Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 10.621
1.
Bull Exp Biol Med ; 176(5): 543-547, 2024 Mar.
Article En | MEDLINE | ID: mdl-38717566

We studied the dynamics of the main hemodynamic parameters in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats with visceral obesity and chemically induced colitis (CIC) against the background of probiotic therapy. Systolic BP, HR, and body temperature were recorded over 36 days using a wireless telemetry system. During 8 days (3 days before CIC induction and until the end of the experiment) the animals were intragastrically administered a probiotic based on Lactobacillus delbrueckii D5 strain. At baseline, systolic BP was significantly higher in the SHR group, while HR and body temperature did not differ in SHR and WKY rats. On day 8 after CIC induction, systolic BP, HR, and body temperature in SHR were significantly increased in comparison with the initial values. In the group of WKY rats, all indices at the end of the experiment remained at the initial levels. Probiotic therapy in SHR, in contrast to WKY rats, did not lead to normalization of body temperature and hemodynamic disorders resulting from CIC.


Body Temperature , Colitis , Hemodynamics , Probiotics , Rats, Inbred SHR , Rats, Inbred WKY , Animals , Probiotics/pharmacology , Probiotics/administration & dosage , Rats , Male , Colitis/chemically induced , Colitis/physiopathology , Colitis/microbiology , Hemodynamics/drug effects , Body Temperature/drug effects , Blood Pressure/drug effects , Blood Pressure/physiology , Heart Rate/drug effects , Lactobacillus delbrueckii , Obesity/physiopathology , Obesity, Abdominal/physiopathology , Obesity, Abdominal/chemically induced
2.
J Vet Intern Med ; 38(3): 1941-1950, 2024.
Article En | MEDLINE | ID: mdl-38685595

BACKGROUND: Hypothermia is a cause of neonatal calf death in cold climates. Practical and effective rewarming methods are important for bovine health within affected regions. HYPOTHESIS/OBJECTIVES: To compare the rewarming rate and blood analytes (glucose, lactate, and cortisol) of calves resuscitated with forced air with warm water bath, with or without oral administration of caffeine. ANIMALS: Twenty healthy neonatal Holstein bull calves. METHODS: In this randomized, prospective study, calves born healthy and without history of dystocia were cooled to 32°C rectal temperature then thermally resuscitated using either forced air rewarming or warm water bath (40°C) with or without oral administration of caffeine. Rectal temperatures were used to quantify recovery rate. Measurements of glucose, lactate, and cortisol were recorded for every 2°C change in rectal temperature. RESULTS: Rectal temperature decline (0.03°C per minute) and total cooling time (191.0 ± 33.3 minutes) did not significantly differ among treatment groups. Calves were successfully resuscitated to 38°C by either method. Time required to euthermia using warm water was significantly faster (0.1°C per minute; 64.3 ± 17.8 minute; P < .05) than forced air (0.05°C per minute; 123.1 ± 20.0 minutes). Caffeine had no significant effect on resuscitation rate (P = .14; 95% CI, -0.002 to 0.024) in either treatment; however, caffeine was associated with reduced time to euthermia by 8.3 and 10.8 minutes, respectively. Changes in metabolic variables (glucose, lactate, and cortisol), were inversely related to rectal temperature with no statistical significance among rewarming methods. CONCLUSIONS AND CLINICAL IMPORTANCE: Although warm water submersion is faster, forced air rewarming is an effective alternative for restoration of euthermia.


Animals, Newborn , Caffeine , Cattle Diseases , Hypothermia , Animals , Cattle , Hypothermia/veterinary , Caffeine/administration & dosage , Male , Cattle Diseases/therapy , Cattle Diseases/drug therapy , Prospective Studies , Rewarming , Resuscitation/veterinary , Hydrocortisone/blood , Administration, Oral , Baths/veterinary , Blood Glucose/analysis , Lactic Acid/blood , Body Temperature/drug effects , Random Allocation
3.
Life Sci ; 346: 122633, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38615746

AIMS: Systemic administration of ammonium chloride (NH4Cl), an acidifying agent used in human patients and experimental conditions, causes hypothermia in mice, however, the mechanisms of the thermoregulatory response to NH4Cl and whether it develops in other species remained unknown. MAIN METHODS: We studied body temperature (Tb) changes in rats and mice induced by intraperitoneal administration of NH4Cl after blockade of transient receptor potential vanilloid-1 (TRPV1) or ankyrin-1 (TRPA1) channels. KEY FINDINGS: In rats, NH4Cl decreased Tb by 0.4-0.8°C (p < 0.05). The NH4Cl-induced hypothermia also developed in Trpv1 knockout (Trpv1-/-) and wild-type (Trpv1+/+) mice, however, the Tb drop was exaggerated in Trpv1-/- mice compared to Trpv1+/+ controls with maximal decreases of 4.0 vs. 2.1°C, respectively (p < 0.05). Pharmacological blockade of TRPV1 channels with AMG 517 augmented the hypothermic response to NH4Cl in genetically unmodified mice and rats (p < 0.05 for both). In contrast, when NH4Cl was infused to mice genetically lacking the TRPA1 channel, the hypothermic response was significantly attenuated compared to wild-type controls with maximal mean Tb difference of 1.0°C between the genotypes (p = 0.008). Pretreatment of rats with a TRPA1 antagonist (A967079) also attenuated the NH4Cl-induced Tb drop with a maximal difference of 0.7°C between the pretreatment groups (p = 0.003). SIGNIFICANCE: TRPV1 channels limit, whereas TRPA1 channels exaggerate the development of NH4Cl-induced hypothermia in rats and mice, but other mechanisms are also involved. Our results warrant for regular Tb control and careful consideration of NH4Cl treatment in patients with TRPA1 and TRPV1 channel dysfunctions.


Hypothermia , TRPA1 Cation Channel , TRPV Cation Channels , Animals , Male , Mice , Rats , Ammonium Chloride/pharmacology , Body Temperature/drug effects , Hypothermia/chemically induced , Hypothermia/metabolism , Mice, Inbred C57BL , Mice, Knockout , Rats, Sprague-Dawley , TRPA1 Cation Channel/metabolism , TRPA1 Cation Channel/genetics , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics
4.
Neuropharmacology ; 253: 109966, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38677446

Organophosphorus nerve agents, such as soman (GD), produce excitotoxic effects resulting in sustained status epilepticus (SSE) and brain damage. Previous work shows that neuronal inhibitory effects of A1 adenosine receptor (A1AR) agonists, such as N6- Bicyclo (2.2.1)-hept-2-yl-5'-chloro-5'-deoxyadenosine (Cl-ENBA), suppresses GD-induced SSE and improves neuropathology. Some other physiologic effects of these agonists are hypothermia, hypotension, and sedation. Hypothermia may also shield the brain from injury by slowing down chemical insults, lessening inflammation, and contributing to improved neurological outcomes. Therefore, we attempted to isolate the hypothermic effect from ENBA by assessing the neuroprotective efficacy of direct surface body cooling in a rat GD-induced SSE model, and comparing the effects on seizure termination, neuropathology, and survival. Male rats implanted with a body temperature (Tb) transponder and electroencephalographic (EEG) electrodes were primed with asoxime (HI-6), exposed to GD 30 min later, and then treated with Cl-ENBA or had Tb lowered directly via body cooling at 30 min after the onset of seizure activity. Afterwards, they were either allowed to develop hypothermia as expected, or received thermal support to maintain normothermic Tb for a period of 6-h. Neuropathology was assessed at 24 h. Regardless of Cl-ENBA or surface cooling, all hypothermic GD-exposed groups had significantly improved 24-h survival compared to rats with normothermic Tb (81% vs. 39%, p < 0.001). Cl-ENBA offered neuroprotection independently of hypothermic Tb. While hypothermia enhanced the overall efficacy of Cl-ENBA by improving survival outcomes, body cooling didn't reduce seizure activity or neuropathology following GD-induced SSE.


Adenosine A1 Receptor Agonists , Hypothermia, Induced , Rats, Sprague-Dawley , Seizures , Soman , Animals , Male , Adenosine A1 Receptor Agonists/pharmacology , Soman/toxicity , Hypothermia, Induced/methods , Seizures/chemically induced , Seizures/drug therapy , Seizures/prevention & control , Rats , Adenosine/analogs & derivatives , Adenosine/pharmacology , Body Temperature/drug effects , Brain/drug effects , Brain/pathology , Electroencephalography , Disease Models, Animal
5.
J Neurol ; 271(5): 2207-2215, 2024 May.
Article En | MEDLINE | ID: mdl-38413464

BACKGROUND: Some people with multiple sclerosis (pwMS) avoid exercise due to overheating. Evidence from a variety of cooling treatments shows benefits for pwMS. OBJECTIVE: Conduct a randomized controlled trial of antipyretic treatment before exercise in pwMS. METHODS: Adults over age 18 diagnosed with relapsing-remitting MS reporting heat sensitivity during exercise were randomly assigned to one of six sequences counterbalancing aspirin, acetaminophen, placebo. At each of three study visits separated by ≥ one week, participants received 650-millograms of aspirin, acetaminophen, or placebo before completing a maximal exercise test. Primary outcomes were body temperature change and total time-to-exhaustion (TTE), secondary outcomes were physiological and patient-reported outcomes (PROs). RESULTS: Sixty participants were enrolled and assigned to treatment sequence; 37 completed ≥ one study visit. After controlling for order effects, we found that body temperature increase was reduced after aspirin (+ 0.006 ± 0.32 degrees Fahrenheit, p < 0.001) and after acetaminophen (+ 0.31 ± 0.35; p = 0.004) compared to placebo (+ 0.68 ± 0.35). TTE after aspirin (331.6 ± 76.6 s) and acetaminophen (578.2 ± 82.1) did not differ significantly from placebo (551.0 ± 78.4; p's > 0.05). Aspirin benefited all secondary outcomes compared to placebo (all p's < 0.001); acetaminophen showed broadly consistent benefits. CONCLUSION: These results support antipyretic treatment as effective for reducing overheating during exercise in pwMS and failed to support antipyretics for increasing TTE in the context of a maximal exercise test. Benefits were shown for physiological markers of exercise productivity and PROs of fatigue, pain, and perceived exertion.


Acetaminophen , Antipyretics , Aspirin , Exercise , Humans , Male , Female , Adult , Antipyretics/administration & dosage , Acetaminophen/administration & dosage , Aspirin/administration & dosage , Middle Aged , Exercise/physiology , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Body Temperature/drug effects , Body Temperature/physiology , Double-Blind Method , Administration, Oral , Exercise Test , Treatment Outcome
6.
Prostaglandins Other Lipid Mediat ; 172: 106818, 2024 Jun.
Article En | MEDLINE | ID: mdl-38340978

Platelet-activating factor (PAF) plays a significant role in several leucocyte functions, including platelet aggregation and inflammation. Additionally, PAF has a role in the behavioral and physiological changes in mammals. However, the effect of PAF has not been well studied in birds. Therefore, the study aimed to determine if PAF affects feeding behavior, voluntary activity, cloacal temperature, and feed passage through the digestive tract in chicks (Gallus gallus). We also studied the involvement of PAF in the innate immune system induced by lipopolysaccharide (LPS), a cell wall component of gram-negative bacteria. Both intraperitoneal (IP) and intracerebroventricular (ICV) injections of PAF significantly decreased food intake. IP injection of PAF significantly decreased voluntary activity and slowed the feed passage from the crop, whereas ICV injection had no effect. Conversely, ICV injection of PAF significantly increased the cloacal temperature, but IP injection had no effect. The IP injection of LPS significantly reduced the mRNA expression of lysophosphatidylcholine acyltransferase 2, an enzyme responsible for PAF production in the heart and pancreas. On the other hand, LPS significantly increased the mRNA expression of the PAF receptor in the peripheral organs. The present study shows that PAF influences behavioral and physiological responses and is related to the response against bacterial infections in chicks.


Chickens , Cloaca , Lipopolysaccharides , Platelet Activating Factor , Animals , Platelet Activating Factor/pharmacology , Platelet Activating Factor/metabolism , Lipopolysaccharides/pharmacology , Cloaca/drug effects , Cloaca/physiology , Eating/drug effects , Male , Crop, Avian/drug effects , Crop, Avian/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Feeding Behavior/drug effects , Platelet Membrane Glycoproteins/metabolism , Body Temperature/drug effects , Temperature
7.
J Am Assoc Lab Anim Sci ; 63(2): 182-189, 2024 03 01.
Article En | MEDLINE | ID: mdl-38182132

Guinea pigs are often used in translational research, but providing them with safe and effective anesthesia is a challenge. Common methods like inhalant anesthesia and injectable ketamine/xylazine induce surgical anesthesia but can negatively affect cardiovascular, respiratory, and thermoregulatory systems and complicate the interpretation of research outcomes. Several alternative anesthetic regimens have been investigated, but none have consistently achieved a surgical plane of anesthesia. Therefore, identifying an anesthetic regimen that achieves a stable state of the surgical plane of anesthesia while preserving cardiorespiratory function would be a valuable contribution. To address this issue, we compared the efficacy of 3 anesthetic combinations in female Dunkin-Hartley guinea pigs: 1) alfaxalone, dexmedetomidine, and fentanyl (ADF); 2) alfaxalone, midazolam, and fentanyl (AMF); and 3) alfaxalone, midazolam, fentanyl, and isoflurane (AMFIso). We monitored anesthetic depth, heart rate, oxygenation, respiratory rate, respiratory effort, blood pressure, and body temperature every 15 min from injection to recovery. We also recorded the time to loss of righting reflex, duration of anesthesia, and time to achieve a surgical plane. The results showed no statistically significant differences in induction and recovery times among the groups. In the AMFIso group, 100% of the animals achieved a surgical plane of anesthesia, whereas only 10% of the animals in the AMF group reached that level. None of the animals in ADF group reached a surgical plane of anesthesia. Respiratory rate was significantly lower in the AMFIso as compared with the ADF group (P < 0.001) but was not different between the AMF and ADF groups. Temperature was significantly lower in the AMFIso group as compared with both the ADF and AMF groups (P < 0.001). In conclusion, both combinations of solely injectable anesthetics assessed in this study can be used for short, nonpainful procedures without significant cardiorespiratory depression. However, for mildly to moderately painful surgical procedures, the addition of an inhalant anesthetic like isoflurane is necessary for female guinea pigs.


Anesthetics, Combined , Dexmedetomidine , Fentanyl , Isoflurane , Midazolam , Pregnanediones , Animals , Guinea Pigs , Female , Fentanyl/pharmacology , Fentanyl/administration & dosage , Dexmedetomidine/pharmacology , Dexmedetomidine/administration & dosage , Isoflurane/administration & dosage , Pregnanediones/administration & dosage , Pregnanediones/pharmacology , Anesthetics, Combined/administration & dosage , Midazolam/administration & dosage , Midazolam/pharmacology , Anesthesia/veterinary , Anesthesia/methods , Heart Rate/drug effects , Respiratory Rate/drug effects , Body Temperature/drug effects
8.
Int J Sports Physiol Perform ; 17(6): 917-925, 2022 Jun 01.
Article En | MEDLINE | ID: mdl-35240576

PURPOSE: The effect of acetaminophen (ACT, also known as paracetamol) on endurance performance in hot and humid conditions has been shown previously in recreationally active populations. The aim of this study was to determine the effect of ACT on physiological and perceptual variables during steady-state and time-trial cycling performance of trained triathletes in hot and humid conditions. METHODS: In a randomized, double-blind crossover design, 11 triathletes completed ∼60 minutes steady-state cycling at 63% peak power output followed by a time trial (7 kJ·kg body mass-1, ∼30 min) in hot and humid conditions (∼30°C, ∼69% relative humidity) 60 minutes after consuming either 20 mg·kg body mass-1 ACT or a color-matched placebo. Time-trial completion time, gastrointestinal temperature, skin temperature, thermal sensation, thermal comfort, rating of perceived exertion, and fluid balance were recorded throughout each session. RESULTS: There was no difference in performance in the ACT trial compared with placebo (P = .086, d = 0.57), nor were there differences in gastrointestinal and skin temperature, thermal sensation and comfort, or fluid balance between trials. CONCLUSION: In conclusion, there was no effect of ACT (20 mg·kg body mass-1) ingestion on physiology, perception, and performance of trained triathletes in hot and humid conditions, and existing precooling and percooling strategies appear to be more appropriate for endurance cycling performance in the heat.


Acetaminophen , Athletic Performance , Bicycling , Hot Temperature , Humidity , Acetaminophen/pharmacology , Athletic Performance/physiology , Bicycling/physiology , Body Temperature/drug effects , Body Temperature/physiology , Cross-Over Studies , Double-Blind Method , Humans
9.
Int J Mol Sci ; 23(4)2022 Feb 10.
Article En | MEDLINE | ID: mdl-35216090

Drugs of abuse can cause local and systemic hyperthermia, a known trigger of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). Another trigger of ER stress and UPR is ER calcium depletion, which causes ER exodosis, the secretion of ER-resident proteins. In rodent models, club drugs such as 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') can create hyperthermic conditions in the brain and cause toxicity that is affected by the environmental temperature and the presence of other drugs, such as caffeine. In human studies, MDMA stimulated an acute, dose-dependent increase in core body temperature, but an examination of caffeine and MDMA in combination remains a topic for clinical research. Here we examine the secretion of ER-resident proteins and activation of the UPR under combined exposure to MDMA and caffeine in a cellular model of hyperthermia. We show that hyperthermia triggers the secretion of normally ER-resident proteins, and that this aberrant protein secretion is potentiated by the presence of MDMA, caffeine, or a combination of the two drugs. Hyperthermia activates the UPR but the addition of MDMA or caffeine does not alter the canonical UPR gene expression despite the drug effects on ER exodosis of UPR-related proteins. One exception was increased BiP/GRP78 mRNA levels in MDMA-treated cells exposed to hyperthermia. These findings suggest that club drug use under hyperthermic conditions exacerbates disruption of ER proteostasis, contributing to cellular toxicity.


Caffeine/pharmacology , Endoplasmic Reticulum Stress/drug effects , Hyperthermia, Induced/adverse effects , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Animals , Body Temperature/drug effects , Cell Line , Cells, Cultured , Central Nervous System Stimulants/pharmacology , Female , Humans , Illicit Drugs/pharmacology , Male , Rats , Rats, Sprague-Dawley , Unfolded Protein Response/drug effects
10.
Am J Physiol Endocrinol Metab ; 322(1): E10-E23, 2022 01 01.
Article En | MEDLINE | ID: mdl-34779255

Cholecystokinin (CCK) increases core body temperature via CCK2 receptors when administered intracerebroventricularly (icv). The mechanisms of CCK-induced hyperthermia are unknown, and it is also unknown whether CCK contributes to the fever response to systemic inflammation. We studied the interaction between central CCK signaling and the cyclooxygenase (COX) pathway. Body temperature was measured in adult male Wistar rats pretreated with intraperitoneal infusion of the nonselective COX enzyme inhibitor metamizol (120 mg/kg) or a selective COX-2 inhibitor, meloxicam, or etoricoxib (10 mg/kg for both) and, 30 min later, treated with intracerebroventricular CCK (1.7 µg/kg). In separate experiments, CCK-induced neuronal activation (with and without COX inhibition) was studied in thermoregulation- and feeding-related nuclei with c-Fos immunohistochemistry. CCK increased body temperature by ∼0.4°C from 10 min postinfusion, which was attenuated by metamizol. CCK reduced the number of c-Fos-positive cells in the median preoptic area (by ∼70%) but increased it in the dorsal hypothalamic area and in the rostral raphe pallidus (by ∼50% in both); all these changes were completely blocked with metamizol. In contrast, CCK-induced satiety and neuronal activation in the ventromedial hypothalamus were not influenced by metamizol. CCK-induced hyperthermia was also completely blocked with both selective COX-2 inhibitors studied. Finally, the CCK2 receptor antagonist YM022 (10 µg/kg icv) attenuated the late phases of fever induced by bacterial lipopolysaccharide (10 µg/kg; intravenously). We conclude that centrally administered CCK causes hyperthermia through changes in the activity of "classical" thermoeffector pathways and that the activation of COX-2 is required for the development of this response.NEW & NOTEWORTHY An association between central cholecystokinin signaling and the cyclooxygenase-prostaglandin E pathway has been proposed but remained poorly understood. We show that the hyperthermic response to the central administration of cholecystokinin alters the neuronal activity within efferent thermoeffector pathways and that these effects are fully blocked by the inhibition of cyclooxygenase. We also show that the activation of cyclooxygenase-2 is required for the hyperthermic effect of cholecystokinin and that cholecystokinin is a modulator of endotoxin-induced fever.


Body Temperature/drug effects , Cholecystokinin/administration & dosage , Cyclooxygenase 2/metabolism , Hyperthermia/chemically induced , Hyperthermia/metabolism , Signal Transduction/drug effects , Animals , Anorexia/chemically induced , Benzodiazepines/administration & dosage , Body Temperature Regulation/drug effects , Cholecystokinin/adverse effects , Cyclooxygenase 2 Inhibitors/administration & dosage , Disease Models, Animal , Eating/drug effects , Fever/chemically induced , Fever/drug therapy , Hypothalamus/drug effects , Hypothalamus/metabolism , Injections, Intraventricular , Lipopolysaccharides/adverse effects , Male , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar , Receptor, Cholecystokinin B/antagonists & inhibitors , Treatment Outcome
11.
J Ethnopharmacol ; 285: 114896, 2022 Mar 01.
Article En | MEDLINE | ID: mdl-34896207

ETHNOPHARMACOLOGICAL RELEVANCE: 'Cold feeling' is a subjective feeling of unusual coldness that aggravates fatigue, stiffness, and other symptoms, thereby reducing quality of life. Tokishakuyakusan (TSS) is a Kampo medicine reported to improve cold feeling and is used to treat symptoms aggravated by cold feeling. However, the mechanism of action of TSS is unclear. Cold feeling may involve reduced blood flow and subsequent inhibition of heat transport. Therefore, elucidating the effects of TSS on blood flow is one of the most important research topics for clarifying the mechanism of action of TSS. AIM OF THE STUDY: We aimed to evaluate the effect of TSS on recovery from lowered body temperature by the immersion of rats in cold water and to clarify the involvement of blood flow in the action of TSS. MATERIALS AND METHODS: After female Wistar rats underwent 9 days of low room temperature stress loading (i.e. room temperature of 18 °C), they were subjected to immersion in cold water (15 °C) for 15 min. Body surface temperature, rectal temperature, and plantar temperature were measured before and after immersion in cold water. Blood flow was measured before and after immersion in cold water without low room temperature stress loading. TSS (0.5 g/kg or 1 g/kg) or the vehicle (i.e. distilled water) was orally administered once daily for 10 days for the measurement of body temperature or once 30 min before immersion in cold water for the measurement of blood flow. In addition, we examined the effect of TSS on calcitonin gene-related peptide (CGRP) release from dorsal root ganglion (DRG) cells, the effect of TSS ingredients on transient receptor potential (TRP) channels, and the effect of TSS ingredients on the membrane potential of vascular smooth muscle cells and evaluated the mechanism of the effects of TSS on blood flow. RESULTS: Body temperature and blood flow decreased after immersion in cold water and then recovered over time. A comparison of body temperature at each timepoint or area under the curve showed that TSS (1 g/kg) accelerated the recovery of body surface temperature, rectal temperature, and blood flow. TSS significantly increased CGRP release from DRG cells, which disappeared after pretreatment with HC-030031 (a transient receptor potential ankyrin 1 [TRPA1] antagonist). The effects of seven TSS ingredients on TRP channels were examined. The agonistic effect on TRPA1 was observed for atractylodin, atractylodin carboxylic acid and levistolide A. Among the TSS ingredients, atractylodin carboxylic acid had significant hyperpolarising effects. CONCLUSIONS: The mechanism by which TSS accelerates the recovery of lowered body temperature in rats after immersion in cold water may involve the acceleration of the recovery of lowered blood flow. Increased CGRP release from DRG cells by TSS, TRPA1 activation by TSS ingredients, and membrane potential changes in vascular smooth muscle cells caused by TSS ingredients are part of the mechanism of action of TSS. These findings may partly contribute to the interpretation of the beneficial effects of TSS on cold feeling.


Blood Circulation/drug effects , Body Temperature/drug effects , Cold Temperature , Drugs, Chinese Herbal/pharmacology , Animals , Calcitonin Gene-Related Peptide/genetics , Calcitonin Gene-Related Peptide/metabolism , Cells, Cultured , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/chemistry , Female , Ganglia, Spinal/cytology , Gene Expression Regulation/drug effects , Humans , Medicine, Kampo , Myocytes, Smooth Muscle/drug effects , Neurons/drug effects , Neurons/physiology , Rats , Rats, Wistar , Umbilical Arteries/cytology
12.
J Pharm Pharmacol ; 74(2): 236-249, 2022 Feb 01.
Article En | MEDLINE | ID: mdl-34888686

OBJECTIVES: Natural borneol and synthetic borneol were commonly used to treat ischaemic stroke in clinical practice. This study evaluated their different neuroprotective effects on the remodelling and repair of the neurovascular unit (NVU) after cerebral ischaemia. METHODS: We evaluated the different effects of borneol through neurological test and staining methods in cerebral ischaemia injury. Western blot, immunohistochemistry and transmission electron microscopy were used to evaluate the reparative effects of borneol on NVU. KEY FINDINGS: The prevention and treatment of borneol could prolong recovery time, reduce body temperature and cerebral infarction rate and improve pathological conditions. Further investigations revealed that borneol could inhibit the expression of DII4, Hes1, Hes5 and p65 and increase the Nissl body number and microvessel density. They also inhibited the activation of the microglia. It was also observed through an ultramicroelectron microscope that the structural stability of the NVU has also been repaired. Moreover, natural borneol shows better results in most indicators when compared with synthetic borneol. CONCLUSIONS: Natural borneol showed a stronger effectiveness and had better regulation and neuroprotection on the NVU when compared with synthetic borneol, indicating that it may be better to use natural borneol in the prescription of Chinese patent medicine in clinical practice.


Brain Ischemia/drug therapy , Camphanes/pharmacology , Neuroprotective Agents/pharmacology , Animals , Body Temperature/drug effects , Brain Ischemia/pathology , Camphanes/chemistry , Disease Models, Animal , Male , Microglia/drug effects , Microscopy, Electron, Transmission , Neuroprotective Agents/chemistry , Rats , Rats, Sprague-Dawley
13.
Nutrients ; 13(12)2021 Nov 29.
Article En | MEDLINE | ID: mdl-34959861

The current study compared mouth swills containing carbohydrate (CHO), menthol (MEN) or a combination (BOTH) on 40 km cycling time trial (TT) performance in the heat (32 °C, 40% humidity, 1000 W radiant load) and investigates associated physiological (rectal temperature (Trec), heart rate (HR)) and subjective measures (thermal comfort (TC), thermal sensation (TS), thirst, oral cooling (OC) and RPE (legs and lungs)). Eight recreationally trained male cyclists (32 ± 9 y; height: 180.9 ± 7.0 cm; weight: 76.3 ± 10.4 kg) completed familiarisation and three experimental trials, swilling either MEN, CHO or BOTH at 10 km intervals (5, 15, 25, 35 km). The 40 km TT performance did not differ significantly between conditions (F2,14 = 0.343; p = 0.715; η2 = 0.047), yet post-hoc testing indicated small differences between MEN and CHO (d = 0.225) and MEN and BOTH (d = 0.275). Subjective measures (TC, TS, RPE) were significantly affected by distance but showed no significant differences between solutions. Within-subject analysis found significant interactions between solution and location upon OC intensity (F28,196 = 2.577; p < 0.001; η2 = 0.269). While solutions containing MEN resulted in a greater sensation of OC, solutions containing CHO experienced small improvements in TT performance. Stimulation of central CHO pathways during self-paced cycling TT in the heat may be of more importance to performance than perceptual cooling interventions. However, no detrimental effects are seen when interventions are combined.


Athletic Performance/physiology , Bicycling/physiology , Dietary Carbohydrates/administration & dosage , Menthol/administration & dosage , Mouthwashes/administration & dosage , Adult , Body Temperature/drug effects , Body Temperature Regulation/drug effects , Double-Blind Method , Heart Rate/drug effects , Hot Temperature/adverse effects , Humans , Humidity , Male , Mouth , Mouthwashes/chemistry , Thermosensing/drug effects , Thirst/drug effects
14.
Pak J Pharm Sci ; 34(5(Supplementary)): 1879-1884, 2021 Sep.
Article En | MEDLINE | ID: mdl-34836854

The present study was designed to evaluate the antipyretic and antinociceptive activities of R. communis leaves and W. somnifera roots hydroalcoholic extracts in Wistar rats. To assess the antipyretic activity, Brewer's yeast suspension was used to induce hyperthermia. Antinociceptive activity was observed using acetic acid-induced abdominal writhing, formalin-induced paw licking reflex and heat-induced pain models. R. communis and W. somnifera extracts were used at 150, 250 and 500mg/kg. Results showed that administration of both plants significantly (p<0.001) lowered rectal temperature (°C) in a dose-dependent manner from 1h to 4h of study. R. communis and W. somnifera extracts showed a dose-dependent reduction in abdominal writhing induced by acetic acid and decreased the paw licking reflex in formalin-induced nociceptive response. In the heat test, R. communis and W. somnifera extracts exhibited significant (p<0.001) analgesic effects evidenced as an increase in latency time. However, R. communis exhibited prominent antipyretic and antinociceptive activities at 250 and 500mg/kg as compared to W. somnifera. Conclusively, R. communis and W. somnifera could be a potential source of antipyretic and analgesic agents which require further studies.


Analgesics/pharmacology , Antipyretics/pharmacology , Plant Extracts/pharmacology , Ricinus/chemistry , Withania/chemistry , Animals , Body Temperature/drug effects , Dose-Response Relationship, Drug , Female , Hyperthermia/chemically induced , Hyperthermia/drug therapy , Pain Measurement/drug effects , Plant Roots/chemistry , Rats , Rats, Wistar , Saccharomyces cerevisiae
15.
Sci Rep ; 11(1): 21789, 2021 11 08.
Article En | MEDLINE | ID: mdl-34750450

Percutaneously absorbed carbon dioxide enhances blood flow. The mechanism by which it does so is unclear, but we hypothesized that it involves bicarbonate ions. BALB/c mice were bathed in neutral bicarbonate ionized water (NBIW) and showed increased blood bicarbonate levels and blood flow via phosphorylation of peripheral vascular endothelial nitric oxide synthase (eNOS) and production of nitric oxide (NO). Phosphorylation of eNOS and NO production were also increased in human umbilical vein endothelial cells cultured in medium containing NBIW, and NBIW showed reactive oxygen species scavenging activity. In a double-blind, randomized study in men and women aged 30 to 59 years with subjective cold intolerance, bathing in NBIW elevated body temperature faster than bathing in a control solution and improved chills and sleep quality. Taken together, our results show that percutaneously absorbed carbon dioxide changes to bicarbonate ions, which act directly on endothelial cells to increase NO production by phosphorylation of eNOS and thus improve blood flow.


Bicarbonates/pharmacology , Blood Circulation/drug effects , Immersion , Adult , Animals , Bicarbonates/pharmacokinetics , Body Temperature/drug effects , Double-Blind Method , Female , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Hydrogen-Ion Concentration , Male , Mice , Mice, Inbred BALB C , Middle Aged , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Reactive Oxygen Species/metabolism
16.
Bull Exp Biol Med ; 171(5): 572-575, 2021 Sep.
Article En | MEDLINE | ID: mdl-34617175

The role of stable hydrogen isotopes in the thermoregulation and its regulation is poorly studied. We analyzed fluctuations in body temperature and changes in thermoregulation parameters in mice under conditions of reduced deuterium intake. The study was performed on male C57BL/6 mice that consumed water with a low (10 ppm) and normal (146 ppm) deuterium content. In 7 days, fluctuations of body temperature, locomotor activity, and oxygen uptake were assessed. Deuterium depletion in the body reduced the mean value of minute fluctuations of body temperature and the mean spectral density of minute fluctuations in body temperature in the 2-20-min periods. This attested to a stabilizing effect of deuterium depletion on the rhythms of body temperature fluctuations, without significant shifts in the thermogenesis parameters. Thus, drinking water with reduced deuterium content makes them less sensitive to external influences.


Body Temperature Regulation , Deuterium/pharmacokinetics , Drinking Behavior/physiology , Animals , Body Temperature/drug effects , Body Temperature/physiology , Body Temperature Regulation/drug effects , Body Temperature Regulation/physiology , Deuterium/analysis , Deuterium/pharmacology , Drinking Behavior/drug effects , Locomotion/drug effects , Locomotion/physiology , Male , Mice , Mice, Inbred C57BL , Thermogenesis/drug effects , Thermogenesis/physiology , Water/chemistry , Water/metabolism , Water/pharmacology
17.
Pharmacol Biochem Behav ; 211: 173286, 2021 12.
Article En | MEDLINE | ID: mdl-34634300

RATIONALE: Exposure to a drug can subsequently impact its own reactivity as well as that of other drugs. Given that users of synthetic cathinones, i.e., "bath salts", typically have extensive and varied drug histories, an understanding of the effects of drug history on the behavioral and physiological consequences of synthetic cathiones may be important to their abuse liability. OBJECTIVES: The goal of the current work was to assess the effects of an ethanol pre-exposure on the rewarding and aversive effects of α-PVP. METHODS: Adult male Sprague Dawley rats were exposed to ethanol prior to combined conditioned taste avoidance/conditioned place preference training in which rats were injected with 1.5, 3 or 5 mg/kg of racemic α-PVP or vehicle. Following a 7-day washout period, rats were then tested for thermoregulatory effects of α-PVP using subcutaneous probes to measure body temperature changes over the course of 8 h. This was followed 10 days later by assessments for α-PVP-induced locomotor activity and stereotypies over a 1-h session. RESULTS: α-PVP induced significant dose- and trial-dependent taste avoidance that was significantly attenuated by ethanol history and dose- and time-dependent increases in locomotor activity that were significantly increased by ethanol. α-PVP also induced place preferences and dose- and time-dependent increases in body temperature, but these measures were unaffected by ethanol history. CONCLUSIONS: α-PVP's aversive effects (as measured by taste avoidance) were attenuated, while its rewarding effects (as indexed by place preference conditioning) were unaffected, by ethanol pre-exposure. Such a pattern may indicate increased α-PVP abuse liability, as changes in the balance of aversion and reward may impact overall drug effects and likelihood of drug intake. Future self-administration studies will be necessary to explore this possibility.


Avoidance Learning/drug effects , Conditioning, Classical/drug effects , Ethanol/pharmacology , Pentanones/pharmacology , Pyrrolidines/pharmacology , Reward , Substance-Related Disorders/metabolism , Alkaloids/pharmacology , Animals , Body Temperature/drug effects , Central Nervous System Stimulants/pharmacology , Locomotion/drug effects , Male , Rats , Rats, Sprague-Dawley , Self Administration , Taste/drug effects
18.
Toxicology ; 464: 153014, 2021 12.
Article En | MEDLINE | ID: mdl-34718029

Geniposide has been widely found to ameliorate many metabolic diseases. The recruitment and activation of brown/beige adipocytes are effective and promising methods for counteracting obesity and related diseases. However, the effect of geniposide on thermogenesis of adipocytes and its underlying mechanism have not yet been investigated. Here, we demonstrate that geniposide (25 mg/kg) reduces body temperature and cold tolerance of mice via suppressing thermogenic genes in interscapular brown adipose tissue (iBAT) and inguinal white adipose tissue (iWAT). Consistently, geniposide (20 mg/mL) suppresses thermogenic capacity of adipocytes (brown adipocytes and 3T3L1 preadipocyte cells) in vitro. Mechanistically, geniposide reduces the level of protein kinase A (PKA) catalytic subunit and further suppresses transcription activity and protein stability of uncoupling protein 1 (UCP1), leading to reduction of thermogenic capacity in adipocytes. Moreover, pharmacological PKA activation reverses geniposide-induced UCP1 inhibition, which indicated that geniposide suppresses thermogenesis of adipocytes via regulating PKA signaling. Together, our findings suggest that geniposide is an inhibitor of fat thermogenesis, establishing a novel function characteristic of geniposide.


Adipocytes/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Iridoids/pharmacology , Thermogenesis/drug effects , 3T3-L1 Cells , Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Body Temperature/drug effects , Catalytic Domain , Cold Temperature , Male , Mice , Mice, Inbred C57BL , Signal Transduction/drug effects , Uncoupling Protein 1/metabolism
19.
Sci Rep ; 11(1): 17954, 2021 09 13.
Article En | MEDLINE | ID: mdl-34518616

Ghrelin, a circulating orexigenic hormone secreted from the stomach, stimulates appetite and food intake by activating the hypothalamic arcuate nucleus. Administration of exogenous ghrelin exerts anabolic effects, causing weight gain, increased adiposity, and decreased metabolism. Body temperature (BT), which is determined by the balance of heat production and heat loss, must be strictly regulated to maintain proper cellular function and metabolism. However, the role of ghrelin in thermoregulation remains unclear. In this study, we found that ghrelin was essential for decreasing BT when mice are placed under calorie restriction. Elevated ghrelin concentrations induced by fasting correlated with significant decreases in BT, a hibernation-like state called torpor. Ghrelin-deficient (Ghrl-/-) animals could not enter torpor. The BT of Ghrl-/- mice also remained high under restricted feeding, but the animals gradually entered precipitous hypothermia, indicating thermoregulatory impairment. These effects of ghrelin on thermoregulation were the result of suppression of sympathetic nervous system activity input to brown adipose tissue; in the absence of ghrelin, it was not possible to suppress uncoupling protein 1 (ucp1) expression and decrease BT in low-energy states. Together, these findings demonstrate that ghrelin is an essential circulating hormone involved in lowering BT.


Body Temperature Regulation/physiology , Body Temperature/physiology , Energy Metabolism/physiology , Fasting/physiology , Ghrelin/metabolism , Torpor/physiology , Adiposity/physiology , Animals , Appetite/drug effects , Appetite/physiology , Blood Glucose , Body Temperature/drug effects , Body Temperature Regulation/drug effects , Circadian Rhythm/drug effects , Circadian Rhythm/physiology , Energy Metabolism/drug effects , Ghrelin/genetics , Mice , Mice, Knockout , Oligopeptides/pharmacology , Torpor/drug effects , Uncoupling Protein 1/metabolism , Weight Gain/drug effects , Weight Gain/physiology
20.
Neuropharmacology ; 200: 108795, 2021 12 01.
Article En | MEDLINE | ID: mdl-34555367

Previous studies in rodents have repeatedly demonstrated that the centrally-projecting Edinger-Westphal nucleus (EWcp) is highly sensitive to alcohol and is also involved in regulating alcohol intake and body temperature. Historically, the EWcp has been known as the main site of Urocortin 1 (Ucn1) expression, a corticotropin-releasing factor-related peptide, in the brain. However, the EWcp also contains other populations of neurons, including neurons that express the vesicular glutamate transporter 2 (Vglut2). Here we transduced the EWcp with adeno-associated viruses (AAVs) encoding Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to test the role of the EWcp in alcohol drinking and in the regulation of body temperature. Activation of the EWcp with excitatory DREADDs inhibited alcohol intake in a 2-bottle choice procedure in male C57BL/6J mice, whereas inhibition of the EWcp with DREADDs had no effect. Surprisingly, analysis of DREADD expression indicated Ucn1-containing neurons of the EWcp did not express DREADDs. In contrast, AAVs transduced non-Ucn1-containing EWcp neurons. Subsequent experiments showed that the inhibitory effect of EWcp activation on alcohol intake was also present in male Ucn1 KO mice, suggesting that a Ucn1-devoid population of EWcp regulates alcohol intake. A final set of chemogenetic experiments showed that activation of Vglut2-expressing EWcp neurons inhibited alcohol intake and induced hypothermia in male and female mice. These studies expand on previous literature by indicating that a glutamatergic, Ucn1-devoid subpopulation of the EWcp regulates alcohol consumption and body temperature.


Body Temperature/drug effects , Designer Drugs/pharmacology , Edinger-Westphal Nucleus/drug effects , Ethanol/pharmacology , Vesicular Glutamate Transport Protein 2/drug effects , Alcohol Drinking/pathology , Animals , Body Temperature Regulation/drug effects , Dependovirus , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Urocortins/drug effects
...