Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-29963502

RESUMEN

Neurobrucellosis is an inflammatory disease caused by the invasion of Brucella spp. to the central nervous system (CNS). The pathogenesis of the disease is not well characterized; however, for Brucella to gain access to the brain parenchyma, traversing of the blood-brain barrier (BBB) must take place. To understand the CNS determinants of the pathogenesis of B. abortus, we have used the in vitro BBB model of human brain microvascular endothelial cells (HBMEC) to study the interactions between B. abortus and brain endothelial cells. In this study, we showed that B. abortus is able to adhere and invade HBMEC which was dependent on microtubules, microfilaments, endosome acidification and de novo protein synthesis. After infection, B. abortus rapidly escapes the endosomal compartment of HBMEC and forms a replicative Brucella-containing vacuole that involves interactions with the endoplasmic reticulum. Despite the ability of B. abortus to invade and replicate in HBMEC, the bacterium was unable by itself to traverse HBMEC, but could traverse polarized HBMEC monolayers within infected monocytes. Importantly, infected monocytes that traversed the HBMEC monolayer were a bacterial source for de novo infection of glial cells. This is the first demonstration of the mechanism whereby B. abortus is able to traverse the BBB and infect cells of the CNS. These results may have important implications in our understanding of the pathogenesis of neurobrucellosis.


Asunto(s)
Barrera Hematoencefálica/microbiología , Brucella abortus/crecimiento & desarrollo , Células Endoteliales/microbiología , Leucocitos Mononucleares/microbiología , Microvasos/microbiología , Animales , Barrera Hematoencefálica/citología , Brucella abortus/fisiología , Brucelosis/microbiología , Retículo Endoplásmico/microbiología , Endosomas/microbiología , Células Endoteliales/citología , Humanos , Ratones , Ratones Endogámicos C57BL , Microvasos/citología , Cultivo Primario de Células , Transcitosis/fisiología , Vacuolas/microbiología
2.
Cell Microbiol ; 20(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29113016

RESUMEN

Cryptococcus neoformans is a basidiomycetous yeast and the cause of cryptococcosis in immunocompromised individuals. The most severe form of the disease is meningoencephalitis, which is one of the leading causes of death in HIV/AIDS patients. In order to access the central nervous system, C. neoformans relies on the activity of certain virulence factors such as urease, which allows transmigration through the blood-brain barrier. In this study, we demonstrate that the calcium transporter Pmc1 enables C. neoformans to penetrate the central nervous system, because the pmc1 null mutant failed to infect and to survive within the brain parenchyma in a murine systemic infection model. To investigate potential alterations in transmigration pathways in these mutants, global expression profiling of the pmc1 mutant strain was undertaken, and genes associated with urease, the Ca2+ -calcineurin pathway, and capsule assembly were identified as being differentially expressed. Also, a decrease in urease activity was observed in the calcium transporter null mutants. Finally, we demonstrate that the transcription factor Crz1 regulates urease activity and that the Ca2+ -calcineurin signalling pathway positively controls the transcription of calcium transporter genes and factors related to transmigration.


Asunto(s)
Sistema Nervioso Central/microbiología , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidad , Proteínas Fúngicas/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Animales , Transporte Biológico/fisiología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/microbiología , Encéfalo/metabolismo , Encéfalo/microbiología , Calcineurina/metabolismo , Calcio/metabolismo , Línea Celular , Criptococosis/metabolismo , Criptococosis/microbiología , Modelos Animales de Enfermedad , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Meningoencefalitis/metabolismo , Meningoencefalitis/microbiología , Ratones , Ratones Endogámicos BALB C , Vacuolas/metabolismo , Vacuolas/microbiología , Virulencia/fisiología , Factores de Virulencia/metabolismo
3.
Exp Biol Med (Maywood) ; 239(2): 225-31, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24419461

RESUMEN

Pneumococcal meningitis is a relevant clinical disease characterized by an intense inflammatory reaction into the subarachnoid and ventricular spaces, leading to blood-brain barrier breakdown, hearing loss, and cognitive impairment. Matrix metalloproteinases (MMPs) are capable of degrading components of the basal laminin, thus contributing to BBB damage and neuronal injury. In the present study, we evaluated the effects of MMP-2, MMP-9, and MMP-2/9 inhibitors on BBB integrity, learning, and memory in Wistar rats subjected to pneumococcal meningitis. The animals underwent a magna cistern tap and received either 10 µL sterile saline as a placebo or an equivalent volume of a Streptococcus pneumoniae suspension at a concentration of 5 × 10(9)cfu/mL. The rats were randomized into different groups that received adjuvant treatment with MMP-2, MMP-9 or MMP-2/9 inhibitors. The BBB integrity was evaluated, and the animals were habituated to open-field and object recognition tasks 10 days after meningitis induction. Adjuvant treatments with inhibitors of MMP-2 or MMP-2/9 prevented BBB breakdown in the hippocampus, and treatments with inhibitors of MMP-2, MMP-9 or MMP-2/9 prevented BBB breakdown in the cortex. Ten days after meningitis induction, the animals that received adjuvant treatment with the inhibitor of MMP-2/9 demonstrated that animals habituated to the open-field task faster and enhanced memory during short-term and long-term retention test sessions in the object recognition task. Further investigation is necessary to provide support for MMP inhibitors as an alternative treatment for bacterial meningitis; however, these findings suggest that the meningitis model could be a good research tool for studying the biological mechanisms involved in the behavioral alterations associated with pneumococcal meningitis.


Asunto(s)
Trastornos del Conocimiento/prevención & control , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/uso terapéutico , Meningitis Neumocócica/tratamiento farmacológico , Animales , Barrera Hematoencefálica/microbiología , Barrera Hematoencefálica/fisiopatología , Trastornos del Conocimiento/etiología , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/patología , Aprendizaje/efectos de los fármacos , Memoria/efectos de los fármacos , Meningitis Neumocócica/complicaciones , Meningitis Neumocócica/metabolismo , Ratas , Ratas Wistar , Streptococcus pneumoniae
4.
J Med Microbiol ; 62(Pt 12): 1781-1789, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23946474

RESUMEN

Neonatal meningitis is a severe acute infectious disease of the central nervous system and an important cause of morbidity and mortality worldwide. The inflammatory reaction involves the meninges, the subarachnoid space and the brain parenchymal vessels and contributes to neuronal injury. Neonatal meningitis leads to deafness, blindness, cerebral palsy, seizures, hydrocephalus or cognitive impairment in approximately 25-50 % of survivors. Bacterial pathogens can reach the blood-brain barrier and be recognized by antigen-presenting cells through the binding of Toll-like receptors. They induce the activation of NFκB or mitogen-activated protein kinase pathways and subsequently upregulate leukocyte populations and express numerous proteins involved in inflammation and the immune response. Many brain cells can produce cytokines, chemokines and other pro-inflammatory molecules in response to bacterial stimuli, and polymorphonuclear leukocytes are attracted, activated and released in large amounts of superoxide anion and nitric oxide, leading to peroxynitrite formation and generating oxidative stress. This cascade leads to lipid peroxidation, mitochondrial damage and breakdown of the blood-brain barrier, thus contributing to cell injury during neonatal meningitis. This review summarizes information on the pathophysiology and adjuvant treatment of acute bacterial meningitis in neonates.


Asunto(s)
Enfermedad Aguda/terapia , Meningitis Bacterianas/tratamiento farmacológico , Meningitis Bacterianas/fisiopatología , Barrera Hematoencefálica/microbiología , Barrera Hematoencefálica/fisiopatología , Humanos , Recién Nacido , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA