Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 135
1.
Semin Thromb Hemost ; 49(1): 55-61, 2023 Feb.
Article En | MEDLINE | ID: mdl-35738296

Although thrombosis frequently occurs in infectious diseases, the coagulopathy associated with COVID-19 has unique characteristics. Compared with bacterial sepsis, COVID-19-associated coagulopathy presents with minimal changes in platelet counts, normal prothrombin times, and increased D-dimer and fibrinogen levels. These differences can be explained by the distinct pathophysiology of the thromboinflammatory responses. In sepsis-induced coagulopathy, leukocytes are primarily responsible for the coagulopathy by expressing tissue factor, releasing neutrophil extracellular traps, multiple procoagulant substances, and systemic endothelial injury that is often associated with vasoplegia and shock. In COVID-19-associated coagulopathy, platelet activation is a major driver of inflammation/thrombogenesis and von Willebrand factor and platelet factor 4 are deeply involved in the pathogenesis. Although the initial responses are localized to the lung, they can spread systemically if the disease is severe. Since the platelets play major roles, arterial thrombosis is not uncommon in COVID-19. Despite platelet activation, platelet count is usually normal at presentation, but sensitive biomarkers including von Willebrand factor activity, soluble P-selectin, and soluble C-type lectin-like receptor-2 are elevated, and they increase as the disease progresses. Although the role of antiplatelet therapy is still unproven, current studies are ongoing to determine its potential effects.


Blood Coagulation Disorders , COVID-19 , Platelet Activation , Thrombosis , Humans , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/virology , COVID-19/complications , Thrombosis/blood , Thrombosis/virology , von Willebrand Factor/metabolism
2.
Front Cell Infect Microbiol ; 12: 807332, 2022.
Article En | MEDLINE | ID: mdl-35310845

In the early stage of coronavirus disease 2019 (COVID-19), most cases are identified as mild or moderate illnesses. Approximately 20% of hospitalised patients become severe or critical at the middle or late stage of the disease. The predictors and risk factors for prognosis in those with mild or moderate disease remain to be determined. Of 694 patients with COVID-19, 231 patients with mild or moderate disease, who were hospitalised at 10 hospitals in Wenzhou and nearby counties in China, were enrolled in this retrospective study from 17 January to 20 March 2020. The outcomes of these patients included progression from mild/moderate illness to severe or critical conditions. Among the 231 patients, 49 (21.2%) had a poor prognosis in the hospital. Multivariate logistic regression analysis showed that higher inflammation/coagulopathy/immunology responsive index (ICIRI=[c-reactive protein × fibrinogen × D-dimer]/CD8 T cell count) on admission (OR=345.151, 95% CI=23.014-5176.318) was associated with increased odds ratios for poor prognosis. The area under the receiver operating characteristic curve for ICIRI predicting severe and critical condition progression was 0.65 (95% CI=0.519-0.782) and 0.80 (95% CI=0.647-0.954), with cut-off values of 870.83 and 535.44, respectively. Conversely, age, sex, comorbidity, neutrophil/lymphocyte ratio, CD8 T cell count, and c-reactive protein, fibrinogen, and D-dimer levels alone at admission were not good predictors of poor prognosis in patients with mild or moderate COVID-19. At admission, a novel index, ICIRI, tends to be the most promising predictor of COVID-19 progression from mild or moderate illness to severe or critical conditions.


Blood Coagulation Disorders/virology , COVID-19 , Inflammation/virology , C-Reactive Protein , CD8-Positive T-Lymphocytes/immunology , COVID-19/complications , COVID-19/diagnosis , COVID-19/immunology , Fibrin Fibrinogen Degradation Products , Fibrinogen , Humans , ROC Curve , Retrospective Studies
3.
Viruses ; 14(2)2022 01 24.
Article En | MEDLINE | ID: mdl-35215822

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as COVID-19, is currently developing into a rapidly disseminating and an overwhelming worldwide pandemic. In severe COVID-19 cases, hypercoagulability and inflammation are two crucial complications responsible for poor prognosis and mortality. In addition, coagulation system activation and inflammation overlap and produce life-threatening complications, including coagulopathy and cytokine storm, which are associated with overproduction of cytokines and activation of the immune system; they might be a lead cause of organ damage. However, patients with severe COVID-19 who received anticoagulant therapy had lower mortality, especially with elevated D-dimer or fibrin degradation products (FDP). In this regard, the discovery of natural products with anticoagulant potential may help mitigate the numerous side effects of the available synthetic drugs. This review sheds light on blood coagulation and its impact on the complication associated with COVID-19. Furthermore, the sources of natural anticoagulants, the role of nanoparticle formulation in this outbreak, and the prevalence of thrombosis with thrombocytopenia syndrome (TTS) after COVID-19 vaccines are also reviewed. These combined data provide many research ideas related to the possibility of using these anticoagulant agents as a treatment to relieve acute symptoms of COVID-19 infection.


Anticoagulants/therapeutic use , Blood Coagulation Disorders/etiology , COVID-19 Vaccines/chemistry , COVID-19/complications , COVID-19/prevention & control , Nanoparticles/therapeutic use , Anticoagulants/administration & dosage , Anticoagulants/isolation & purification , Blood Coagulation , Blood Coagulation Disorders/classification , Blood Coagulation Disorders/prevention & control , Blood Coagulation Disorders/virology , COVID-19 Vaccines/administration & dosage , Cytokine Release Syndrome/prevention & control , Cytokine Release Syndrome/virology , Humans , Inflammation/etiology , Inflammation/prevention & control , Nanoparticles/chemistry , SARS-CoV-2/pathogenicity , Thrombophilia/etiology
4.
Clin Res Cardiol ; 111(3): 322-332, 2022 Mar.
Article En | MEDLINE | ID: mdl-34546427

AIMS: Coagulopathy and venous thromboembolism are common findings in coronavirus disease 2019 (COVID-19) and are associated with poor outcome. Timely initiation of anticoagulation after hospital admission was shown to be beneficial. In this study we aim to examine the association of pre-existing oral anticoagulation (OAC) with outcome among a cohort of SARS-CoV-2 infected patients. METHODS AND RESULTS: We analysed the data from the large multi-national Lean European Open Survey on SARS-CoV-2 infected patients (LEOSS) from March to August 2020. Patients with SARS-CoV-2 infection were eligible for inclusion. We retrospectively analysed the association of pre-existing OAC with all-cause mortality. Secondary outcome measures included COVID-19-related mortality, recovery and composite endpoints combining death and/or thrombotic event and death and/or bleeding event. We restricted bleeding events to intracerebral bleeding in this analysis to ensure clinical relevance and to limit reporting errors. A total of 1 433 SARS-CoV-2 infected patients were analysed, while 334 patients (23.3%) had an existing premedication with OAC and 1 099 patients (79.7%) had no OAC. After risk adjustment for comorbidities, pre-existing OAC showed a protective influence on the endpoint death (OR 0.62, P = 0.013) as well as the secondary endpoints COVID-19-related death (OR 0.64, P = 0.023) and non-recovery (OR 0.66, P = 0.014). The combined endpoint death or thrombotic event tended to be less frequent in patients on OAC (OR 0.71, P = 0.056). CONCLUSIONS: Pre-existing OAC is protective in COVID-19, irrespective of anticoagulation regime during hospital stay and independent of the stage and course of disease.


Anticoagulants/therapeutic use , Blood Coagulation Disorders/drug therapy , COVID-19/mortality , SARS-CoV-2/drug effects , Thromboembolism/drug therapy , Aged , Blood Coagulation Disorders/virology , Comorbidity , Europe , Female , Humans , Male , Middle Aged , Retrospective Studies , Thromboembolism/virology
5.
J Thromb Thrombolysis ; 53(2): 282-290, 2022 Feb.
Article En | MEDLINE | ID: mdl-34687400

INTRODUCTION: Coronavirus 2 (CoV-2) infection or coronavirus disease 2019 (COVID-19) is frequently associated with microvascular thrombosis.The microthrombosis in COVID-19 is the result of the interplay between inflammation and endotheliopathy. Elevated interleukin-6 (IL-6) characterizes COVID-19 inflammation resulting in endotheliopathy and coagulopathy marked by elevated D-dimer (DD). Aim of this study is to identify and to describe the coagulation changes in 100 moderate COVID-19 patients having lung involvement and to determine the association of coagulopathy with the severity and prognosis. METHODS: Inflammation, endothelial and coagulation molecules were measured in moderate and mild disease. RESULTS: IL-6 and tumor necrosis factor-α (TNF-α) and tissue factor (TF), von Willebrand factor (VWF), and tissue factor pathway inhibitor (TFPI) significantly increased in moderate disease as well as D-dimer, thrombin antithrombin complex (TAT), Fibrinogen (Fib), platelet factor-4 (PF4), ß-thromboglobulin (ß-TG), P-selectin, and platelet adhesion. Shortened clotting time (CT) and clot formation time (CFT), high maximum clot firmness (MCF) and low LY at 30 min were present in 100% of moderate COVID-19 patients compared with mild COVID-19 patients. CONCLUSIONS: These findings demonstrate that moderate COVID-19 has a profound inflammation associated with severee ndotheliopathy and intense coagulation activation uncontrolled by TFPI. Attention should be paid to coagulopathy in COVID-19. Closely monitoring of coagulation and application of appropriate anticoagulation may improve the prognosis of moderate COVID-19 and to prevent the progression to severe COVID-19 disease.


Blood Coagulation Disorders , COVID-19 , Endothelium, Vascular , Inflammation , Thrombosis , Blood Coagulation Disorders/virology , COVID-19/complications , Endothelium, Vascular/physiopathology , Humans , Inflammation/virology , SARS-CoV-2 , Thrombosis/virology
7.
Front Immunol ; 12: 772859, 2021.
Article En | MEDLINE | ID: mdl-34858432

The influenza A virus (IAV) causes a respiratory tract infection with approximately 10% of the population infected by the virus each year. Severe IAV infection is characterized by excessive inflammation and tissue pathology in the lungs. Platelet and neutrophil recruitment to the lung are involved in the pathogenesis of IAV, but the specific mechanisms involved have not been clarified. Using confocal intravital microscopy in a mouse model of IAV infection, we observed profound neutrophil recruitment, platelet aggregation, neutrophil extracellular trap (NET) production and thrombin activation within the lung microvasculature in vivo. Importantly, deficiency or antagonism of the protease-activated receptor 4 (PAR4) reduced platelet aggregation, NET production, and neutrophil recruitment. Critically, inhibition of thrombin or PAR4 protected mice from virus-induced lung tissue damage and edema. Together, these data imply thrombin-stimulated platelets play a critical role in the activation/recruitment of neutrophils, NET release and directly contribute to IAV pathogenesis in the lung.


Blood Coagulation Disorders/immunology , Blood Platelets/immunology , Extracellular Traps/immunology , Influenza A Virus, H1N1 Subtype/immunology , Lung/immunology , Orthomyxoviridae Infections/immunology , Animals , Blood Coagulation Disorders/metabolism , Blood Coagulation Disorders/virology , Blood Platelets/metabolism , Blood Platelets/virology , Disease Models, Animal , Extracellular Traps/metabolism , Extracellular Traps/virology , Female , Humans , Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/immunology , Influenza, Human/metabolism , Influenza, Human/virology , Lung/metabolism , Lung/virology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Neutrophil Infiltration/immunology , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/virology , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Platelet Aggregation/immunology
8.
Scand J Clin Lab Invest ; 81(8): 653-660, 2021 12.
Article En | MEDLINE | ID: mdl-34793272

Coagulation disturbances are common in severe COVID-19 infection. We examined laboratory markers in COVID-19 patients during the first wave of the pandemic in Finland. We analysed a wide panel of coagulation tests (IL ACL TOP 750/500®) from anonymously collected samples of 78 hospitalized COVID-19 patients in intensive care units (ICUs; n = 34) or medical wards (n = 44) at Helsinki University Hospital in April-May 2020. These coagulation data were supplemented with the laboratory information system results, including complete blood count and C reactive protein (CRP). Coagulation and inflammatory markers were elevated in most: FVIII in 52%, fibrinogen 77%, D-dimer 74%, CRP 94%, platelet count 37%. Anaemia was common, especially in men (73% vs. 44% in women), and overall weakly correlated with FVIII (women R2 = 0.48, men R2 = 0.24). ICU patients had higher fibrinogen and D-dimer levels (p < .01). Men admitted to the ICU also had higher platelet count, leukocytes and FVIII and lower haemoglobin than the non-ICU patients. None of the patients met the disseminated intravascular coagulation (DIC) criteria, but 31% had a D-dimer level of at least 1.5 mg/L. Presence of both anaemia and high D-dimer together with FVIII is independently associated with ICU admission. Antithrombin was reduced in 47% of the patients but did not distinguish severity. Overall, CRP was associated with coagulation activation. Elevated FVIII, fibrinogen and D-dimer reflected a strong inflammatory response and were characteristic of hospitalized COVID-19 patients. The patients were often anaemic, as is typical in severe inflammation, while anaemia was also associated with coagulation activity.


Anemia/virology , Blood Coagulation Disorders/virology , Blood Coagulation , COVID-19/complications , Adolescent , Adult , Aged , Aged, 80 and over , Antithrombins , Big Data , Blood Coagulation Tests , C-Reactive Protein , Female , Fibrin Fibrinogen Degradation Products , Fibrinogen , Finland/epidemiology , Humans , Intensive Care Units , Male , Middle Aged , Platelet Count , Retrospective Studies , Young Adult
9.
Clin Immunol ; 232: 108852, 2021 11.
Article En | MEDLINE | ID: mdl-34520860

BACKGROUND: The majority of the coronavirus disease 2019 (COVID-19) non-survivors meet the criteria for disseminated intravascular coagulation (DIC). Although timely monitoring of clotting hemorrhagic development during the natural course of COVID-19 is critical for understanding pathogenesis, diagnosis, and treatment of the disease, however, limited data are available on the dynamic processes of inflammation/coagulopathy/fibrinolysis (ICF). METHODS: We monitored the dynamic progression of ICF in patients with moderate COVID-19. Out of 694 COVID-19 inpatients from 10 hospitals in Wenzhou, China, we selected 293 adult patients without comorbidities. These patients were divided into different daily cohorts according to the COVID-19 onset-time. Furthermore, data of 223 COVID-19 patients with comorbidities and 22 critical cases were analyzed. Retrospective data were extracted from electronic medical records. RESULTS: The virus-induced damages to pre-hospitalization patients triggered two ICF fluctuations during the 14-day course of the disease. C-reactive protein (CRP), fibrinogen, and D-dimer levels increased and peaked at day 5 (D) 5 and D9 during the 1st and 2nd fluctuations, respectively. The ICF activities were higher during the 2nd fluctuation. Although 12-day medication returned high CRP concentrations to normal and blocked fibrinogen increase, the D-dimer levels remained high on days 17 ±â€¯2 and 23 ±â€¯2 days of the COVID-19 course. Notably, although the oxygenation index, prothrombin time and activated partial thromboplastin time were within the normal range in critical COVID-19 patients at administration, 86% of these patients had a D-dimer level > 500 µg/L. CONCLUSION: COVID-19 is linked with chronic DIC, which could be responsible for the progression of the disease. Understanding and monitoring ICF progression during COVID-19 can help clinicians in identifying the stage of the disease quickly and accurately and administering suitable treatment.


Blood Coagulation/physiology , COVID-19/complications , Fibrinolysis/physiology , Inflammation/etiology , Inflammation/virology , Adult , Anticoagulants/pharmacology , Blood Coagulation/drug effects , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/metabolism , Blood Coagulation Disorders/pathology , Blood Coagulation Disorders/virology , COVID-19/metabolism , COVID-19/pathology , China , Disease Progression , Disseminated Intravascular Coagulation/etiology , Disseminated Intravascular Coagulation/metabolism , Disseminated Intravascular Coagulation/pathology , Disseminated Intravascular Coagulation/virology , Female , Fibrin Fibrinogen Degradation Products/metabolism , Fibrinogen/metabolism , Hemorrhage/etiology , Hemorrhage/pathology , Hemorrhage/virology , Humans , Inflammation/pathology , Male , Middle Aged , Prothrombin Time , SARS-CoV-2/pathogenicity
10.
Int J Pharm ; 608: 121122, 2021 Oct 25.
Article En | MEDLINE | ID: mdl-34560207

Herein, we demonstrated the development and characterization of a dry powder inhaler (DPI) formulation of edoxaban (EDX); and investigated the in-vitro anticoagulation effect for the management of pulmonary or cerebral coagulopathy associated with COVID-19 infection. The formulations were prepared by mixing the inhalable micronized drug with a large carrier lactose and dispersibility enhancers, leucine, and magnesium stearate. The drug-excipient interaction was studied using X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) methods. The drug and excipients showed no physical inter particulate interaction. The in-vitro drug aerosolization from the developed formulation was determined by a Twin Stage Impinger (TSI) at a flow rate of 60 ± 5 L /min. The amount of drug deposition was quantified by an established HPLC-UV method. The fine particle fraction (FPF) of EDX API from drug alone formulation was 7%, whereas the formulations with excipients increased dramatically to almost 7-folds up to 47%. The developed DPI formulation of EDX showed a promising in-vitro anticoagulation effect at a very low concentration. This novel DPI formulation of EDX could be a potential and effective inhalation therapy for managing pulmonary venous thromboembolism (VTE) associated with COVID-19 infection. Further studies are warranted to investigate the toxicity and clinical application of the inhaled EDX DPI formulation.


Blood Coagulation Disorders/drug therapy , COVID-19 , Dry Powder Inhalers , Pyridines/administration & dosage , Thiazoles/administration & dosage , Administration, Inhalation , Aerosols , Blood Coagulation Disorders/virology , COVID-19/complications , Humans , Particle Size , Powders
11.
Postgrad Med ; 133(8): 899-911, 2021 Nov.
Article En | MEDLINE | ID: mdl-34470540

INTRODUCTION: COVID-19-associated coagulopathy (CAC) is a well-recognized hematologic complication among patients with severe COVID-19 disease, where macro- and micro-thrombosis can lead to multiorgan injury and failure. Major societal guidelines that have published on the management of CAC are based on consensus of expert opinion, with the current evidence available. As a result of limited studies, there are many clinical scenarios that are yet to be addressed, with expert opinion varying on a number of important clinical issues regarding CAC management. METHODS: In this review, we utilize current societal guidelines to provide a framework for practitioners in managing their patients with CAC. We have also provided three clinical scenarios that implement important principles of anticoagulation in patients with COVID-19. CONCLUSION: Overall, decisions should be made on acase by cases basis and based on the providers understanding of each patient's medical history, clinical course and perceived risk.


Anticoagulants/therapeutic use , Blood Coagulation Disorders/therapy , COVID-19/complications , Practice Guidelines as Topic , Thromboembolism/therapy , Thrombosis/therapy , Anticoagulants/adverse effects , Biomarkers/blood , Blood Coagulation Disorders/diagnosis , Blood Coagulation Disorders/virology , Drug Monitoring , Fibrinolytic Agents/therapeutic use , Hemorrhage/chemically induced , Hemorrhage/therapy , Heparin/therapeutic use , Humans , Prevalence , Thromboembolism/diagnosis , Thromboembolism/epidemiology , Thromboembolism/virology , Thrombosis/diagnosis , Thrombosis/epidemiology , Thrombosis/virology
12.
Viruses ; 13(8)2021 08 06.
Article En | MEDLINE | ID: mdl-34452419

Puumala hantavirus (PUUV) causes a hemorrhagic fever with renal syndrome (HFRS), also called nephropathia epidemica (NE), which is mainly endemic in Europe and Russia. The clinical features include a low platelet count, altered coagulation, endothelial activation, and acute kidney injury (AKI). Multiple connections between coagulation pathways and inflammatory mediators, as well as complement and kallikrein-kinin systems, have been reported. The bleeding symptoms are usually mild. PUUV-infected patients also have an increased risk for disseminated intravascular coagulation (DIC) and thrombosis.


Blood Coagulation Disorders/virology , Hemorrhagic Fever with Renal Syndrome/complications , Hemorrhagic Fever with Renal Syndrome/physiopathology , Puumala virus/pathogenicity , Acute Disease , Acute Kidney Injury/virology , Disseminated Intravascular Coagulation/virology , Europe/epidemiology , Hemorrhagic Fever with Renal Syndrome/epidemiology , Hemorrhagic Fever with Renal Syndrome/virology , Russia/epidemiology , Thrombosis/virology
13.
Curr Opin Hematol ; 28(6): 445-453, 2021 11 01.
Article En | MEDLINE | ID: mdl-34232139

PURPOSE OF REVIEW: Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2. Over the past year, COVID-19 has posed a significant threat to global health. Although the infection is associated with mild symptoms in many patients, a significant proportion of patients develop a prothrombotic state due to a combination of alterations in coagulation and immune cell function. The purpose of this review is to discuss the pathophysiological characteristics of COVID-19 that contribute to the immunothrombosis. RECENT FINDINGS: Endotheliopathy during COVID-19 results in increased multimeric von Willebrand factor release and the potential for increased platelet adhesion to the endothelium. In addition, decreased anticoagulant proteins on the surface of endothelial cells further alters the hemostatic balance. Soluble coagulation markers are also markedly dysregulated, including plasminogen activator inhibitor-1 and tissue factor, leading to COVID-19 induced coagulopathy. Platelet hyperreactivity results in increased platelet-neutrophil and -monocyte aggregates further exacerbating the coagulopathy observed during COVID-19. Finally, the COVID-19-induced cytokine storm primes neutrophils to release neutrophil extracellular traps, which trap platelets and prothrombotic proteins contributing to pulmonary thrombotic complications. SUMMARY: Immunothrombosis significantly contributes to the pathophysiology of COVID-19. Understanding the mechanisms behind COVID-19-induced coagulopathy will lead to future therapies for patients.


Blood Coagulation Disorders/pathology , COVID-19/complications , SARS-CoV-2/isolation & purification , Thrombosis/pathology , Blood Coagulation Disorders/epidemiology , Blood Coagulation Disorders/virology , COVID-19/transmission , COVID-19/virology , Humans , Prognosis , Thrombosis/epidemiology , Thrombosis/virology
14.
Oxid Med Cell Longev ; 2021: 6648199, 2021.
Article En | MEDLINE | ID: mdl-33968298

INTRODUCTION: Mortality among critically ill COVID-19 patients remains relatively high despite different potential therapeutic modalities being introduced recently. The treatment of critically ill patients is a challenging task, without identified credible predictors of mortality. METHODS: We performed an analysis of 160 consecutive patients with confirmed COVID-19 infection admitted to the Respiratory Intensive Care Unit between June 23, 2020, and October 2, 2020, in University Hospital Center Bezanijska kosa, Belgrade, Serbia. Patients on invasive, noninvasive ventilation and high flow oxygen therapy with moderate to severe ARDS, according to the Berlin definition of ARDS, were selected for the study. Demographic data, past medical history, laboratory values, and CT severity score were analyzed to identify predictors of mortality. Univariate and multivariate logistic regression models were used to assess potential predictors of mortality in critically ill COVID-19 patients. RESULTS: The mean patient age was 65.6 years (range, 29-92 years), predominantly men, 68.8%. 107 (66.9%) patients were on invasive mechanical ventilation, 31 (19.3%) on noninvasive, and 22 (13.8%) on high flow oxygen therapy machine. The median total number of ICU days was 10 (25th to 75th percentile: 6-18), while the median total number of hospital stay was 18 (25th to 75th percentile: 12-28). The mortality rate was 60% (96/160). Univariate logistic regression analysis confirmed the significance of age, CRP, and lymphocytes at admission to hospital, serum albumin, D-dimer, and IL-6 at admission to ICU, and CT score. Serum albumin, D-dimer, and IL-6 at admission to ICU were independently associated with mortality in the final multivariate analysis. CONCLUSION: In the present study of 160 consecutive critically ill COVID-19 patients with moderate to severe ARDS, IL-6, serum albumin, and D-dimer at admission to ICU, accompanied by chest CT severity score, were marked as independent predictors of mortality.


Blood Coagulation Disorders/complications , COVID-19/complications , COVID-19/mortality , Cytokine Release Syndrome/complications , Oxygen Inhalation Therapy/methods , Respiratory Distress Syndrome/complications , SARS-CoV-2/genetics , Adult , Aged , Aged, 80 and over , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/virology , COVID-19/epidemiology , COVID-19/therapy , Critical Care , Critical Illness , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/virology , Female , Fibrin Fibrinogen Degradation Products/analysis , Humans , Intensive Care Units , Interleukin-6/blood , Length of Stay , Male , Middle Aged , Real-Time Polymerase Chain Reaction , Respiration, Artificial , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/virology , Serbia/epidemiology , Serum Albumin, Human/analysis , Severity of Illness Index , Treatment Outcome
16.
Expert Rev Anti Infect Ther ; 19(11): 1397-1413, 2021 11.
Article En | MEDLINE | ID: mdl-33832398

INTRODUCTION: SARS-CoV-2, the causative agent of COVID-19, attacks the immune system causing an exaggerated and uncontrolled release of pro-inflammatory mediators (cytokine storm). Recent studies propose an active role of coagulation disorders in disease progression. This hypercoagulability has been displayed by marked increase in D-dimer in hospitalized patients. AREAS COVERED: This review summarizes the pathogenesis of SARS-CoV-2 infection, generation of cytokine storm, the interdependence between inflammation and coagulation, its consequences and the possible management options for coagulation complications like venous thromboembolism (VTE), microthrombosis, disseminated intravascular coagulation (DIC), and systemic and local coagulopathy. We searched PubMed, Scopus, and Google Scholar for relevant reports using COVID-19, cytokine storm, and coagulation as keywords. EXPERT OPINION: A prophylactic dose of 5000-7500 units of low molecular weight heparin (LMWH) has been recommended for hospitalized COVID-19 patients in order to prevent VTE. Treatment dose of LMWH, based on disease severity, is being contemplated for patients showing a marked rise in levels of D-dimer due to possible pulmonary thrombi. Additionally, targeting PAR-1, thrombin, coagulation factor Xa and the complement system may be potentially useful in reducing SARS-CoV-2 infection induced lung injury, microvascular thrombosis, VTE and related outcomes like DIC and multi-organ failure.


Blood Coagulation Disorders , COVID-19 , Cytokine Release Syndrome , Venous Thromboembolism , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/virology , COVID-19/complications , Cytokine Release Syndrome/virology , Heparin, Low-Molecular-Weight/therapeutic use , Humans , Venous Thromboembolism/drug therapy , Venous Thromboembolism/virology
17.
J Am Coll Surg ; 232(6): 995-1003, 2021 06.
Article En | MEDLINE | ID: mdl-33766727

The COVID-19 pandemic has introduced a global public health threat unparalleled in our history. The most severe cases are marked by ARDS attributed to microvascular thrombosis. Hypercoagulability, resulting in a profoundly prothrombotic state, is a distinct feature of COVID-19 and is accentuated by a high incidence of fibrinolysis shutdown. The aims of this review were to describe the manifestations of fibrinolysis shutdown in COVID-19 and its associated outcomes, review the molecular mechanisms of dysregulated fibrinolysis associated with COVID-19, and discuss potential implications and therapeutic targets for patients with severe COVID-19.


COVID-19/complications , Fibrinolysis , Thrombophilia/etiology , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/therapy , Blood Coagulation Disorders/virology , COVID-19/blood , Humans , Thrombophilia/therapy , Thrombophilia/virology
18.
Pediatr Blood Cancer ; 68(7): e28975, 2021 07.
Article En | MEDLINE | ID: mdl-33661561

We report the clinical and laboratory coagulation characteristics of 27 pediatric and young adult patients (2 months to 21 years) treated for symptomatic COVID-19 at a children's hospital in the Bronx, New York, between March 1 and May 31, 2020. D-Dimer was > 0.5 µg/mL (upper limit of normal) in 25 (93%) patients at admission; 11 (41%) developed peak D-dimer > 5 µg/mL during admission. Seven (26%) patients developed venous thromboembolism: three with deep vein thrombosis and four with pulmonary embolism. Requirement of increased ventilatory support was a risk factor for thrombosis (P = 0.006). Three of eight (38%) patients on prophylactic anticoagulation developed thrombosis; however, no patients developed VTE on low-molecular-weight heparin prophylaxis titrated to anti-Xa level. Manifestation of COVID-19 disease was severe or critical in 16 (59%) patients. Four (15%) patients died of COVID-19 complications: all had comorbidities. Elevated D-dimer and increased VTE rate were observed in this young cohort, particularly in those with severe respiratory complications, suggesting thrombotic coagulopathy. More data are needed to guide thromboprophylaxis in this age group.


Anticoagulants/therapeutic use , Blood Coagulation Disorders/epidemiology , COVID-19/complications , Hospitalization/statistics & numerical data , SARS-CoV-2/isolation & purification , Venous Thromboembolism/epidemiology , Adolescent , Adult , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/virology , COVID-19/virology , Child , Child, Preschool , Female , Humans , Infant , Male , New York/epidemiology , Risk Factors , Venous Thromboembolism/drug therapy , Venous Thromboembolism/virology , Young Adult
19.
Life Sci ; 276: 119376, 2021 Jul 01.
Article En | MEDLINE | ID: mdl-33781826

The severe forms and worsened outcomes of COVID-19 (coronavirus disease 19) are closely associated with hypertension and cardiovascular disease. Endothelial cells express Angiotensin-Converting Enzyme 2 (ACE2), which is the entrance door for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The hallmarks of severe illness caused by SARS-CoV-2 infection are increased levels of IL-6, C-reactive protein, D-dimer, ferritin, neutrophilia and lymphopenia, pulmonary intravascular coagulopathy and microthrombi of alveolar capillaries. The endothelial glycocalyx, a proteoglycan- and glycoprotein-rich layer covering the luminal side of endothelial cells, contributes to vascular homeostasis. It regulates vascular tonus and permeability, prevents thrombosis, and modulates leukocyte adhesion and inflammatory response. We hypothesized that cytokine production and reactive oxygen species (ROS) generation associated with COVID-19 leads to glycocalyx degradation. A cohort of 20 hospitalized patients with a confirmed COVID-19 diagnosis and healthy subjects were enrolled in this study. Mechanisms associated with glycocalyx degradation in COVID-19 were investigated. Increased plasma concentrations of IL-6 and IL1-ß, as well as increased lipid peroxidation and glycocalyx components were detected in plasma from COVID-19 patients compared to plasma from healthy subjects. Plasma from COVID-19 patients induced glycocalyx shedding in cultured human umbilical vein endothelial cells (HUVECs) and disrupted redox balance. Treatment of HUVECs with low molecular weight heparin inhibited the glycocalyx perturbation. In conclusion, plasma from COVID-19 patients promotes glycocalyx shedding and redox imbalance in endothelial cells, and heparin treatment potentially inhibits glycocalyx disruption.


COVID-19/blood , COVID-19/pathology , Glycocalyx/pathology , Heparin/pharmacology , Aged , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/virology , COVID-19/metabolism , COVID-19 Testing , Case-Control Studies , Cell Adhesion/physiology , Endothelium, Vascular/metabolism , Female , Glycocalyx/metabolism , Glycocalyx/virology , Human Umbilical Vein Endothelial Cells , Humans , Interleukin-1beta/blood , Interleukin-6/blood , Male , Middle Aged , Oxidation-Reduction , SARS-CoV-2 , Thrombosis/metabolism
...