Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Hum Reprod ; 26(9): 702-711, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32663300

RESUMEN

Early embryonic development is characterized by drastic changes in chromatin structure that affects the accessibility of the chromatin. In human, the chromosome reorganization and its involvement in the first linage segregation are poorly characterized due to the difficulties in obtaining human embryonic material and limitation on low input technologies. In this study, we aimed to explore the chromatin remodeling pattern in human preimplantation embryos and gain insight into the epigenetic regulation of inner cell mass (ICM) and trophectoderm (TE) differentiation. We optimized ATAC-seq (an assay for transposase-accessible chromatin using sequencing) to analyze the chromatin accessibility landscape for low DNA input. Sixteen preimplantation human blastocysts frozen on Day 6 were used. Our data showed that ATAC peak distributions of the promoter regions (<1 kb) and distal regions versus other regions were significantly different between ICM versus TE samples (P < 0.01). We detected that a higher percentage of accessible binding loci were located within 1 kb of the transcription start site in ICM compared to TE (P < 0.01). However, a higher percentage of accessible regions was detected in the distal region of TE compared to ICM (P < 0.01). In addition, eight differential peaks with a false discovery rate <0.05 between ICM and TE were detected. This is the first study to compare the landscape of the accessible chromatin between ICM and TE of human preimplantation embryos, which unveiled chromatin-level epigenetic regulation of cell lineage specification in early embryo development.


Asunto(s)
Masa Celular Interna del Blastocisto/metabolismo , Cromatina/metabolismo , Ectodermo/metabolismo , Adulto , Blastocisto/química , Blastocisto/metabolismo , Masa Celular Interna del Blastocisto/química , Células Cultivadas , Cromatina/química , Ensamble y Desensamble de Cromatina/fisiología , ADN Intergénico/análisis , ADN Intergénico/metabolismo , Ectodermo/química , Desarrollo Embrionario/genética , Femenino , Humanos , Regiones Promotoras Genéticas/genética
2.
Stem Cell Res Ther ; 8(1): 128, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28583200

RESUMEN

BACKGROUND: Human embryonic stem cells (hESCs) hold tremendous promise for cell replacement therapies for a range of degenerative diseases. In order to provide cost-effective treatments affordable by public health systems, HLA-matched allogeneic tissue banks of the highest quality clinical-grade hESCs will be required. However only a small number of existing hESC lines are suitable for clinical use; they are limited by moral and ethical concerns and none of them apply Good Manufacturing Practice (GMP) standards to the earliest and critical stages of gamete and embryo procurement. We thus aimed to derive new clinical grade hESC lines of highest quality from fresh surplus GMP grade human embryos. METHODS: A comprehensive screen was performed for suitable combinations of culture media with supporting feeder cells or feeder-free matrix, at different stages, to support expansion of the inner cell mass and to establish new hESC lines. RESULTS: We developed a novel two-step and sequential media system of clinical-grade hESC derivation and successfully generated seven new hESC lines of widely varying HLA type, carefully screened for genetic health, from human embryos donated under the highest ethical and moral standards under an integrated GMP system which extends from hESC banking all the way back to gamete and embryo procurement. CONCLUSIONS: The present study, for the first time, reports the successful derivation of highest-quality clinical-grade hESC lines from fresh poor-quality surplus human embryos generated in a GMP-grade IVF laboratory. The availability of hESC lines of this status represents an important step towards more widespread application of regenerative medicine therapies.


Asunto(s)
Técnicas de Cultivo de Célula , Embrión de Mamíferos/citología , Células Madre Embrionarias Humanas/citología , Medicina Regenerativa/normas , Animales , Biomarcadores/análisis , Masa Celular Interna del Blastocisto/química , Masa Celular Interna del Blastocisto/citología , Diferenciación Celular , Línea Celular , Proliferación Celular , Separación Celular , Medios de Cultivo/química , Células Nutrientes/química , Haplotipos/genética , Células Madre Embrionarias Humanas/química , Humanos , Células Madre Pluripotentes/química
3.
Reprod Domest Anim ; 46(3): 385-92, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20663092

RESUMEN

The present study was conducted to test different methods for porcine inner cell mass (ICM) and epiblast isolation and to evaluate the morphology and expression of pluripotency genes in ICM- and epiblast-derived outgrowth colonies (OCs) and passages thereof with particular attention on the relationship between OCT4 expression and embryonic stem cell (ESC)-like morphology. A total of 104 zona pellucida-enclosed and 101 hatched blastocysts were subjected to four different methods of ICM and epiblast isolation, respectively: Manual isolation, immunosurgery, immunosurgery with manual cleaning, or whole blastocyst culture. OCs were established on mouse embryonic fibroblast (MEF) cells and categorized according to morphology and OCT4 staining. Although all isolation methods resulted in ESC-like OCs, immunosurgery with manual cleaning yielded significantly higher rates of ICM/epiblast attachment and subsequent ESC-like morphology, whereas no significant difference was found between ICM and epiblasts with respect to these characteristics. All ESC-like OCs showed nuclear OCT4 staining and expression of OCT4, NANOG and SOX2 as evaluated by RT-PCR. Upon initial passages, the expression of pluripotency markers was, however, gradually lost in spite of maintained ESC-like morphology. In conclusion, we have established a robust system for derivation of ESC-like OCs from porcine ICM and epiblasts and we have shown that localization of OCT4 is associated with an ESC-like morphology although this relationship is lost during early passages.


Asunto(s)
Masa Celular Interna del Blastocisto/metabolismo , Blastocisto/citología , Estratos Germinativos/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Sus scrofa/embriología , Animales , Masa Celular Interna del Blastocisto/química , Técnicas de Cultivo de Embriones/veterinaria , Células Madre Embrionarias/química , Femenino , Expresión Génica , Estratos Germinativos/química , Ratones , Factor 3 de Transcripción de Unión a Octámeros/análisis , Células Madre Pluripotentes/química , Embarazo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA