Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 164
1.
BMC Biol ; 22(1): 86, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38637801

BACKGROUND: The blood-brain barrier serves as a critical interface between the bloodstream and brain tissue, mainly composed of pericytes, neurons, endothelial cells, and tightly connected basal membranes. It plays a pivotal role in safeguarding brain from harmful substances, thus protecting the integrity of the nervous system and preserving overall brain homeostasis. However, this remarkable selective transmission also poses a formidable challenge in the realm of central nervous system diseases treatment, hindering the delivery of large-molecule drugs into the brain. In response to this challenge, many researchers have devoted themselves to developing drug delivery systems capable of breaching the blood-brain barrier. Among these, blood-brain barrier penetrating peptides have emerged as promising candidates. These peptides had the advantages of high biosafety, ease of synthesis, and exceptional penetration efficiency, making them an effective drug delivery solution. While previous studies have developed a few prediction models for blood-brain barrier penetrating peptides, their performance has often been hampered by issue of limited positive data. RESULTS: In this study, we present Augur, a novel prediction model using borderline-SMOTE-based data augmentation and machine learning. we extract highly interpretable physicochemical properties of blood-brain barrier penetrating peptides while solving the issues of small sample size and imbalance of positive and negative samples. Experimental results demonstrate the superior prediction performance of Augur with an AUC value of 0.932 on the training set and 0.931 on the independent test set. CONCLUSIONS: This newly developed Augur model demonstrates superior performance in predicting blood-brain barrier penetrating peptides, offering valuable insights for drug development targeting neurological disorders. This breakthrough may enhance the efficiency of peptide-based drug discovery and pave the way for innovative treatment strategies for central nervous system diseases.


Cell-Penetrating Peptides , Central Nervous System Diseases , Humans , Blood-Brain Barrier/chemistry , Endothelial Cells , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , Cell-Penetrating Peptides/therapeutic use , Brain , Central Nervous System Diseases/drug therapy
2.
Schizophr Bull ; 48(6): 1206-1216, 2022 11 18.
Article En | MEDLINE | ID: mdl-35939296

BACKGROUND AND HYPOTHESIS: Neuroinflammation and blood-brain barrier (BBB) dysfunction have been observed in patients with psychotic disorders. However, previous studies have mainly focused on selected patients and broad screenings of cerebrospinal fluid (CSF) of patients with recent onset psychosis compared to healthy controls are lacking. STUDY DESIGN: We included 104 patients with recent onset psychotic disorder and 104 individually matched healthy controls. CSF and blood were analyzed for readily available markers assessing neuroinflammation and BBB dysfunction. Primary outcomes were CSF white blood cell count (WBC), total protein, IgG Index, and CSF/serum albumin ratio. Secondary outcomes included additional markers of inflammation and BBB, and analyses of association with clinical variables. STUDY RESULTS: CSF/serum albumin ratio (Relative Mean Difference (MD): 1.11; 95%CI: 1.00-1.23; P = .044) and CSF/serum IgG ratio (MD: 1.17; 95%CI: 1.01-1.36; P = .036) was increased in patients compared to controls. A higher number of patients than controls had CSF WBC >3 cells/µl (seven vs. one, OR: 7.73, 95%CI: 1.33-146.49, P = .020), while WBC>5 cells/µl was found in two patients (1.9%) and no controls. Inpatients had higher serum WBC and neutrophil/lymphocyte ratio (all p-values for effect heterogeneity < .011). Mean CSF WBC (MD: 1.10; 95%CI: 0.97-1.26), protein (MD: 1.06; 95%CI: 0.98-1.15) and IgG index (MD: 1.05; 95%CI: 0.96-1.15) were not significantly elevated. CONCLUSIONS: When comparing a broad group of patients with psychotic disorders with healthy controls, patients had increased BBB permeability, more patients had high CSF WBC levels, and inpatients had increased peripheral inflammation, consistent with the hypothesis of a subgroup of patients with increased activation of the immune system.


Blood-Brain Barrier , Psychotic Disorders , Humans , Blood-Brain Barrier/chemistry , Blood-Brain Barrier/metabolism , Neuroinflammatory Diseases , Biomarkers/metabolism , Inflammation , Serum Albumin/analysis , Serum Albumin/metabolism , Immunoglobulin G , Cerebrospinal Fluid/chemistry , Cerebrospinal Fluid/metabolism
3.
Environ Sci Technol ; 56(12): 8221-8230, 2022 06 21.
Article En | MEDLINE | ID: mdl-35658413

The penetration of organophosphate triesters (tri-OPEs) and diesters (di-OPEs) across the blood-brain barrier and their influencing factors remain unclear in humans. In this study, 21 tri-OPEs and 8 di-OPEs were measured in 288 paired serum and cerebrospinal fluid (CSF) samples collected in Jinan, China. Six tri-OPEs were frequently detected in both serum and CSF, with median concentrations ranging from 0.062 to 1.62 and 0.042-1.11 ng/mL, respectively. Their penetration efficiencies across the blood-CSF barrier (BCSFB) (RCSF/serum, CCSF/Cserum) were calculated at 0.667-2.80, and these efficiencies first increased and then decreased with their log Kow values. The reduced penetration efficiencies of triphenyl phosphate (TPHP) and 2-ethylhexyl diphenyl phosphate (EHDPP) may be attributed to their strong binding affinities for human serum albumin and p-glycoprotein due to their high hydrophobicity and aryl structure, as indicated by molecular docking. This suggests that active efflux transport may be involved in the penetration of TPHP and EHDPP in addition to passive diffusion similar to the other four tri-OPEs. Di-OPEs were found in few serum samples and even fewer CSF samples, indicating their limited BCSFB permeability. This may be due to their high polarity, low hydrophobicity, and ionic state in blood. This study has important implications for understanding the neurotoxicity of tri-OPEs and di-OPEs and the underlying mechanisms.


Flame Retardants , Blood-Brain Barrier/chemistry , China , Environmental Monitoring , Esters , Flame Retardants/analysis , Humans , Molecular Docking Simulation , Organophosphates , Phosphates
4.
Int J Mol Sci ; 23(3)2022 Jan 31.
Article En | MEDLINE | ID: mdl-35163563

Brain tumors such as glioblastoma are typically associated with an unstoppable cell proliferation with aggressive infiltration behavior and a shortened life span. Though treatment options such as chemotherapy and radiotherapy are available in combating glioblastoma, satisfactory therapeutics are still not available due to the high impermeability of the blood-brain barrier. To address these concerns, recently, multifarious theranostics based on nanotechnology have been developed, which can deal with diagnosis and therapy together. The multifunctional nanomaterials find a strategic path against glioblastoma by adjoining novel thermal and magnetic therapy approaches. Their convenient combination of specific features such as real-time tracking, in-depth tissue penetration, drug-loading capacity, and contrasting performance is of great demand in the clinical investigation of glioblastoma. The potential benefits of nanomaterials including specificity, surface tunability, biodegradability, non-toxicity, ligand functionalization, and near-infrared (NIR) and photoacoustic (PA) imaging are sufficient in developing effective theranostics. This review discusses the recent developments in nanotechnology toward the diagnosis, drug delivery, and therapy regarding glioblastoma.


Brain Neoplasms/diagnosis , Brain Neoplasms/therapy , Glioblastoma/diagnosis , Glioblastoma/therapy , Animals , Blood-Brain Barrier/chemistry , Brain Neoplasms/chemistry , Drug Delivery Systems , Glioblastoma/chemistry , Humans , Nanoparticles , Theranostic Nanomedicine
5.
Int J Mol Sci ; 23(3)2022 Feb 07.
Article En | MEDLINE | ID: mdl-35163784

Caffeine, a common ingredient in energy drinks, crosses the blood-brain barrier easily, but the kinetics of caffeine across the blood-cerebrospinal fluid barrier (BCSFB) has not been investigated. Therefore, 127 autopsy cases (Group A, 30 patients, stimulant-detected group; and Group B, 97 patients, no stimulant detected group) were examined. In addition, a BCSFB model was constructed using human vascular endothelial cells and human choroid plexus epithelial cells separated by a filter, and the kinetics of caffeine in the BCSFB and the effects of 4-aminopyridine (4-AP), a neuroexcitatory agent, were studied. Caffeine concentrations in right heart blood (Rs) and cerebrospinal fluid (CSF) were compared in the autopsy cases: caffeine concentrations were higher in Rs than CSF in Group A compared to Group B. In the BCSFB model, caffeine and 4-AP were added to the upper layer, and the concentration in the lower layer of choroid plexus epithelial cells was measured. The CSF caffeine concentration was suppressed, depending on the 4-AP concentration. Histomorphological examination suggested that choroid plexus epithelial cells were involved in inhibiting the efflux of caffeine to the CSF. Thus, the simultaneous presence of stimulants and caffeine inhibits caffeine transfer across the BCSFB.


4-Aminopyridine/pharmacology , Caffeine/pharmacokinetics , Central Nervous System Stimulants/pharmacology , Cerebrospinal Fluid/chemistry , Choroid Plexus/chemistry , Endothelium, Vascular/chemistry , Autopsy , Biological Transport , Blood-Brain Barrier/chemistry , Case-Control Studies , Cells, Cultured , Choroid Plexus/cytology , Endothelial Cells/chemistry , Endothelial Cells/cytology , Endothelium, Vascular/cytology , Humans , Models, Biological
6.
Cells ; 11(1)2022 01 04.
Article En | MEDLINE | ID: mdl-35011713

The host-pathogen interaction during meningitis can be investigated with blood-cerebrospinal-fluid-barrier (BCSFB) cell culture models. They are commonly handled under atmospheric oxygen conditions (19-21% O2), although the physiological oxygen conditions are significantly lower in cerebrospinal fluid (CSF) (7-8% O2). We aimed to characterize oxygen levels in a Streptococcus (S.) suis-infected BCSFB model with transmigrating neutrophils. A BCSFB model with human choroid plexus epithelial cells growing on transwell-filters was used. The upper "blood"-compartment was infected and blood-derived neutrophils were added. S. suis and neutrophils transmigrated through the BCSFB into the "CSF"-compartment. Here, oxygen and pH values were determined with the non-invasive SensorDish® reader. Slight orbital shaking improved the luminescence-based measurement technique for detecting free oxygen. In the non-infected BCSFB model, an oxygen value of 7% O2 was determined. However, with S. suis and transmigrating neutrophils, the oxygen value significantly decreased to 2% O2. The pH level decreased slightly in all groups. In conclusion, we characterized oxygen levels in the BCSFB model and demonstrated the oxygen consumption by cells and bacteria. Oxygen values in the non-infected BCSFB model are comparable to in vivo values determined in pigs in the CSF. Infection and transmigrating neutrophils decrease the oxygen value to lower values.


Blood-Brain Barrier/chemistry , Cell Culture Techniques/methods , Cerebrospinal Fluid/chemistry , Oxygen/chemistry , Streptococcal Infections/microbiology , Humans
7.
Fluids Barriers CNS ; 18(1): 43, 2021 Sep 20.
Article En | MEDLINE | ID: mdl-34544422

BACKGROUND: The pathways that control protein transport across the blood-brain barrier (BBB) remain poorly characterized. Despite great advances in recapitulating the human BBB in vitro, current models are not suitable for systematic analysis of the molecular mechanisms of antibody transport. The gaps in our mechanistic understanding of antibody transcytosis hinder new therapeutic delivery strategy development. METHODS: We applied a novel bioengineering approach to generate human BBB organoids by the self-assembly of astrocytes, pericytes and brain endothelial cells with unprecedented throughput and reproducibility using micro patterned hydrogels. We designed a semi-automated and scalable imaging assay to measure receptor-mediated transcytosis of antibodies. Finally, we developed a workflow to use CRISPR/Cas9 gene editing in BBB organoid arrays to knock out regulators of endocytosis specifically in brain endothelial cells in order to dissect the molecular mechanisms of receptor-mediated transcytosis. RESULTS: BBB organoid arrays allowed the simultaneous growth of more than 3000 homogenous organoids per individual experiment in a highly reproducible manner. BBB organoid arrays showed low permeability to macromolecules and prevented transport of human non-targeting antibodies. In contrast, a monovalent antibody targeting the human transferrin receptor underwent dose- and time-dependent transcytosis in organoids. Using CRISPR/Cas9 gene editing in BBB organoid arrays, we showed that clathrin, but not caveolin, is required for transferrin receptor-dependent transcytosis. CONCLUSIONS: Human BBB organoid arrays are a robust high-throughput platform that can be used to discover new mechanisms of receptor-mediated antibody transcytosis. The implementation of this platform during early stages of drug discovery can accelerate the development of new brain delivery technologies.


Antibodies/metabolism , Bioengineering/methods , Blood-Brain Barrier/metabolism , Organoids/metabolism , Receptors, Transferrin/metabolism , Transcytosis/physiology , Animals , Antibodies/analysis , Astrocytes/chemistry , Astrocytes/metabolism , Blood-Brain Barrier/chemistry , Blood-Brain Barrier/cytology , Cells, Cultured , Coculture Techniques , Endothelial Cells/chemistry , Endothelial Cells/metabolism , Humans , Organoids/chemistry , Organoids/cytology , Pericytes/chemistry , Pericytes/metabolism , Receptors, Transferrin/analysis
8.
Fluids Barriers CNS ; 18(1): 36, 2021 Aug 03.
Article En | MEDLINE | ID: mdl-34344390

BACKGROUND: In vitro models based on brain capillary endothelial cells (BCECs) are among the most versatile tools in blood-brain barrier research for testing drug penetration into the brain and how this is affected by efflux transporters such as P-glycoprotein (Pgp). However, compared to freshly isolated brain capillaries or primary BCECs, the expression of Pgp in immortalized BCEC lines is markedly lower, which prompted us previously to transduce the widely used human BCEC line hCMEC/D3 with a doxycycline-inducible MDR1-EGFP fusion plasmid. The EGFP-labeled Pgp in these cells allows studying the localization and trafficking of the transporter and how these processes are affected by drug exposure. Here we used this strategy for the rat BCEC line RBE4 and performed a face-to-face comparison of RBE4 and hCMEC/D3 wild-type (WT) and MDR1-EGFP transduced cells. METHODS: MDR1-EGFP-transduced variants were derived from WT cells by lentiviral transduction, using an MDR1-linker-EGFP vector. Localization, trafficking, and function of Pgp were compared in WT and MDR1-EGFP transduced cell lines. Primary cultures of rat BCECs and freshly isolated rat brain capillaries were used for comparison. RESULTS: All cells exhibited typical BCEC morphology. However, significant differences were observed in the localization of Pgp in that RBE4-MDR1-EGFP cells expressed Pgp primarily at the plasma membrane, whereas in hCMEC/D3 cells, the Pgp-EGFP fusion protein was visible both at the plasma membrane and in endolysosomal vesicles. Exposure to doxorubicin increased the number of Pgp-EGFP-positive endolysosomes, indicating a lysosomotropic effect. Furthermore, lysosomal trapping of doxorubicin was observed, likely contributing to the protection of the cell nucleus from damage. In cocultures of WT and MDR1-EGFP transduced cells, intercellular Pgp-EGFP trafficking was observed in RBE4 cells as previously reported for hCMEC/D3 cells. Compared to WT cells, the MDR1-EGFP transduced cells exhibited a significantly higher expression and function of Pgp. However, the junctional tightness of WT and MDR1-EGFP transduced RBE4 and hCMEC/D3 cells was markedly lower than that of primary BCECs, excluding the use of the cell lines for studying vectorial drug transport. CONCLUSIONS: The present data indicate that MDR1-EGFP transduced RBE4 cells are an interesting tool to study the biogenesis of lysosomes and Pgp-mediated lysosomal drug trapping in response to chemotherapeutic agents and other compounds at the level of the blood-brain barrier.


ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Green Fluorescent Proteins/metabolism , ATP Binding Cassette Transporter, Subfamily B/analysis , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/analysis , Animals , Blood-Brain Barrier/chemistry , Cell Line , Cell Line, Transformed , Endothelial Cells/chemistry , Green Fluorescent Proteins/analysis , Humans , Microscopy, Fluorescence/methods , Protein Transport/physiology , Rats , Rats, Wistar , Species Specificity
9.
Nat Biomed Eng ; 5(8): 847-863, 2021 08.
Article En | MEDLINE | ID: mdl-34385693

The therapeutic efficacy of stem cells transplanted into an ischaemic brain depends primarily on the responses of the neurovascular unit. Here, we report the development and applicability of a functional neurovascular unit on a microfluidic chip as a microphysiological model of ischaemic stroke that recapitulates the function of the blood-brain barrier as well as interactions between therapeutic stem cells and host cells (human brain microvascular endothelial cells, pericytes, astrocytes, microglia and neurons). We used the model to track the infiltration of a number of candidate stem cells and to characterize the expression levels of genes associated with post-stroke pathologies. We observed that each type of stem cell showed unique neurorestorative effects, primarily by supporting endogenous recovery rather than through direct cell replacement, and that the recovery of synaptic activities is correlated with the recovery of the structural and functional integrity of the neurovascular unit rather than with the regeneration of neurons.


Ischemic Stroke/therapy , Lab-On-A-Chip Devices , Stem Cell Transplantation , Astrocytes/cytology , Astrocytes/metabolism , Blood-Brain Barrier/chemistry , Blood-Brain Barrier/metabolism , Coculture Techniques , Endothelial Cells/cytology , Endothelial Cells/metabolism , Humans , Microglia/cytology , Microglia/metabolism , Microvessels/cytology , Models, Biological , Neurons/cytology , Neurons/metabolism , Pericytes/cytology , Pericytes/metabolism , Stem Cells/cytology , Stem Cells/metabolism
10.
AAPS J ; 23(4): 81, 2021 06 03.
Article En | MEDLINE | ID: mdl-34085128

Capturing unbound drug exposure in the brain is crucial to evaluate pharmacological effects for drugs acting on the central nervous system. However, to date, there are no reports of validated prediction models to determine the brain-to-plasma unbound concentration ratio (Kp,uu,brain) as well as the cerebrospinal fluid (CSF)-to-plasma unbound concentration ratio (Kp,uu,CSF) between humans and other species. Here, we developed a translational CNS steady-state drug disposition model to predict Kp,uu,brain and Kp,uu,CSF across rats, monkeys, and humans by estimating the relative activity factors (RAF) for MDR1 and BCRP in addition to scaling factors (γ and σ) using the molecular weight, logD, CSF bulk flow, and in vitro transport activities of these transporters. In this study, 68, 26, and 28 compounds were tested in the rat, monkey, and human models, respectively. Both the predicted Kp,uu,brain and Kp,uu,CSF values were within the 3-fold range of the observed values (71, 73, and 79%; 79, 88, and 78% of the compounds, respectively), indicating successful prediction of Kp,uu,brain and Kp,uu,CSF in the three species. The overall predictivity of the RAF approach is consistent with that of the relative expression factor (REF) approach. As the established model can predict Kp,uu,brain and Kp,uu,CSF using only in vitro and physicochemical data, this model would help avoid ethical issues related to animal use and improve CNS drug discovery workflow.


Blood-Brain Barrier/metabolism , Models, Biological , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Animals , Blood-Brain Barrier/chemistry , Cerebrospinal Fluid/chemistry , Humans , Macaca fascicularis , Male , Rats , Species Specificity , Tissue Distribution
11.
Nat Biomed Eng ; 5(8): 830-846, 2021 08.
Article En | MEDLINE | ID: mdl-34127820

The neurovascular unit, which consists of vascular cells surrounded by astrocytic end-feet and neurons, controls cerebral blood flow and the permeability of the blood-brain barrier (BBB) to maintain homeostasis in the neuronal milieu. Studying how some pathogens and drugs can penetrate the human BBB and disrupt neuronal homeostasis requires in vitro microphysiological models of the neurovascular unit. Here we show that the neurotropism of Cryptococcus neoformans-the most common pathogen causing fungal meningitis-and its ability to penetrate the BBB can be modelled by the co-culture of human neural stem cells, brain microvascular endothelial cells and brain vascular pericytes in a human-neurovascular-unit-on-a-chip maintained by a stepwise gravity-driven unidirectional flow and recapitulating the structural and functional features of the BBB. We found that the pathogen forms clusters of cells that penetrate the BBB without altering tight junctions, suggesting a transcytosis-mediated mechanism. The neurovascular-unit-on-a-chip may facilitate the study of the mechanisms of brain infection by pathogens, and the development of drugs for a range of brain diseases.


Blood-Brain Barrier/metabolism , Cryptococcus neoformans/physiology , Lab-On-A-Chip Devices , Models, Biological , Blood-Brain Barrier/chemistry , Blood-Brain Barrier/microbiology , Coculture Techniques , Endothelial Cells/cytology , Endothelial Cells/metabolism , Extracellular Matrix/chemistry , Humans , Hydrogels/chemistry , Meningitis/microbiology , Meningitis/pathology , Microvessels/cytology , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Pericytes/cytology , Pericytes/metabolism , Transcytosis
12.
Neurotox Res ; 39(4): 1181-1188, 2021 Aug.
Article En | MEDLINE | ID: mdl-33871814

Multiple sclerosis is a chronic demyelinating disease with a functional disturbance in the immune system and axonal damages. It was shown that Apamin as a blood-brain barrier shuttle acts as a Ca2+ activated K+ channels (SK channels) blocker. In this study, the effects of Apamin on oligodendrocyte differentiation markers were evaluated on an induced model of MS. Briefly, C57BL/6 male mice (22 ± 5 g) except the control group were fed with 0.2% (w/w) cuprizone pellets for 6 weeks. After cuprizone withdrawal, mice were divided randomly into six groups. Apamin (100 µg/kg/BW) was administered intraperitoneally as a co-treatment during phase I (demyelination) or post-treatment phase II (remyelination) twice a week. Mice were anesthetized, perfused with phosphate-buffered saline, then fixed brains were coronally sectioned and the changes in oligodendrocytes markers such as Olig2, PDGFR-α, and BrdU incorporation were assessed by immunohistochemistry assay. Apamin administration increased Olig2+ cells in phase I as compared to the control group (p < 0.0001). Also, a decreasing trend in PDGFRa+ cells observed after cuprizone withdrawal (p < 0.001). 5-Bromo-2'-deoxyuridine (BrdU) incorporation test was confirmed stimulation of oligodendrocyte progenitor cell proliferation in phase I in the Apamin exposed group (p < 0.0001), especially at the subventricular zone. This study highlights the potential therapeutic effects of Apamin as a bee venom-derived peptide on oligodendrocyte precursor proliferation and elevation in myelin content in an oxidative induced multiple sclerosis model due to cuprizone exposure.


Bee Venoms/therapeutic use , Blood-Brain Barrier/drug effects , Cell Proliferation/drug effects , Cuprizone/toxicity , Multiple Sclerosis/drug therapy , Oligodendroglia/drug effects , Animals , Bee Venoms/pharmacology , Blood-Brain Barrier/chemistry , Blood-Brain Barrier/metabolism , Brain/drug effects , Brain/metabolism , Cell Proliferation/physiology , Chelating Agents/toxicity , Male , Mice , Mice, Inbred C57BL , Multiple Sclerosis/chemically induced , Multiple Sclerosis/metabolism , Oligodendrocyte Transcription Factor 2/analysis , Oligodendrocyte Transcription Factor 2/metabolism , Oligodendroglia/chemistry , Oligodendroglia/metabolism , Receptor, Platelet-Derived Growth Factor alpha/analysis , Receptor, Platelet-Derived Growth Factor alpha/metabolism
13.
Talanta ; 217: 121023, 2020 Sep 01.
Article En | MEDLINE | ID: mdl-32498842

Profiling blood-brain barrier permeability of bioactive molecule is an important issue in early drug development, being a part of the optimization process of a compound's physicochemical properties, and hence pharmacokinetic profile. The study aimed to develop and optimize a new in vitro method for assessment of the compound's brain penetration. The tool is proposed as an alternative to the PAMPA-BBB (Parallel Artificial Membrane Permeability Assay for Blood-Brain Barrier) and based on a capillary electrochromatography (CEC) technique. It utilizes liposomes as structural substitutes of biological membranes, which are used as a capillary inner wall coating material. Following optimization of analysis conditions, migration times for a set of 25 reference drugs (mainly non-ionized in pH 7.4) were examined in a liposome coated capillary. On that basis, the retention factor (log k) was determined for each reference drug. Obtained log k values and experimentally received reference permeability parameters: log BB (in vivo data) and log Pe (PAMPA-BBB data) were compared with one another. Correlation coefficients were calculated, giving comparable results for CEC log k/log BB and analogical PAMPA-BBB log Pe/log BB analyses. Approximate ranges of log k for the central nervous system (CNS) permeable (CNS(+)) and non-permeable (CNS(-)) drugs were established.


Blood-Brain Barrier/chemistry , Pharmaceutical Preparations/analysis , Electrophoresis, Capillary , Humans , Liposomes/chemistry
14.
Theranostics ; 10(14): 6361-6371, 2020.
Article En | MEDLINE | ID: mdl-32483457

The clinical translation of new nanoparticle-based therapies for high-grade glioma (HGG) remains extremely poor. This has partly been due to the lack of suitable preclinical mouse models capable of replicating the complex characteristics of recurrent HGG (rHGG), namely the heterogeneous structural and functional characteristics of the blood-brain barrier (BBB). The goal of this study is to compare the characteristics of the tumor BBB of rHGG with two different mouse models of HGG, the ubiquitously used U87 cell line xenograft model and a patient-derived cell line WK1 xenograft model, in order to assess their suitability for nanomedicine research. Method: Structural MRI was used to assess the extent of BBB opening in mouse models with a fully developed tumor, and dynamic contrast enhanced MRI was used to obtain values of BBB permeability in contrast enhancing tumor. H&E and immunofluorescence staining were used to validate results obtained from the in vivo imaging studies. Results: The extent of BBB disruption and permeability in the contrast enhancing tumor was significantly higher in the U87 model than in rHGG. These values in the WK1 model are similar to those of rHGG. The U87 model is not infiltrative, has an entirely abnormal and leaky vasculature and it is not of glial origin. The WK1 model infiltrates into the non-neoplastic brain parenchyma, it has both regions with intact BBB and regions with leaky BBB and remains of glial origin. Conclusion: The WK1 mouse model more accurately reproduces the extent of BBB disruption, the level of BBB permeability and the histopathological characteristics found in rHGG patients than the U87 mouse model, and is therefore a more clinically relevant model for preclinical evaluations of emerging nanoparticle-based therapies for HGG.


Blood-Brain Barrier/physiopathology , Glioma/pathology , Nanomedicine/methods , Nanoparticles/administration & dosage , Animals , Blood-Brain Barrier/chemistry , Blood-Brain Barrier/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Capillary Permeability , Cell Line, Tumor , Drug Delivery Systems/methods , Drug Evaluation, Preclinical/methods , Female , Glioma/drug therapy , Glioma/metabolism , Humans , Magnetic Resonance Imaging/methods , Mice , Mice, Inbred NOD , Mice, SCID , Nanoparticles/chemistry , Xenograft Model Antitumor Assays
15.
Mol Nutr Food Res ; 64(13): e1900779, 2020 07.
Article En | MEDLINE | ID: mdl-32447828

SCOPE: Hyperglycemia alters cerebral endothelial cell and blood-brain barrier functions, aggravating cerebrovascular complications such as stroke during diabetes. Redox and inflammatory changes play a causal role. This study evaluates polyphenol protective effects in cerebral endothelial cells and a mouse stroke model during hyperglycemia. METHODS AND RESULTS: Murine bEnd.3 cerebral endothelial cells and a mouse stroke model are exposed to a characterized, polyphenol-rich extract of Antirhea borbonica or its predominant constituent caffeic acid, during hyperglycemia. Polyphenol effects on redox, inflammatory and vasoactive markers, infarct volume, and hemorrhagic transformation are determined. In vitro, polyphenols improve reactive oxygen species levels, Cu/Zn superoxide dismutase activity, and both NAPDH oxidase 4 and nuclear factor erythroid 2-related factor 2 (Nrf2) gene expression deregulated by high glucose. Polyphenols reduce Nrf2 nuclear translocation and counteract nuclear factor-ĸappa B activation, interleukin-6 secretion, and the altered production of vasoactive markers mediated by high glucose. In vivo, polyphenols reduce cerebral infarct volume and hemorrhagic transformation aggravated by hyperglycemia. Polyphenols attenuate redox changes, increase vascular endothelial-Cadherin production, and decrease neuro-inflammation in the infarcted hemisphere. CONCLUSION: Polyphenols protect against hyperglycemia-mediated alterations in cerebral endothelial cells and a mouse stroke model. It is relevant to assess polyphenol benefits to improve cerebrovascular damages during diabetes.


Antioxidants/pharmacology , Cerebral Infarction/drug therapy , Hyperglycemia/physiopathology , Polyphenols/pharmacology , Stroke/drug therapy , Animals , Blood Glucose/metabolism , Blood-Brain Barrier/chemistry , Blood-Brain Barrier/drug effects , Caffeic Acids/pharmacology , Cerebral Infarction/pathology , Cerebral Infarction/physiopathology , Disease Models, Animal , Endothelial Cells/drug effects , Hyperglycemia/drug therapy , Inflammation/drug therapy , Inflammation/metabolism , Male , Mice, Inbred C57BL , Plants, Medicinal/chemistry , Polyphenols/chemistry , Protective Agents/pharmacology , Reperfusion Injury/drug therapy , Reperfusion Injury/physiopathology , Rubiaceae/chemistry , Stroke/etiology
16.
Sci Rep ; 10(1): 3788, 2020 03 02.
Article En | MEDLINE | ID: mdl-32123236

The blood-brain barrier (BBB) serves to protect and regulate the CNS microenvironment. The development of an in-vitro mimic of the BBB requires recapitulating the correct phenotype of the in-vivo BBB, particularly for drug permeation studies. However the majority of widely used BBB models demonstrate low transendothelial electrical resistance (TEER) and poor BBB phenotype. The application of shear stress is known to enhance tight junction formation and hence improve the barrier function. We utilised a high TEER primary porcine brain microvascular endothelial cell (PBMEC) culture to assess the impact of shear stress on barrier formation using the Kirkstall QuasiVivo 600 (QV600) multi-chamber perfusion system. The application of shear stress resulted in a reorientation and enhancement of tight junction formation on both coverslip and permeable inserts, in addition to enhancing and maintaining TEER for longer, when compared to static conditions. Furthermore, the functional consequences of this was demonstrated with the reduction in flux of mitoxantrone across PBMEC monolayers. The QV600 perfusion system may service as a viable tool to enhance and maintain the high TEER PBMEC system for use in in-vitro BBB models.


Blood-Brain Barrier/chemistry , Mitoxantrone/metabolism , Animals , Biological Transport , Blood-Brain Barrier/metabolism , Cell Survival/drug effects , Electric Impedance , Endothelial Cells/chemistry , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Mitoxantrone/chemistry , Mitoxantrone/pharmacology , Models, Biological , Perfusion , Shear Strength , Swine , Tight Junctions/chemistry , Tight Junctions/metabolism
17.
Drug Deliv Transl Res ; 10(2): 425-439, 2020 04.
Article En | MEDLINE | ID: mdl-31942701

BMN 250 is being developed as enzyme replacement therapy for Sanfilippo type B, a primarily neurological rare disease, in which patients have deficient lysosomal alpha-N-acetylglucosaminidase (NAGLU) enzyme activity. BMN 250 is taken up in target cells by the cation-independent mannose 6-phosphate receptor (CI-MPR, insulin-like growth factor 2 receptor), which then facilitates transit to the lysosome. BMN 250 is dosed directly into the central nervous system via the intracerebroventricular (ICV) route, and the objective of this work was to compare systemic intravenous (IV) and ICV delivery of BMN 250 to confirm the value of ICV dosing. We first assess the ability of enzyme to cross a potentially compromised blood-brain barrier in the Naglu-/- mouse model and then assess the potential for CI-MPR to be employed for receptor-mediated transport across the blood-brain barrier. In wild-type and Naglu-/- mice, CI-MPR expression in brain vasculature is high during the neonatal period but virtually absent by adolescence. In contrast, CI-MPR remains expressed through adolescence in non-affected non-human primate and human brain vasculature. Combined results from IV administration of BMN 250 in Naglu-/- mice and IV and ICV administration in healthy juvenile non-human primates suggest a limitation to therapeutic benefit from IV administration because enzyme distribution is restricted to brain vascular endothelial cells: enzyme does not reach target neuronal cells following IV administration, and pharmacological response following IV administration is likely restricted to clearance of substrate in endothelial cells. In contrast, ICV administration enables central nervous system enzyme replacement with biodistribution to target cells.


Acetylglucosaminidase/administration & dosage , Acetylglucosaminidase/genetics , Blood-Brain Barrier/chemistry , Insulin-Like Growth Factor II/administration & dosage , Mucopolysaccharidosis III/drug therapy , Receptor, IGF Type 2/metabolism , Recombinant Fusion Proteins/administration & dosage , Acetylglucosaminidase/therapeutic use , Administration, Intravenous , Animals , Disease Models, Animal , Enzyme Replacement Therapy , Female , Infusions, Intraventricular , Insulin-Like Growth Factor II/therapeutic use , Male , Mice , Mice, Transgenic , Mucopolysaccharidosis III/genetics , Primates , Recombinant Fusion Proteins/therapeutic use , Translational Research, Biomedical
18.
Biomater Sci ; 8(6): 1669-1682, 2020 Mar 17.
Article En | MEDLINE | ID: mdl-31984985

The blood brain barrier (BBB) is a very selective barrier that protects the brain and the central nervous system (CNS) from the entry of harmful substances and helps regulate the exchange of different molecules and nutrients from and into the brain and the CNS. This selectivity makes delivering therapeutic and diagnostic materials across the BBB very challenging. In this study, different shapes and sizes of gold nanoparticles (GNP) were synthesized and functionalized with five different thiolated ligands to obtain GNP with various surface chemistries. The potential of GNP of different properties to be accumulated into the brain through the BBB and into other organs was investigated in a mouse model using qualitative and quantitative approaches. Gold nanorods (GNR) functionalized with 4-mercaptophenol (Mph) showed the highest penetration ability across the BBB into the brain with no significant deposition in other organs. Interestingly, increasing the size of GNR retarded their delivery into the brain, while enhancing their accumulation in other organs. On the other hand, gold nanospheres (GNS) demonstrated high deposition percentages in the brain and other organs with possible toxic effects. The properties of GNP play a crucial role in their interaction with the BBB and accumulation in the brain and other organs. Thus, GNP can be considered a promising nano-platform for drug delivery into the brain and as a photothermal-inducing agent against brain cancer.


Blood-Brain Barrier/chemistry , Brain Chemistry/drug effects , Gold/administration & dosage , Phenols/chemistry , Sulfhydryl Compounds/chemistry , Animals , Drug Delivery Systems , Gold/chemistry , Gold/pharmacokinetics , Gold/toxicity , Injections, Intraperitoneal , Male , Metal Nanoparticles , Mice , Models, Animal , Particle Size , Tissue Distribution
19.
Molecules ; 25(3)2020 Jan 23.
Article En | MEDLINE | ID: mdl-31979316

The permeation of the blood-brain barrier is a very important consideration for new drug candidate molecules. In this research, the reversed-phase liquid chromatography with different columns (Purosphere RP-18e, IAM.PC.DD2 and Cosmosil Cholester) was used to predict the penetration of the blood-brain barrier by 65 newly-synthesized drug-like compounds. The linear free energy relationships (LFERs) model (log BB = c + eE + sS + aA + bB + vV) was established for a training set of 23 congeneric biologically active azole compounds with known experimental log BB (BB = Cblood/Cbrain) values (R2 = 0.9039). The reliability and predictive potency of the model were confirmed by leave-one-out cross validation as well as leave-50%-out cross validation. Multiple linear regression (MLR) was used to develop the quantitative structure-activity relationships (QSARs) to predict the log BB values of compounds that were tested, taking into account the chromatographic lipophilicity (log kw), polarizability and topological polar surface area. The excellent statistics of the developed MLR equations (R2 > 0.8 for all columns) showed that it is possible to use the HPLC technique and retention data to produce reliable blood-brain barrier permeability models and to predict the log BB values of our pharmaceutically important molecules.


Antineoplastic Agents/chemistry , Blood-Brain Barrier/metabolism , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Analgesics/chemistry , Analgesics/pharmacology , Antineoplastic Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Azoles/chemistry , Biological Transport , Blood-Brain Barrier/chemistry , Linear Models , Models, Molecular , Permeability , Quantitative Structure-Activity Relationship , Reproducibility of Results
20.
Colloids Surf B Biointerfaces ; 187: 110770, 2020 Mar.
Article En | MEDLINE | ID: mdl-31926790

Targeted drug delivery across the blood-brain barrier is an extremely challenging quest in the fight with fatal brain ailments, with the major hurdles being short circulation time, reticuloendothelial system (RES) uptake, and excretion of nanocarriers. PEGylation has emerged as a boon for targeted drug delivery to the brain. It is well established that PEGylation can increase the circulation time of nanocarriers by avoiding RES uptake, which is indispensable for increasing the brain's uptake of nanocarriers. PEGylation also acts as a linker for ligand molecules to achieve active targeting to the brain. Using PEGylation, novel approaches are being investigated to facilitate ligand-receptor interactions at the brain endothelium to ease the entry of therapeutic drugs into the brain. In addition, PEGylation made it simpler to assess the brain tissue for delivering diagnostic molecules and theranostic nanocarriers. The potential of PEGylated nanocarriers is being investigated vastly to boost the therapeutic effect several fold in the treatment of brain diseases. This review sheds light on the contribution of PEGylated nanocarriers, especially liposomes, polymeric nanoparticles, and dendrimers for brain-specific delivery of bioactives.


Blood-Brain Barrier/metabolism , Brain/drug effects , Drug Carriers/pharmacokinetics , Glioma/drug therapy , Nanoparticles/chemistry , Polyethylene Glycols/pharmacokinetics , Blood-Brain Barrier/chemistry , Brain/pathology , Brain Diseases/drug therapy , Brain Diseases/therapy , Dendrimers/chemistry , Dendrimers/pharmacokinetics , Drug Carriers/chemistry , Drug Delivery Systems/methods , Gene Transfer Techniques , Glioma/therapy , Liposomes/chemistry , Liposomes/pharmacokinetics , Polyethylene Glycols/chemistry
...