Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 970
1.
Harmful Algae ; 134: 102609, 2024 Apr.
Article En | MEDLINE | ID: mdl-38705612

Modified clay compounds are used globally as a method of controlling harmful algal blooms, and their use is currently under consideration to control Karenia brevis blooms in Florida, USA. In 1400 L mesocosm tanks, chemical dynamics and lethal and sublethal impacts of MC II, a polyaluminum chloride (PAC)-modified kaolinite clay, were evaluated over 72 h on a benthic community representative of Sarasota Bay, which included blue crab (Callinectes sapidus), sea urchin (Lytechinus variegatus), and hard clam (Mercenaria campechiensis). In this experiment, MC II was dosed at 0.2 g L-1 to treat bloom-level densities of K. brevis at 1 × 106 cells L-1. Cell removal in MC II-treated tanks was 57% after 8 h and 95% after 48 h. In the water column, brevetoxin analogs BTx-1 and BTx-2 were found to be significantly higher in untreated tanks at 24 and 48 h, while in MC II-treated tanks, BTx-3 was found to be higher at 48 h and BTx-B5 was found to be higher at 24 and 48 h. In MC II floc, we found no significant differences in BTx-1 or BTx-2 between treatments for any time point, while BTx-3 was found to be significantly higher in the MC II-treated tanks at 48 and 72 h, and BTx-B5 was higher in MC II-treated tanks at 24 and 72 h. Among various chemical dynamics observed, it was notable that dissolved phosphorus was consistently significantly lower in MC II tanks after 2 h, and that turbidity in MC II tanks returned to control levels 48 h after treatment. Dissolved inorganic carbon and total seawater alkalinity were significantly reduced in MC II tanks, and partial pressure of CO2 (pCO2) was significantly higher in the MC II-only treatment after 2 h. In MC II floc, particulate phosphorus was found to be significantly higher in MC II tanks after 24 h. In animals, lethal and sublethal responses to MC II-treated K. brevis did not differ from untreated K. brevis for either of our three species at any time point, suggesting MC II treatment at this dosage has negligible impacts to these species within 72 h of exposure. These results appear promising in terms of the environmental safety of MC II as a potential bloom control option, and we recommend scaling up MC II experiments to field trials in order to gain deeper understanding of MC II performance and dynamics in natural waters.


Aluminum Hydroxide , Dinoflagellida , Harmful Algal Bloom , Marine Toxins , Animals , Dinoflagellida/drug effects , Dinoflagellida/physiology , Dinoflagellida/chemistry , Clay/chemistry , Bivalvia/physiology , Bivalvia/drug effects , Sea Urchins/physiology , Sea Urchins/drug effects , Florida , Brachyura/physiology , Brachyura/drug effects , Mercenaria/drug effects , Mercenaria/physiology , Aluminum Silicates/pharmacology , Aluminum Silicates/chemistry
2.
Chemosphere ; 358: 142195, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692368

Due to the anthropogenic increase of atmospheric CO2 emissions, humanity is facing the negative effects of rapid global climate change. Both active emission reduction and carbon dioxide removal (CDR) technologies are needed to meet the Paris Agreement and limit global warming to 1.5 °C by 2050. One promising CDR approach is coastal enhanced weathering (CEW), which involves the placement of sand composed of (ultra)mafic minerals like olivine in coastal zones. Although the large-scale placement of olivine sand could beneficially impact the planet through the consumption of atmospheric CO2 and reduction in ocean acidification, it may also have physical and geochemical impacts on benthic communities. The dissolution of olivine can release dissolved constituents such as trace metals that may affect marine organisms. Here we tested acute and chronic responses of marine invertebrates to olivine sand exposure, as well as examined metal accumulation in invertebrate tissue resulting from olivine dissolution. Two different ecotoxicological experiments were performed on a range of benthic marine invertebrates (amphipod, polychaete, bivalve). The first experiment included acute and chronic survival and growth tests (10 and 20 days, respectively) of olivine exposure while the second had longer (28 day) exposures to measure chronic survival and bioaccumulation of trace metals (e.g. Ni, Cr, Co) released during olivine sand dissolution. Across all fauna we observed no negative effects on acute survival or chronic growth resulting solely from olivine exposure. However, over 28 days of exposure, the bent-nosed clam Macoma nasuta experienced reduced burrowing and accumulated 4.2 ± 0.7 µg g ww-1 of Ni while the polychaete Alitta virens accumulated 3.5 ± 0.9 µg g ww-1 of Ni. No significant accumulation of any other metals was observed. Future work should include longer-term laboratory studies as well as CEW field studies to validate these findings under real-world scenarios.


Aquatic Organisms , Iron Compounds , Magnesium Compounds , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/metabolism , Aquatic Organisms/metabolism , Aquatic Organisms/drug effects , Magnesium Compounds/chemistry , Iron Compounds/chemistry , Bioaccumulation , Metals/metabolism , Silicates , Invertebrates/drug effects , Invertebrates/metabolism , Silicon Dioxide/chemistry , Polychaeta/metabolism , Polychaeta/drug effects , Polychaeta/physiology , Bivalvia/metabolism , Bivalvia/drug effects
3.
Sci Total Environ ; 933: 173184, 2024 Jul 10.
Article En | MEDLINE | ID: mdl-38750754

Deep-sea toxicology is essential for deep-sea environmental impact assessment. Yet most toxicology experiments are conducted solely in laboratory settings, overlooking the complexities of the deep-sea environment. Here we carried out metal exposure experiments in both the laboratory and in situ, to compare and evaluate the response patterns of Gigantidas platifrons to metal exposure (copper [Cu] or cadmium [Cd] at 100 µg/L for 48 h). Metal concentrations, traditional biochemical parameters, and fatty acid composition were assessed in deep-sea mussel gills. The results revealed significant metal accumulation in deep-sea mussel gills in both laboratory and in situ experiments. Metal exposure could induce oxidative stress, neurotoxicity, an immune response, altered energy metabolism, and changes to fatty acid composition in mussel gills. Interestingly, the metal accumulating capability, biochemical response patterns, and fatty acid composition each varied under differing experimental systems. In the laboratory setting, Cd-exposed mussels exhibited a higher value for integrated biomarker response (IBR) while in situ the Cu-exposed mussels instead displayed a higher IBR value. This study emphasizes the importance of performing deep-sea toxicology experiments in situ and contributes valuable data to a standardized workflow for deep-sea toxicology assessment.


Bivalvia , Cadmium , Mining , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Cadmium/toxicity , Bivalvia/drug effects , Bivalvia/physiology , Gills/drug effects , Environmental Monitoring/methods , Copper/toxicity , Biomarkers/metabolism
4.
Sci Rep ; 14(1): 9369, 2024 04 23.
Article En | MEDLINE | ID: mdl-38653774

Human pharmaceuticals represent a major challenge in natural environment. A better knowledge on their mechanisms of action and adverse effects on cellular pathways is fundamental to predict long-term consequences for marine wildlife. The FTIRI Imaging (FTIRI) spectroscopy represents a vibrational technique allowing to map specific areas of non-homogeneous biological samples, providing a unique biochemical and ultrastructural fingerprint of the tissue. In this study, FTIRI technique has been applied, for the first time, to characterize (i) the chemical building blocks of digestive glands of Mytilus galloprovincialis, (ii) alterations and (iii) resilience of macromolecular composition, after a 14-days exposure to 0.5 µg/L of carbamazepine (CBZ), valsartan (VAL) and their mixture, followed by a 14-days recovery period. Spectral features of mussels digestive glands provided insights on composition and topographical distribution of main groups of biological macromolecules, such as proteins, lipids, and glycosylated compounds. Pharmaceuticals caused an increase in the total amount of protein and a significant decrease of lipids levels. Changes in macromolecular features reflected the modulation of specific molecular and biochemical pathways thus supporting our knowledge on mechanisms of action of such emerging pollutants. Overall, the applied approach could represent an added value within integrated strategies for the effects-based evaluation of environmental contaminants.


Digestive System , Mytilus , Water Pollutants, Chemical , Animals , Mytilus/drug effects , Mytilus/metabolism , Water Pollutants, Chemical/toxicity , Digestive System/drug effects , Digestive System/metabolism , Macromolecular Substances , Carbamazepine/pharmacology , Spectroscopy, Fourier Transform Infrared , Bivalvia/drug effects , Bivalvia/chemistry
5.
Environ Pollut ; 351: 124058, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38685557

(Eco)toxicological studies frequently evaluate the effects of chemicals in one life stage of organisms, but the use of these outcomes can only partially estimate populational effects. In this regard, multi- and/or transgenerational studies should be performed in order to provide information on contaminant effects in a populational functioning context. The present review aimed to summarize and critically evaluate the current knowledge regarding multi- and/or transgenerational effects of traditional and emerging environmental chemicals on mollusks. Results showed that these kinds of studies were performed in aquatic mollusks (bivalve and gastropod), being Gastropoda the mollusk Class most frequently studied. Additionally, freshwater species and multigenerational studies were more common for this class. For the Bivalvia class, only marine species were evaluated, and transgenerational exposure was more commonly assessed. The effects were reported for 15 species, highlighting the marine bivalves Crassostrea gigas and Saccostrea glomerata, and the freshwater gastropod Lymnaea stagnalis. Multi- and transgenerational effects were described for 8 environmental chemical groups, mainly metals, pesticides, and pharmaceuticals. In general, multi- and transgenerational exposure induced biometric, developmental, and reproductive impairments in mollusks, indicating that environmental chemicals might lead to generational impairments, reduced population growth and reproductive capacity, and decreased fitness. The current study indicated that bivalves and gastropods are suitable organism models to assess the multi- and transgenerational adverse effects induced by traditional and emerging environmental chemicals.


Mollusca , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Mollusca/drug effects , Bivalvia/drug effects , Ecotoxicology
6.
Chemosphere ; 356: 141905, 2024 May.
Article En | MEDLINE | ID: mdl-38579946

Nonylphenol (NP) contamination in the coastal environment of China poses ecological risks to aquatic organisms. However, the endocrine disruptive impacts of NP on bivalves, particularly on ovarian development, remain poorly understood. In this study, Manila clams Ruditapes philippinarum at the developing stage of gonad were exposed to 1.0 µg/L NP for 21 days. Utilizing RNA interference (RNAi) to suppress ER gene expression, we observed a delay in ovarian development as evidenced by histological observations under both NP and NPRi (NP with ER-RNAi) treatment, with Vtg elevation exclusive to the NP group. Comprehensive analyses encompassing transcriptomics, real-time quantitative PCR, and steroid hormone measurement revealed significant alterations in aldosterone synthesis, estrogen signaling, and thyroid hormone synthesis. These pathways showed similar perturbations in both NP and NPRi groups compared to controls. Notably, the NPRi group exhibited distinct enrichment in PPAR and insulin signaling pathways, may implicating these in ER function suppression. Steroid hormone biosynthesis was notably reduced in both treatments, pointing to a profound impact on hormone synthesis. The contrast between in vivo and in vitro findings suggests that NP's detrimental effects on ovarian development may primarily involve neuroendocrine regulation of steroidogenesis. This investigation highlights the complex dynamics of NP-induced endocrine disruption in bivalves, emphasizing the pivotal role of ER and associated pathways.


Bivalvia , Endocrine Disruptors , Ovary , Phenols , RNA Interference , Water Pollutants, Chemical , Animals , Phenols/toxicity , Female , Ovary/drug effects , Ovary/metabolism , Bivalvia/drug effects , Bivalvia/genetics , Endocrine Disruptors/toxicity , Water Pollutants, Chemical/toxicity , China , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics
7.
Environ Toxicol Chem ; 43(5): 1097-1111, 2024 May.
Article En | MEDLINE | ID: mdl-38488680

The ASTM International standard test method for freshwater mussels (E2455-13) recommends 4-week toxicity testing with juveniles to evaluate chronic effects on survival and growth. However, concerns remain that the method may not adequately address the sensitivity of mussels to longer term exposures (>4 weeks), particularly in relation to potential reproductive impairments. No standard method directly evaluates toxicant effects on mussel reproduction. The objectives of the present study were to (1) evaluate toxicity endpoints related to reproduction in fatmucket (Lampsilis siliquoidea) using two common reference toxicants, potassium chloride (KCl) and nickel (Ni); (2) evaluate the survival and growth of juvenile fatmucket in standard 4-week and longer term (12-week) KCl and Ni tests following a method refined from the standard method; and (3) compare the sensitivity of the reproductive endpoints with the endpoints obtained from the juvenile mussel tests. Reproductive toxicity tests were conducted by first exposing female fatmucket brooding mature larvae (glochidia) to five test concentrations of KCl and Ni for 6 weeks. Subsamples of the glochidia were then removed from the adults to determine three reproductive endpoints: (1) the viability of brooded glochidia; (2) the viability of free glochidia in a 24-h exposure to the same toxicant concentrations as their mother; and (3) the success of glochidia parasitism on host fish. Mean viability of brooded glochidia was significantly reduced in the high KCl concentration (26 mg K/L) relative to the control, with a 20% effect concentration (EC20) of 14 mg K/L, but there were no significant differences between the control and any Ni treatment (EC20 > 95 µg Ni/L). The EC20s for viability of free glochidia after the additional 24-h exposure and parasitism success were similar to the EC20s of brooded glochidia. The EC20s based on the most sensitive biomass endpoint in the 4-week juvenile tests were 15 mg K/L and 91 µg Ni/L, similar to or greater than the EC20s from the reproductive KCl and Ni tests, respectively. When exposure duration in the juvenile tests was extended from 4 to 12 weeks, the EC20s decreased by more than 50% in the KCl test but by only 8% in the Ni test. Overall, these results indicate that a standard 4-week test with juvenile mussels can prove effective for estimating effects in chronic exposures with different life stages although a longer term 12-week exposure with juvenile mussels may reveal higher sensitivity of mussels to some toxicants, such as KCl. Environ Toxicol Chem 2024;43:1097-1111. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Nickel , Potassium Chloride , Reproduction , Water Pollutants, Chemical , Animals , Nickel/toxicity , Reproduction/drug effects , Water Pollutants, Chemical/toxicity , Potassium Chloride/toxicity , Female , Bivalvia/drug effects , Bivalvia/growth & development , Unionidae/drug effects , Unionidae/growth & development
8.
Environ Toxicol Chem ; 43(5): 1112-1125, 2024 May.
Article En | MEDLINE | ID: mdl-38517160

Freshwater mussels provide invaluable ecological services but are threatened by habitat alteration, poor water quality, invasive species, climate change, and contaminants, including contaminants of emerging concern (CECs). Contaminants of emerging concerns are well documented in aquatic environments, including the Great Lakes Basin, but limited information is available on how environmentally relevant mixtures affect freshwater mussel biology throughout their varied life stages. Our main goal was to assess mussels' reproductive output in response to exposure to agricultural and urban CEC mixtures during glochidial development through juvenile transformation and excystment focusing on how exposure duration and treatment affect: (1) the number of glochidia prematurely released by brooding females, (2) glochidial transformation through host-fish excystment, and (3) the number of fully metamorphosed juveniles able to continue the lifecycle. Mussels and host fish were exposed to either a control water (CW), control ethanol (CE), agriculture CEC mixture (AM), or urban CEC mixture (UM) for 40 and 100 days. We found no effect from treatment or exposure duration on the number of glochidia prematurely released. Fewer partially and fully metamorphosed AM juveniles were observed during the 100-day exposure, compared with the 40-day. During the 40-day exposure, CW produced more fully metamorphosed individuals compared with CE and UM, but during the 100-day exposure AM produced more fully metamorphosed individuals compared with the CW. There was reduction in fully metamorphosed juveniles compared with partially metamorphosed for CE and UM during the 40-day exposure, as well as in the CW during the 100-day exposure. These results will be important for understanding how mussel populations are affected by CEC exposure. The experiments also yielded many insights for laboratory toxicology exposure studies. Environ Toxicol Chem 2024;43:1112-1125. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Fresh Water , Agriculture , Bivalvia/drug effects , Bivalvia/growth & development , Reproduction/drug effects , Ethanol/toxicity , Cities , Female
9.
Environ Pollut ; 350: 123724, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38462197

Multistress effects lead to unpredicted consequences in aquatic ecotoxicology and are extremely concerning. The goal of this study was to trace how specific effects of the antibiotic salinomycin (Sal) and microplastics (MP) on the bivalve molluscs are manifested in the combined environmentally relevant exposures. Unio tumidus specimens were treated with Sal (0.6 µg L-1), MP (1 mg L-1, 2 µm size), and both at 18 °C (Mix) and 25 °C (MixT) for 14 days. The redox stress and apoptotic enzyme responses and the balance of Zn/Cu in the digestive gland were analyzed. The shared signs of stress included a decrease in NAD+/NADH and Zn/Cu ratios and lysosomal integrity and an increase in Zn-metallothioneins and cholinesterase levels. MP caused a decrease in the glutathione (GSH) concentration and redox state, total antioxidant capacity, and Zn levels. MP and Mix induced coordinated apoptotic/autophagy activities, increasing caspase-3 and cathepsin D (CtD) total and extralysosomal levels. Sal activated caspase-3 only and increased by five times Cu level in the tissue. Due to the discriminant analysis, the cumulative effect was evident in the combined exposure at 18 °C. However, under heating, the levels of NAD+, NADH, GSH, GSH/GSSG and metallothionein-related thiols were decreased, and coordination of the cytosolic and lysosomal death stimuli was distorted, confirming that heating and pollution could exert unexpected synergistic effects on aquatic life.


Microplastics , Pyrans , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Pyrans/toxicity , Microplastics/toxicity , Bivalvia/drug effects , Oxidative Stress/drug effects , Rivers/chemistry , Glutathione/metabolism , Zinc/toxicity , Oxidation-Reduction , Apoptosis/drug effects , Polyether Polyketides
10.
ACS Appl Mater Interfaces ; 15(32): 38808-38820, 2023 Aug 16.
Article En | MEDLINE | ID: mdl-37526484

Cu2O is currently an important protective material for domestic engineering and equipment used to exploit marine resources. Cu+ is considered to have more effective antibacterial and antifouling activities than Cu2+. However, disproportionation of Cu+ in the natural environment leads to its reduced bioavailability and weakened reactivity. Novel and functionalized Cu2O composites could enable efficient and environmentally friendly applications of Cu+. To this end, a series of three-dimensional porous Cu2O nanoparticles (3DNP-Cu2O) functionalized by organic (redox gel, R-Gel)-inorganic (reduced graphene oxide, rGO) hybrids─3DNP-Cu2O/rGOx@R-Gel─at room temperature by immobilization-reduction method was prepared and applied for protection against marine biofouling. 3DNP-Cu2O/rGO1.76@R-Gel includes rGO and R-Gel shape 3D porous Cu2O nanoparticles with diameters ∼177 nm and strong dispersion and antioxidant stability. Compared with commercial Cu2O (Cu2O-0), 3DNP-Cu2O/rGO1.76@R-Gel exhibited an ∼50% higher bactericidal rate, ∼96.22% higher water content, and ∼75% lower adhesion of mussels and barnacles. Moreover, 3DNP-Cu2O/rGOx@R-Gel maintains the same excellent, stable, and long-lasting bactericidal performance as Cu2O-0@R-Gel while reducing the average copper ion release concentration by ∼56 to 76%. This was also confirmed by X-ray diffraction, X-ray photoelectric spectroscopy (XPS), atomic absorption spectroscopy, and antifouling tests. In addition, XPS tests of rGO-Cu2+ and R-Gel-Cu2+, photocurrent tests of 3DNP-Cu2O/rGO1.76@R-Gel, and energy-dispersive spectrometry pictures of bacteria confirm that R-Gel and rGO act as electron donors and transfer substrates driving the reduction of Cu2+ (Cu2+ → Cu+) and the diffusion of Cu+. Thus, a self-growing antibacterial and antifouling system of 3DNP-Cu2O/rGO1.76@R-Gel was achieved. The mechanism of accelerated bacterial inactivation and resistance to mussel and barnacle adhesion by 3DNP-Cu2O/rGO1.76@R-Gel was interpreted. It is shown that rGO and R-Gel are important players in the antibacterial and antifouling system of 3DNP-Cu2O/rGO1.76@R-Gel.


Metal Nanoparticles , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Porosity , Biofouling/prevention & control , Antioxidants/chemistry , Escherichia coli/drug effects , Bivalvia/drug effects , Animals
11.
Sci Total Environ ; 871: 162103, 2023 May 01.
Article En | MEDLINE | ID: mdl-36764549

The wide application of TiO2-based engineered nanoparticles (nTiO2) inevitably led to release into aquatic ecosystems. Importantly, increasing studies have emphasized the high risks of nTiO2 to coastal environments. Bivalves, the representative benthic filter feeders in coastal zones, acted as important roles to assess and monitor the toxic effects of nanoparticles. Oxidative damage was one of the main toxic mechanisms of nTiO2 on bivalves, but the experimental variables/nanomaterial characteristics were diverse and the toxicity mechanism was complex. Therefore, it was very necessary to develop machine learning model to characterize and predict the potential toxicity. In this study, thirty-six machine learning models were built by nanodescriptors combined with six machine learning algorithms. Among them, random forest (RF) - catalase (CAT), k-neighbors classifier (KNN) - glutathione peroxidase (GPx), neural networks - multilayer perceptron (ANN) - glutathione s-transferase (GST), random forest (RF) - malondialdehyde (MDA), random forest (RF) - reactive oxygen species (ROS), and extreme gradient boosting decision tree (XGB) - superoxide dismutase (SOD) models performed good with high accuracy and balanced accuracy for both training sets and external validation sets. Furthermore, the best model revealed the predominant factors (exposure concentration, exposure periods, and exposure matrix) influencing the oxidative stress induced by nTiO2. These results showed that high exposure concentrations and short exposure-intervals tended to cause oxidative damage to bivalves. In addition, gills and digestive glands could be vulnerable to nTiO2-induced oxidative damage as tissues/organs differences were the important factors controlling MDA activity. This study provided insights into important nano-features responsible for the different indicators of oxidative stress and thereby extended the application of machine learning approaches in toxicological assessment for nanoparticles.


Bivalvia , Nanoparticles , Animals , Ecosystem , Gills , Nanoparticles/toxicity , Oxidative Stress , Reactive Oxygen Species , Bivalvia/drug effects
12.
Chemosphere ; 309(Pt 1): 136664, 2022 Dec.
Article En | MEDLINE | ID: mdl-36195123

Silver (Ag), titanium dioxide (TiO2), and iron (Fe) nanoparticles (NPs) synthesized using the fungus Trichoderma harzianum are effective against the agriculture pathogen Sclerotinia sclerotiorum. However, their effects should be evaluated in aquatic organisms, as agriculture practices can contaminate the aquatic environment. Thus, this work evaluated sublethal effects of acute exposure (24 h) to AgNP, TiO2NP and FeNP, synthesized with T. harzianum, on the Neotropical freshwater bivalve Anodontites trapesialis, considering the hypothesis that suspension-feeding bivalves are susceptible to NPs toxicity. Individuals of A. trapesialis were divided into four groups (n = 8/group): a control group, kept in water only; a group exposed to AgNP; a group exposed to TiO2NP; and a group exposed to FeNP. The bioaccumulation of Ag, Ti, and Fe was evaluated in the gills, hemolymph, mantle, digestive gland, and muscle (foot). Lipoperoxidation, activities of the glutathione S-transferase, catalase, and superoxide dismutase, and glycogen concentration were quantified in the gills, mantle, and digestive gland. Ions (Na+, K+, Cl-, Ca2+, and Mg+2) and glucose concentrations were quantified in the hemolymph. Na+/K+-ATPase, H+-ATPase, Ca2+-ATPase, and carbonic anhydrase activities were assessed in the gills and mantle. Acetylcholinesterase activity was determined in the foot and adductor muscle. The mussels exposed to AgNP accumulated Ag in the gills, hemolymph, and foot, and showed a decrease in hemolymph concentrations of Na+ and Cl-, which was associated with the action of Ag ion (Ag+). The exposures to TiO2NP and FeNP led to the accumulation of Ti and Fe in the hemolymph, respectively, but did not promote additional effects. Accordingly, A. trapesialis showed bioaccumulation potential and susceptibility to AgNP, but was not susceptible to TiO2NP and FeNP. Thus, the preferential agricultural use of TiO2NP and FeNP over AgNP is highlighted.


Bivalvia , Carbonic Anhydrases , Fungicides, Industrial , Metal Nanoparticles , Water Pollutants, Chemical , Animals , Acetylcholinesterase , Adenosine Triphosphatases , Agriculture , Bivalvia/drug effects , Catalase , Fungicides, Industrial/pharmacology , Glucose , Glutathione Transferase , Glycogen , Iron/toxicity , Metal Nanoparticles/toxicity , Silver/toxicity , Superoxide Dismutase , Water Pollutants, Chemical/analysis
13.
Biochem Biophys Res Commun ; 598: 9-14, 2022 04 02.
Article En | MEDLINE | ID: mdl-35149434

The identification of novel peptides that regulate reproduction is essential for studying reproductive physiology in bivalves. Therefore, we aimed to identify peptides that affect the reproductive physiology of bivalves. We identified an oocyte maturation-, sperm motility-, and spawning-inducing peptide from the visceral ganglia of the pen shell, Atrina pectinata. The peptide consisted of 26 amino acid residues (GFDSINFPGTIDGFKDYSSNKKERLL). This peptide induced oocyte maturation and sperm motility activation at less than 1 nM upon the treatment of gonad fragments and induced spawning at 1 nmol when injected into mature individuals. Mature eggs and sperms artificially spawned by peptide administration were fertilized, and we confirmed that the development proceeded normally to veliger (D-shape) larvae. These results indicated that GFDSINFPGTIDGFKDYSSNKKERLL stimulated the gonads of pen shells and induced oocyte maturation, sperm motility activation, and spawning.


Bivalvia/chemistry , Bivalvia/physiology , Oocytes/drug effects , Peptides/pharmacology , Sperm Motility/drug effects , Animals , Bivalvia/drug effects , Cloning, Molecular , Female , Ganglia, Invertebrate/chemistry , Male , Oocytes/physiology , Ovary/drug effects , Peptides/chemistry , Peptides/genetics , Reproduction/drug effects , Reproduction/physiology , Tandem Mass Spectrometry , Testis/drug effects
14.
Article En | MEDLINE | ID: mdl-34619354

Heat shock proteins (HSPs) are a class of highly conserved proteins which can protect cells against various types of stress. However, little information on the mechanism involved in the organic contaminants stress response of HSPs is available, especially in marine invertebrates. The present study was conducted to evaluate the responses of HSPs in clams (Ruditapes philippinarum) under Benzo[a] pyrene (BaP) exposure. The clams were exposed to BaP (concentrations: 0, 0.1, 1, 10 µg/L) for 15 days. 6 HSPs mRNA were classified, and the results of tissue distribution indicated that 4 HSPs gene expressed most in the digestive glands. The transcription level of 6 HSPs (HSP22-1, HSP22-2, HSP40A, HSP60, HSP70, HSP90) genes and the aryl hydrocarbon receptor signaling pathway-related genes, and detoxification system-related enzymes activities were analyzed at 0, 1, 3, 6, 10 and 15 days. The activities of phase II detoxification metabolic enzymes and signaling pathway related genes in clams were severely affected by BaP stress and presented significant difference. Our result suggested that HSPs were produced in the presence of BaP and participated in the process of detoxification metabolism to a certain extent. Additionally, the transcription of HSP40A gene may be used as a potential biomarker of BaP exposure due to its evident concentration- and time-dependent expression pattern. Overall, the study investigated the classification of HSPs in R. philippinarum, provided information about the expression profiles of various HSPs after BaP exposure and broadened the understanding mechanism of HSPs in detoxification defense system under PAHs stress in mollusks.


Benzo(a)pyrene/toxicity , Bivalvia , Gene Expression/drug effects , Heat-Shock Proteins/metabolism , Water Pollutants, Chemical/toxicity , Animals , Bivalvia/drug effects , Bivalvia/metabolism
15.
Article En | MEDLINE | ID: mdl-34597779

The intense mining extraction of oil sand (OS) has increased over the last few decades, raising concerns about the release of OS contaminants and toxicity in resident aquatic organisms in the Athabasca River (Alberta, Canada). To address this, endemic Pyganodon grandis mussels were caged for 6 weeks at various upstream and downstream sites of industrial OS mining activities. Post-exposure mussels were then analyzed for light/medium/heavy polyaromatic hydrocarbons (PAHs) in tissues, general health (weight to length ratio, growth rate, air survival time), biotransformation (cytochrome P4501A and 3A and glutathione S-transferase activities), oxidative stress/inflammation (lipid peroxidation-LPO and arachidonate cyclooxygenase-COX), genotoxicity (DNA strand breaks), and gonad status (triglycerides, GSI and vitellogenin-like proteins). The following effects significantly differed between OS mining area and natural/background sites: health condition, growth rate, air survival time, COX (immune/inflammation) activity, P4501A/GST activity, LPO and DNA breaks in the digestive gland and vitellogenin-like proteins in the gonad. Correlation analysis revealed that the biochemical responses were scaled to at least one of the following impacts at the individual level: air survival time, weight to length ratio, growth rate and vitellogenin-like proteins. These indices were therefore identified as key adverse outcome pathways of mussels impacted by OS mining activities. Based on the relative levels of light/medium/heavy PAHs in tissues, the observed effects appears to be associated rather to the disturbance of OS in this area than contamination from OS tailing ponds leaching into the aquatic environment.


Bivalvia/drug effects , Ecotoxicology/methods , Environmental Monitoring/methods , Oil and Gas Fields/chemistry , Water Pollutants, Chemical/toxicity , Animals
16.
Environ Pollut ; 293: 118502, 2022 Jan 15.
Article En | MEDLINE | ID: mdl-34785287

Microplastics (<5 mm) are widely distributed in marine environments and pose a serious threat to bivalves. Here, the ingestion and accumulation of polystyrene microplastics (PS microplastics, diameters 5 and 10 µm) by the Manila clam, Ruditapes philippinarum, and their impacts on physiological processes, growth and reproduction were studied. The results showed that both PS microplastics were ingested by the Manila clam and accumulated in their gills, hepatopancreases and intestines. Furthermore, the accumulation of 5 and 10 µm PS microplastics significantly increased the rates of respiration and excretion while significantly decreasing feeding and absorption efficiency (AE), leading to a dramatically reduced amount of energy available for growth (SfG) and ultimately led to slower growth. The dynamic energy budget (DEB) model predicts that PS microplastic exposure for 200 days would cause lower shell/flesh growth rates and reproductive potentiality. Transcriptomic profiles support these results, as carbon and protein metabolism and oxytocin and insulin-related signaling pathways were significantly altered in clams in response to PS microplastics. This study provides evidence that microplastics strongly affect the physiological activities, energy allocation, growth and reproduction of filter-feeding bivalves.


Bivalvia , Microplastics/toxicity , Water Pollutants, Chemical , Animals , Bivalvia/drug effects , Bivalvia/physiology , Reproduction , Water Pollutants, Chemical/toxicity
17.
Environ Pollut ; 293: 118467, 2022 Jan 15.
Article En | MEDLINE | ID: mdl-34748885

Genotoxic effects of dicofol on the edible clam Meretrix meretrix were investigated through a mesocosm experiment. Individuals of M. meretrix, were exposed to environmental concentration (D1 = 50 ng/L) and supra-environmental concentration (D2 = 500 ng/L) of dicofol for 15 days, followed by the same depuration period. DNA damage (i.e., strand breaks and alkali-labile sites) was evaluated at day 1, 7 and 15, during uptake and depuration, using Comet assay (alkaline version) and nuclear abnormalities (NAs) as genotoxicity biomarkers. The protective effects of dicofol against DNA damage induced by ex vivo hydrogen peroxide (H2O2) exposure were also assessed. Comet assay results revealed no significant DNA damages under dicofol exposure, indicating 1) apparent lack of genotoxicity of dicofol to the tested conditions and/or 2) resistance of the animals due to optimal adaptation to stress conditions. Moreover, ex vivo H2O2 exposure showed an increase in the DNA damage in all the treatments without significant differences between them. However, considering only the DNA damage induced by H2O2 during uptake phase, D1 animals had significantly lower DNA damage than those from other treatments, revealing higher protection against a second stressor. NAs data showed a decrease in the % of cells with polymorphic, kidney shape, notched or lobbed nucleus, along the experiment. The combination of these results supports the idea that the clams used in the experiment were probably collected from a stressful environment (in this case Pearl River Delta region) which could have triggered some degree of adaptation to those environmental conditions, explaining the lack of DNA damages and highlighting the importance of organisms' origin and the conditions that they were exposed during their lives.


Bivalvia , DNA Damage , Dicofol , Animals , Bivalvia/drug effects , Bivalvia/genetics , Comet Assay , Dicofol/toxicity , Hydrogen Peroxide/toxicity
18.
Aquat Toxicol ; 242: 106049, 2022 Jan.
Article En | MEDLINE | ID: mdl-34875489

By employing external fertilization (broadcast spawning) as a mating strategy, the gametes and subsequent fertilization of various marine invertebrates are directly subjected to pollution. Although microplastics (MPs) are ubiquitous in marine environments, their potential effects on the fertilization of broadcast spawners remain largely unknown. Therefore in this study, the impacts of polystyrene MPs on the fertilization success of broadcast spawning bivalve (Tegillarca granosa) were investigated. In order to reveal the underlying mechanisms affecting fertilization, the sperm swimming performance, sperm ATP status, sperm viability, DNA integrity, gamete collision probability, gamete fusion efficiency, enzymatic antioxidants, and key ion transport enzyme activities were analyzed. The results showed that MPs weakened the sperm swimming performance through reducing ATP production and cell viability, thus leading to the decreased probability of gamete collision. Furthermore, MPs affected ion transport in the gametes by inducing oxidative stress, which resulted in gamete fusion failure. In conclusion, this study demonstrates that MPs could significantly decrease the fertilization success of T. granosa through reducing gamete collision and lowering gamete fusion efficiency.


Bivalvia , Germ Cells/drug effects , Microplastics , Water Pollutants, Chemical , Animals , Bivalvia/drug effects , Fertilization , Male , Microplastics/toxicity , Spermatozoa , Water Pollutants, Chemical/toxicity
19.
J Mater Chem B ; 10(3): 406-417, 2022 01 19.
Article En | MEDLINE | ID: mdl-34935850

Current environmentally friendly marine antifouling (AF) coatings are mainly polymeric with a relatively low hardness. Hard sol-gel-derived AF coatings for underwater robot-cleaning are seldom used. In this work, two new organoalkoxysilanes, i.e., (N-methoxyacylethyl)-3-aminopropyltriethoxysilane and 2-(2-hydroxy-3-(3-(trimethoxysilyl)propoxy)propyl)benzo[d]isothiazol-3(2H)-one, were synthesized by a facile method. These two precursors were used with tetraethoxysilane (TEOS) to produce three series of hybrid AF coatings with zwitterionic group (Z-χ), antibacterial group (1,2-benzisothiazolin-3-one) (A-χ) and zwitterionic and antibacterial groups (S-χ) by a sol-gel process. The hardness of the coatings was measured using a pencil hardness tester and the AF behaviors of the coatings were examined by laboratory and field assays. A pencil hardness up to 5 H was achieved and slight deterioration was observed after 9 months of immersion in artificial seawater for the A-χ and S-χ coatings at a sufficiently high TEOS content. A synergistic effect between the zwitterion and antimicrobial agents existed but was not obvious. A higher TEOS content led to a higher hardness and better AF performance regardless of the type of AF group. Even with the same biofilm formation after field assay, coatings with a higher TEOS content exhibited a better resistance to mussel settlement.


Anti-Bacterial Agents/pharmacology , Biofouling/prevention & control , Gels/pharmacology , Silanes/pharmacology , Thiazoles/pharmacology , Adhesiveness , Adsorption/drug effects , Animals , Anti-Bacterial Agents/chemical synthesis , Bacteria/drug effects , Bivalvia/drug effects , Diatoms/drug effects , Gels/chemical synthesis , Microbial Sensitivity Tests , Proteins/chemistry , Seawater/microbiology , Silanes/chemical synthesis , Thiazoles/chemical synthesis
20.
J Environ Sci (China) ; 112: 129-139, 2022 Feb.
Article En | MEDLINE | ID: mdl-34955196

This study analyzed the function of different glutathione S-transferase (GST) isoforms and detoxification metabolism responses in Manila clam, Ruditapes philippinarum, exposed to 4 kinds of polycyclic aromatic hydrocarbons (PAHs) single, and their mixtures for 15 days under laboratory conditions. 13 kinds of GSTs in R. philippinarum were classified, and the results of tissue distribution indicated that 12 kinds of GSTs (except GST sigma 3) expressed most in digestive glands. We detected the mRNA expression levels of aryl hydrocarbon receptor signaling pathway, and detoxification system in digestive glands of clams exposed to benzo[a]pyrene (BaP), chrysene (CHR), benzo[a]anthracene (BaA), benzo[b]fluoranthene (BbF), and BaP + CHR + BaA + BbF, respectively. Among these genes, we selected GST-sigma, GST-omega and GST-pi as potential indicators to BaP; GST-sigma, GST-A and GST-rho to CHR; GST-pi, GST-sigma, GST-A, GST-rho and GST-microsomal to BaA; GST-theta and GST-mu to BbF; while GST-pi and GST-mu to the mixture of BaP, CHR, BaA and BbF. Additionally, the bioaccumulation of PAHs in tissues increased remarkably over time, and showed an obvious dose-effect. Under the same concentration, the bioaccumulation in single exposure group was higher than that in mixture group, and the bioaccumulation of PAHs in tissues with different concentrations of stress was irregular. The results revealed the metabolic differences and bioaccumulation rules in clams exposed to four kinds of PAHs, and provided more valuable information for the PAHs risk assessment.


Bivalvia , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Bioaccumulation , Bivalvia/drug effects , Bivalvia/enzymology , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Protein Isoforms , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
...