain aphid) at concentrations of the EO in the solution of 1%, 2.5%, and 5%. The tested EOs demonstrated moderate activity against selected pathogens Fusarium spp., Botrytis cinerea, Colletotrichum spp., Rhizoctonia solani and Cylindrocarpon pauciseptatum. The results demonstrate that the standard ClevA would provide comparable EO content and composition in comparison with SCom steam distillation; however, even slight differences in the EO composition may translate into differential bioactivity.


Asunto(s)
Agentes de Control Biológico/farmacología , Juniperus/química , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Agentes de Control Biológico/química , Fraccionamiento Químico/instrumentación , Relación Dosis-Respuesta a Droga , Cromatografía de Gases y Espectrometría de Masas , Repelentes de Insectos/química , Repelentes de Insectos/farmacología , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Aceites de Plantas/química
16.
mSphere ; 6(4): e0037621, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34378986

RESUMEN

Bacillus amyloliquefaciens is considered the most successful biological control agent due to its ability to colonize the plant rhizosphere and phyllosphere where it outgrows plant pathogens by competition, antibiosis, and inducing plant defense. Its antimicrobial function is thought to depend on a diverse spectrum of secondary metabolites, including peptides, cyclic lipopeptides, and polyketides, which have been shown to target mostly fungal pathogens. In this study, we isolated and characterized the catecholate siderophore bacillibactin by B. amyloliquefaciens MBI600 under iron-limiting conditions and we further identified its potential antibiotic activity against plant pathogens. Our data show that bacillibactin production restrained in vitro and in planta growth of the nonsusceptible (to MBI600) pathogen Pseudomonas syringae pv. tomato. Notably, it was also related to increased antifungal activity of MBI600. In addition to bacillibactin biosynthesis, iron starvation led to upregulation of specific genes involved in microbial fitness and competition. IMPORTANCE Siderophores have mostly been studied concerning their contribution to the fitness and virulence of bacterial pathogens. In the present work, we isolated and characterized for the first time the siderophore bacillibactin from a commercial bacterial biocontrol agent. We proved that its presence in the culture broth has significant biocontrol activity against nonsusceptible bacterial and fungal phytopathogens. In addition, we suggest that its activity is due to a new mechanism of action, that of direct antibiosis, rather than by competition through iron scavenging. Furthermore, we showed that bacillibactin biosynthesis is coregulated with the transcription of antimicrobial metabolite synthases and fitness regulatory genes that maximize competition capability. Finally, this work highlights that the efficiency and range of existing bacterial biocontrol agents can be improved and broadened via the rational modification of the growth conditions of biocontrol organisms.


Asunto(s)
Antibacterianos/farmacología , Antibiosis/efectos de los fármacos , Bacillus amyloliquefaciens/química , Bacillus amyloliquefaciens/metabolismo , Agentes de Control Biológico/química , Agentes de Control Biológico/metabolismo , Oligopéptidos/farmacología , Antifúngicos/metabolismo , Bacillus amyloliquefaciens/genética , Hongos/metabolismo , Hierro/metabolismo , Oligopéptidos/biosíntesis , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Pseudomonas syringae/efectos de los fármacos , Pseudomonas syringae/patogenicidad , Sideróforos/biosíntesis , Sideróforos/farmacología
17.
Molecules ; 26(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34361785

RESUMEN

Even today, weeds continue to be a considerable problem for agriculture. The application of synthetic herbicides produces serious environmental consequences, and crops suffer loss of their activity due to the appearance of new resistant weed biotypes. Our aim is to develop new effective natural herbicides that improve the problem of resistance and do not harm the environment. This work is focused on a bioassay-guided isolation and the characterization of natural products present in Moquiniastrum pulchrum leaves with phytotoxic activity and its preliminary application in weeds. Moquiniastrum pulchrum was selected for two reasons: it is an abundant species in the Cerrado region (the second most important ecosystem in Brazil, after the Amazon)-the explanation behind its being a dominant species is a major focus of interest-and it has traditional employment in folk medicine. Six major compounds were isolated in this plant: one flavone and five diterpenes, two of which are described for the first time in the literature. Four of the six compounds exhibited phytotoxic activity in the bioassays performed. The results confirmed the phytotoxic potential of this plant, which had not been investigated until now.


Asunto(s)
Asteraceae/química , Agentes de Control Biológico/toxicidad , Diterpenos/toxicidad , Flavonas/toxicidad , Herbicidas/toxicidad , Malezas/efectos de los fármacos , Control de Malezas/métodos , Bioensayo , Agentes de Control Biológico/química , Agentes de Control Biológico/aislamiento & purificación , Productos Agrícolas/crecimiento & desarrollo , Diterpenos/química , Diterpenos/aislamiento & purificación , Flavonas/química , Flavonas/aislamiento & purificación , Herbicidas/química , Herbicidas/aislamiento & purificación , Humanos , Estructura Molecular , Extractos Vegetales/química , Hojas de la Planta/química , Malezas/crecimiento & desarrollo
18.
Molecules ; 26(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209179

RESUMEN

As an alternative to synthetic pesticides, natural chemistries from living organisms, are not harmful to nontarget organisms and the environment, can be used as biopesticides, nontarget. However, to reduce the reactivity of active ingredients, avoid undesired reactions, protect from physical stress, and control or lower the release rate, encapsulation processes can be applied to biopesticides. In this review, the advantages and disadvantages of the most common encapsulation processes for biopesticides are discussed. The use of supercritical fluid technology (SFT), mainly carbon dioxide (CO2), to encapsulate biopesticides is highlighted, as they reduce the use of organic solvents, have simpler separation processes, and achieve high-purity particles. This review also presents challenges to be surpassed and the lack of application of SFT for biopesticides in the published literature is discussed to evaluate its potential and prospects.


Asunto(s)
Agentes de Control Biológico/química , Dióxido de Carbono/química , Plaguicidas/química
19.
Molecules ; 26(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202905

RESUMEN

Cereals are subject to contamination by pathogenic fungi, which damage grains and threaten public health with their mycotoxins. Fusarium graminearum and its mycotoxins, trichothecenes B (TCTBs), are especially targeted in this study. Recently, the increased public and political awareness concerning environmental issues tends to limit the use of traditional fungicides against these pathogens in favor of eco-friendlier alternatives. This study focuses on the development of biofungicides based on the encapsulation of a curcumin derivative, tetrahydrocurcumin (THC), in polysaccharide matrices. Starch octenylsuccinate (OSA-starch) and chitosan have been chosen since they are generally recognized as safe. THC has been successfully trapped into particles obtained through a spray-drying or freeze-drying processes. The particles present different properties, as revealed by visual observations and scanning electron microscopy. They are also different in terms of the amount and the release of encapsulated THC. Although freeze-dried OSA-starch has better trapped THC, it seems less able to protect the phenolic compound than spray-dried particles. Chitosan particles, both spray-dried and lyophilized, have shown promising antifungal properties. The IC50 of THC-loaded spray-dried chitosan particles is as low as 0.6 ± 0.3 g/L. These particles have also significantly decreased the accumulation of TCTBs by 39%.


Asunto(s)
Antifúngicos , Agentes de Control Biológico , Quitosano , Fusarium/crecimiento & desarrollo , Almidón/análogos & derivados , Antifúngicos/química , Antifúngicos/farmacología , Agentes de Control Biológico/química , Agentes de Control Biológico/farmacología , Quitosano/química , Quitosano/farmacología , Curcumina/análogos & derivados , Curcumina/química , Curcumina/farmacología , Almidón/química , Almidón/farmacología
20.
mSphere ; 6(3): e0042721, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34077259

RESUMEN

Phenazine-producing Pseudomonas spp. are effective biocontrol agents that aggressively colonize the rhizosphere and suppress numerous plant diseases. In this study, we compared the ability of 63 plant-beneficial phenazine-producing Pseudomonas strains representative of the worldwide diversity to inhibit the growth of three major potato pathogens: the oomycete Phytophthora infestans, the Gram-positive bacterium Streptomyces scabies, and the ascomycete Verticillium dahliae. The 63 Pseudomonas strains are distributed among four different subgroups within the P. fluorescens species complex and produce different phenazine compounds, namely, phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide (PCN), 2-hydroxyphenazine-1-carboxylic acid, and 2-hydroxphenazine. Overall, the 63 strains exhibited contrasted levels of pathogen inhibition. Strains from the P. chlororaphis subgroup inhibited the growth of P. infestans more effectively than strains from the P. fluorescens subgroup. Higher inhibition was not associated with differential levels of phenazine production nor with specific phenazine compounds. The presence of additional biocontrol-related traits found in P. chlororaphis was instead associated with higher P. infestans inhibition. Inhibition of S. scabies by the 63 strains was more variable, with no clear taxonomic segregation pattern. Inhibition values did not correlate with phenazine production nor with specific phenazine compounds. No additional synergistic biocontrol-related traits were found. Against V. dahliae, PCN producers from the P. chlororaphis subgroup and PCA producers from the P. fluorescens subgroup exhibited greater inhibition. Additional biocontrol-related traits potentially involved in V. dahliae inhibition were identified. This study represents a first step toward harnessing the vast genomic diversity of phenazine-producing Pseudomonas spp. to achieve better biological control of potato pathogens. IMPORTANCE Plant-beneficial phenazine-producing Pseudomonas spp. are effective biocontrol agents, thanks to the broad-spectrum antibiotic activity of the phenazine antibiotics they produce. These bacteria have received considerable attention over the last 20 years, but most studies have focused only on the ability of a few genotypes to inhibit the growth of a limited number of plant pathogens. In this study, we investigated the ability of 63 phenazine-producing strains, isolated from a wide diversity of host plants on four continents, to inhibit the growth of three major potato pathogens: Phytophthora infestans, Streptomyces scabies, and Verticillium dahliae. We found that the 63 strains differentially inhibited the three potato pathogens. These differences are in part associated with the nature and the quantity of the phenazine compounds being produced but also with the presence of additional biocontrol-related traits. These results will facilitate the selection of versatile biocontrol agents against pathogens.


Asunto(s)
Bacterias/efectos de los fármacos , Fenazinas/farmacología , Pseudomonas/química , Pseudomonas/genética , Solanum tuberosum/microbiología , Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/patogenicidad , Agentes de Control Biológico/química , Agentes de Control Biológico/metabolismo , Variación Genética , Genoma Bacteriano , Fenazinas/química , Fenazinas/metabolismo , Phytophthora infestans/efectos de los fármacos , Phytophthora infestans/crecimiento & desarrollo , Pseudomonas/clasificación , Streptomyces/efectos de los fármacos , Streptomyces/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...