Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.712
1.
J Morphol ; 285(5): e21704, 2024 May.
Article En | MEDLINE | ID: mdl-38702980

Fancy breeds of Japanese indigenous chicken display extensive morphological diversity, particularly in tail feathers. Although marked differences in tail and bone traits have been reported between Tosa-jidori (wild type) and Minohikichabo (rich type) breeds, little is known about the pattern of genetic inheritance in cross experiments. Therefore, this study aimed to investigate the strain and sex effects, and inheritance patterns, in the morphometric variation of pygostyle bones among Tosa-jidori, Minohikichabo, and their F1 hybrids. Five morphological traits, angle of the apex of the pygostyle, pygostyle length, margo cranialis length, tail feather number, and body weight, were evaluated at the adult stage. A significant strain difference was detected in all traits, whereas significant sex differences were observed in only three traits, but not in the angle of the apex of the pygostyle and tail feather number. In F1 hybrids, the angle of the apex of the pygostyle was significantly different to that of Tosa-jidori but not that of Minohikichabo, whereas the pygostyle length and tail number of F1 hybrids were significantly different from those of Minohikichabo but not those of Tosa-jidori. A significant heterosis effect was found in the margo cranialis length and body weight. All five traits showed nonadditive inheritance patterns but varied in each trait between partial dominance (angle of the apex of pygostyle), full dominance (pygostyle length and tail feather number), and over-dominance (margo cranialis length and body weight). Interestingly, different patterns of genetic inheritance in the F1 hybrid were observed at different locations, even within the same pygostyle bone. Using the Japanese indigenous chicken model, these results provide a substantial step toward understanding the genetic architecture of morphology in chickens.


Chickens , Feathers , Tail , Animals , Chickens/anatomy & histology , Chickens/genetics , Tail/anatomy & histology , Male , Female , Feathers/anatomy & histology , Bone and Bones/anatomy & histology , Body Weight , Breeding , Hybrid Vigor
2.
J Biol Chem ; 300(4): 107164, 2024 Apr.
Article En | MEDLINE | ID: mdl-38484798

O-glycosylation is a conserved posttranslational modification that impacts many aspects of organismal viability and function. Recent studies examining the glycosyltransferase Galnt11 demonstrated that it glycosylates the endocytic receptor megalin in the kidneys, enabling proper binding and reabsorption of ligands, including vitamin D-binding protein (DBP). Galnt11-deficient mice were unable to properly reabsorb DBP from the urine. Vitamin D plays an essential role in mineral homeostasis and its deficiency is associated with bone diseases such as rickets, osteomalacia, and osteoporosis. We therefore set out to examine the effects of the loss of Galnt11 on vitamin D homeostasis and bone composition. We found significantly decreased levels of serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, consistent with decreased reabsorption of DBP. This was accompanied by a significant reduction in blood calcium levels and a physiologic increase in parathyroid hormone (PTH) in Galnt11-deficient mice. Bones in Galnt11-deficient mice were smaller and displayed a decrease in cortical bone accompanied by an increase in trabecular bone and an increase in a marker of bone formation, consistent with PTH-mediated effects on bone. These results support a unified model for the role of Galnt11 in bone and mineral homeostasis, wherein loss of Galnt11 leads to decreased reabsorption of DBP by megalin, resulting in a cascade of disrupted mineral and bone homeostasis including decreased circulating vitamin D and calcium levels, a physiological increase in PTH, an overall loss of cortical bone, and an increase in trabecular bone. Our study elucidates how defects in O-glycosylation can influence vitamin D and mineral homeostasis and the integrity of the skeletal system.


Bone and Bones , Homeostasis , Polypeptide N-acetylgalactosaminyltransferase , Vitamin D , Animals , Male , Mice , Bone and Bones/anatomy & histology , Bone and Bones/chemistry , Bone and Bones/metabolism , Calcium/metabolism , Glycosylation , Homeostasis/genetics , Parathyroid Hormone/metabolism , Vitamin D/metabolism , Vitamin D/analogs & derivatives , Vitamin D-Binding Protein/metabolism
3.
PLoS One ; 19(3): e0299314, 2024.
Article En | MEDLINE | ID: mdl-38551910

Impressions of vertebrate bodies or their parts, such as trace fossils and natural molds of bones, are a valuable source of information about ancient faunas which may supplement the standard fossil record based on skeletal elements. Whereas trace fossils of animal activity are relatively common and actively studied within the field of ichnology, and natural impressions of internal or external surfaces are a frequent preservation mode in fossil invertebrates, natural molds of bones are comparatively rare and less extensively documented and discussed. Among them, internal molds (steinkerns) of turtle shells are a relatively well-known form of preservation, but the mechanisms and taphonomic prerequisites leading to their formation are poorly studied. External shell molds are even less represented in the literature. Herein, we describe a historic specimen of a natural external turtle plastron mold from the Triassic (Norian) Löwenstein Formation of Germany-a formation which also yielded a number of turtle steinkerns. The specimen is significant not only because it represents an unusual form of preservation, but also due to its remarkably large size and the presence of a potential shell pathology. Although it was initially interpreted as Proterochersis sp., the recent progress in the knowledge of proterochersid turtles leading to an increase in the number of known taxa within that group allows us to verify that assessment. We confirm that the specimen is morphologically consistent with the genus and tentatively identify it as Proterochersis robusta, the only representative of that genus from the Löwenstein Formation. We note, however, that its size exceeds the size observed thus far in Proterochersis robusta and fits within the range of Proterochersis porebensis from the Grabowa Formation of Poland. The marks interpreted as shell pathology are morphologically consistent with Karethraichnus lakkos-an ichnotaxon interpreted as a trace of ectoparasites, such as leeches. This may support the previously proposed interpretation of Proterochersis spp. as a semiaquatic turtle. Moreover, if the identification is correct, the specimen may represent a very rare case of a negative preservation of a named ichnotaxon. Finally, we discuss the taphonomy of the Löwenstein Formation turtles in comparison with other Triassic turtle-yielding formations which show no potential for the preservation of internal or external shell molds and propose a taphonomic model for the formation of such fossils.


Biological Evolution , Turtles , Animals , Bone and Bones/anatomy & histology , Fossils , Preservation, Biological , Turtles/anatomy & histology
4.
Sci Rep ; 13(1): 12680, 2023 08 04.
Article En | MEDLINE | ID: mdl-37542094

The Early Jurassic and Cretaceous deposits of India are known for their diverse sauropod fauna, while little is known from the Middle and Late Jurassic. Here we report the first ever remains of a dicraeosaurid sauropod from India, Tharosaurus indicus gen. et sp. nov., from the Middle Jurassic (early-middle Bathonian) strata of Jaisalmer Basin, western India. Known from elements of the axial skeleton, the new taxon is phylogenetically among the earlier-diverging dicraeosaurids, and its stratigraphic age makes it the earliest known diplodocoid globally. Palaeobiogeographic considerations of Tharosaurus, seen in conjunction with the other Indian Jurassic sauropods, suggest that the new Indian taxon is a relic of a lineage that originated in India and underwent rapid dispersal across the rest of Pangaea. Here we emphasize the importance of Gondwanan India in tracing the origin and early evolutionary history of neosauropod dinosaurs.


Bone and Bones , Dinosaurs , Fossils , Bone and Bones/anatomy & histology , Dinosaurs/anatomy & histology , India , Phylogeny , Animals
5.
PeerJ ; 11: e15512, 2023.
Article En | MEDLINE | ID: mdl-37483966

Metriorhynchids are marine crocodylomorphs found across Jurassic and Lower Cretaceous deposits of Europe and Central and South America. Despite being one of the oldest fossil families named in paleontology, the phylogenetic relationships within Metriorhynchidae have been subject to many revisions over the past 15 years. Herein, we describe a new metriorhynchid from the Kimmeridgian of Porrentruy, Switzerland. The material consists of a relatively complete, disarticulated skeleton preserving pieces of the skull, including the frontal, prefrontals, right postorbital, nasals, maxillae, right premaxillae and nearly the entire mandible, and many remains of the axial and appendicular skeleton such as cervical, dorsal, and caudal vertebrae, ribs, the left ischium, the right femur, and the right fibula. This new specimen is referred to the new species Torvoneustes jurensis sp. nov. as part of the large-bodied macrophagous tribe Geosaurini. Torvoneustes jurensis presents a unique combination of cranial and dental characters including a smooth cranium, a unique frontal shape, acute ziphodont teeth, an enamel ornamentation made of numerous apicobasal ridges shifting to small ridges forming an anastomosed pattern toward the apex of the crown and an enamel ornamentation touching the carina. The description of this new species allows to take a new look at the currently proposed evolutionary trends within the genus Torvoneustes and provides new information on the evolution of this clade.


Fossils , Phylogeny , Reptiles , Fossils/anatomy & histology , Switzerland , Reptiles/anatomy & histology , Reptiles/classification , Species Specificity , Bone and Bones/anatomy & histology , Animals
6.
BMC Musculoskelet Disord ; 24(1): 226, 2023 Mar 25.
Article En | MEDLINE | ID: mdl-36964514

BACKGROUND: BASHTI is an implant-less anterior cruciate ligament (ACL) reconstruction technique, which resolves the problems caused by implants such as interference screws. This study aims to investigate the effect of the drill bit and tendon's diameter on the Core Bone Engaged Length (CBEL) and the fixation strength. CBEL is the length of core bone which has a full engagement with both tunnel and graft at the same time. METHODS: 60 in-vitro tests were conducted for 6, 7, 8, and 9 mm tendon sizes with a 10 mm bone tunnel. In this study bovine tendons and dummy bone blocks were used to model the fixation. Drill bits were used to extract the core bone for securing the auto-graft. A three-stage tensile test including a force-controlled cyclical preloading of 10-50 N with a frequency of 0.1 Hz for 10 cycles, followed by the main force-controlled cyclical loading of 50-200 N with a frequency of 0.5 Hz for 150 cycles, and immediately a displacement-controlled single cycle pull-out load with a rate of 20 mm/min were carried out to discover the fixation strength of each sample. RESULTS: The 6 mm group had the greatest CBEL. However, all cases in this group failed in loadings below 200 N, which is the minimum required strength after ACL reconstruction. The fixation strength of cases with more than 200 N fixation strength for 7, 8, and 9 mm tendon diameters were 275 ± 42, 330 ± 110, and 348 ± 93 N, respectively, showing insignificant difference between groups (P-value = 0.45). Nevertheless, CBELs for these groups were 16.6 ± 3.4, 9.6 ± 2.4, and 11.7 ± 3.8 mm, respectively, implying a significant increase in CBEL in the 7 mm group than that for 8 and 9 mm groups (P-value = 0.002 and 0.049, respectively). CONCLUSION: Results showed that CBEL could assess the quality of BASHTI technique. However, CBEL was an inverse function of tendon compression, so it was not an independent parameter to determine BASHTI strength. Also, the CBEL of 7 mm group which fulfilled the 200 N threshold was higher than that of 8 and 9 mm groups, so its healing process speed may be higher, which is recommended for a future study in this field.


Anterior Cruciate Ligament Reconstruction , Anterior Cruciate Ligament , Animals , Cattle , Humans , Anterior Cruciate Ligament/surgery , Biomechanical Phenomena , Bone and Bones/anatomy & histology , Bone and Bones/surgery , Tendons/transplantation
7.
J Morphol ; 284(4): e21567, 2023 04.
Article En | MEDLINE | ID: mdl-36748832

Radial porosity profiles (RPP) are a new quantitative osteohistological parameter designed to capture the dynamic changes in the primary porosity of limb bones through ontogeny, providing insights into skeletal growth and functional development of extant and extinct vertebrates. Previous work hypothesized that RPP channelization-the intraskeletal alignment of RPPs across different bones resulting from similar cortical compaction patterns-indicates increasing locomotor performance of the developing limbs. By investigating RPPs in ontogenetic series of pheasants, pigeons and ducks representing distinct locomotor developmental strategies, we test this hypothesis here and show that RPPs are indeed powerful osteohistological correlates of locomotor ontogeny. Qualitative and quantitative analyses reveal strong association between RPP channelization and fledging, the most drastic locomotor transition in the life history of volant birds. The channelization signal is less clear in precocial leg function; however, when additional intraskeletal and intercohort RPP characteristics are considered, patterns related to leg precocity can also be identified. Thus, we demonstrate that RPPs can be used in future by palaeobiologists to generate breakthroughs in the study of the ontogeny and evolution of flight in fossil birds and pterosaurs. With further baseline data collection from modern terrestrial vertebrates, RPPs could also test hypotheses regarding ontogenetic postural shifts in dinosaurs and other terrestrial archosaurs.


Birds , Bone and Bones , Animals , Biological Evolution , Bone and Bones/anatomy & histology , Columbidae/anatomy & histology , Columbidae/growth & development , Dinosaurs , Ducks/anatomy & histology , Ducks/growth & development , Fossils , Porosity , Birds/anatomy & histology , Birds/growth & development
8.
Anat Rec (Hoboken) ; 306(7): 1697-1711, 2023 07.
Article En | MEDLINE | ID: mdl-36271743

As a key tool for understanding how animals lived in the past, paleopathology informs us about the lives and deaths of fossil animals. We identify paleopathologies within an assemblage of bones of the pachyrostran centrosaurine Pachyrhinosaurus perotorum, an Arctic ceratopsian. More than 1,000 bones of this dinosaur were collected from the Prince Creek Formation of North Slope, Alaska from fossil sites along the Colville River. Our survey shows the occurrence of paleopathology to be very low and comparable to other populations of horned dinosaurs from the lower latitudes, suggesting that the ancient Arctic environment did not impose intense hardships on these dinosaurs greater than in other environments, as expressed by paleopathological modification of the skeleton. This result may be due to the more equable mean annual temperatures in the Arctic region during the Cretaceous. Also of interest, the frequency of occurrence of paleopathology in the Arctic Pachyrhinosaurus population is very low compared to populations of fossil and historic quadrupedal artiodactyls that are recognized as long distance wanderers.


Dinosaurs , Animals , Arctic Regions , Dinosaurs/anatomy & histology , Fossils , Bone and Bones/anatomy & histology , Alaska
9.
Anat Rec (Hoboken) ; 306(7): 1712-1756, 2023 07.
Article En | MEDLINE | ID: mdl-36342817

Dromaeosaurids (Theropoda: Dromaeosauridae), a group of dynamic, swift predators, have a sparse fossil record, particularly at the end of the Cretaceous Period. The recently described Dineobellator notohesperus, consisting of a partial skeleton from the Upper Cretaceous (Maastrichtian) of New Mexico, is the only diagnostic dromaeosaurid to be recovered from the latest Cretaceous of the southwestern United States. Reinterpreted and newly described material include several caudal vertebrae, portions of the right radius and pubis, and an additional ungual, tentatively inferred to be from manual digit III. Unique features, particularly those of the humerus, unguals, and caudal vertebrae, distinguish D. notohesperus from other known dromaeosaurids. This material indicates different physical attributes among dromaeosaurids, such as use of the forearms, strength in the hands and feet, and mobility of the tail. Several bones in the holotype exhibit abnormal growth and are inferred to be pathologic features resulting from an injury or disease. Similar lengths of the humerus imply Dineobellator and Deinonychus were of similar size, at least regarding length and/or height, although the more gracile nature of the humerus implies Dineobellator was a more lightly built predator. A new phylogenetic analysis recovers D. notohesperus as a dromaeosaurid outside other previously known and named clades. Theropod composition of the Naashoibito Member theropod fauna is like those found in the more northern Late Cretaceous North American ecosystems. Differences in tooth morphologies among recovered theropod teeth from the Naashoibito Member also implies D. notohesperus was not the only dromaeosaurid present in its environment.


Dinosaurs , Osteology , Dinosaurs/anatomy & histology , Animals , New Mexico , Bone and Bones/anatomy & histology , Paleontology
10.
J Morphol ; 284(1): e21542, 2023 01.
Article En | MEDLINE | ID: mdl-36533737

Osteoderms of eight extant and extinct species of crocodylomorphs are studied histologically and morphologically. Most osteoderms display the typical "crocodilian" structure with a woven-fibered matrix surrounded by an upper and a lower parallel fibered matrix. The dorsal ornamentation of those specimens consists of a pit-and-ridge structure, with corresponding remodeling mechanisms. However, an osteoderm of Iberosuchus, studied here for the first time, differs in being nearly devoid of ornamentation; moreover, it shows strong bundles of straight Sharpey's fibers perpendicular to the surface in its lateral and dorsal walls, along with a rough plywood-like structure in its basal plate. This suggests that this osteoderm was more deeply anchored within the dermis than the other osteoderms studied hitherto. This peculiar structure might have been linked to a terrestrial ecology and a specific thermoregulation strategy. Some other notosuchians in our sample do not exhibit ornamentation on their osteoderms, as opposed to neosuchians. Considering current interpretations of osteoderm function(s) in crocodilians, our observations are discussed in reference to possible ecophysiological peculiarities of Notosuchia in general, and Iberosuchus in particular.


Alligators and Crocodiles , Bone and Bones , Animals , Alligators and Crocodiles/anatomy & histology , Bone and Bones/anatomy & histology , Fossils
11.
Calcif Tissue Int ; 112(1): 13-23, 2023 01.
Article En | MEDLINE | ID: mdl-36261652

Achondroplasia (ACH) is a skeletal disorder caused by fibroblast growth factor receptor 3 (FGFR3) variants. Volumetric bone mineral density (vBMD), bone microarchitecture, and strength have not been evaluated in these patients previously. This study aims to evaluate vBMD, bone microarchitecture, and strength in ACH patients. Seventeen patients underwent clinical and biochemical evaluations, and genetic testing. High-resolution peripheral quantitative computed tomography was performed in 10 ACH patients and 21 age- and sex-matched healthy subjects. All individuals had the hotspot mutation of c.1138G > A in FGFR3. Linear growth retardation, disproportionate short stature, and genu varum are the most common manifestations. The mean height was 108.82 ± 24.08 cm (Z score: - 5.72 ± 0.96). Total vBMD in the ACH and the control groups was 427.08 ± 49.29 mg HA/cm3 versus 300.35 ± 69.92 mg HA/cm3 (p < 0.001) at the radius and 336.90 ± 79.33 mg HA/cm3 versus 292.20 ± 62.35 mg HA/cm3 (p = 0.098) at the tibia; both at the radius and tibia, vBMD of trabecular bones was significantly lower in the ACH group than in the control group, but vBMD of cortical bones was slightly higher in the ACH group. Trabecular separation and cortical thickness in the ACH group were significantly higher than those in the control group, but trabecular number was significantly decreased in the ACH group. Stiffness and failure load were only better at the radius in the ACH group. ACH patients have higher total and cortical vBMD, lower trabecular vBMD, worse trabecular bone microarchitecture, thicker cortical bone thickness, and better estimated bone strength.


Achondroplasia , Bone Density , Receptor, Fibroblast Growth Factor, Type 3 , Humans , Absorptiometry, Photon , Achondroplasia/genetics , Achondroplasia/metabolism , Bone Density/genetics , Cross-Sectional Studies , Mutation , Radius , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Tibia , Bone and Bones/anatomy & histology , Bone and Bones/physiology
12.
Anat Rec (Hoboken) ; 306(6): 1356-1364, 2023 06.
Article En | MEDLINE | ID: mdl-35986914

The study of pathological bone modifications of extinct organisms of lineages, which are still living today, in combination with extant representatives, allows to infer data about population dynamics, lifestyle, and diseases they were subject to. Pathological studies in turtles are extensive; however, these contributions are mainly focused on extant representative records of survival rates or on non-skeletonized material, and do not generally include morphological descriptions, illustrations, or data concerning their etiology and pathogenesis. As a consequence, paleopathology in turtles remains relatively poorly understood, especially considering extinct forms. In this context, we herein analyze marks of possible pathological origin recognized in two disarticulated plastral plates of the Spanish freshwater basal pan-pleurodiran turtle Dortoka vasconica (Dortokidae), from its type locality, the Upper Cretaceous (late Campanian-early Maastrichtian) fossil site of Laño 1 (Treviño County, Burgos, Spain). As a result, information regarding the possible etiology, pathogenesis, and stages of healing of the marks studied here are provided. A probable infectious origin is recognized as the etiology in both plates, these marks being considered as pathologies. This study contributes to our understanding of pathologies in extinct turtle taxa, specifically a stem-pleurodiran turtle.


Fossils , Turtles , Animals , Bone and Bones/anatomy & histology , Turtles/anatomy & histology , Paleopathology , Spain , Phylogeny
13.
PeerJ ; 10: e13919, 2022.
Article En | MEDLINE | ID: mdl-36545383

Ichthyornis has long been recognized as a pivotally important fossil taxon for understanding the latest stages of the dinosaur-bird transition, but little significant new postcranial material has been brought to light since initial descriptions of partial skeletons in the 19th Century. Here, we present new information on the postcranial morphology of Ichthyornis from 40 previously undescribed specimens, providing the most complete morphological assessment of the postcranial skeleton of Ichthyornis to date. The new material includes four partially complete skeletons and numerous well-preserved isolated elements, enabling new anatomical observations such as muscle attachments previously undescribed for Mesozoic euornitheans. Among the elements that were previously unknown or poorly represented for Ichthyornis, the new specimens include an almost-complete axial series, a hypocleideum-bearing furcula, radial carpal bones, fibulae, a complete tarsometatarsus bearing a rudimentary hypotarsus, and one of the first-known nearly complete three-dimensional sterna from a Mesozoic avialan. Several pedal phalanges are preserved, revealing a remarkably enlarged pes presumably related to foot-propelled swimming. Although diagnosable as Ichthyornis, the new specimens exhibit a substantial degree of morphological variation, some of which may relate to ontogenetic changes. Phylogenetic analyses incorporating our new data and employing alternative morphological datasets recover Ichthyornis stemward of Hesperornithes and Iaceornis, in line with some recent hypotheses regarding the topology of the crownward-most portion of the avian stem group, and we establish phylogenetically-defined clade names for relevant avialan subclades to help facilitate consistent discourse in future work. The new information provided by these specimens improves our understanding of morphological evolution among the crownward-most non-neornithine avialans immediately preceding the origin of crown group birds.


Birds , Charadriiformes , Animals , Phylogeny , Birds/anatomy & histology , Bone and Bones/anatomy & histology , Fossils
14.
J Hum Evol ; 173: 103255, 2022 12.
Article En | MEDLINE | ID: mdl-36375243

Postcranial bones may provide valuable information about fossil taxa relating to their locomotor habits, manipulative abilities and body sizes. Distinctive features of the postcranial skeleton are sometimes noted in species diagnoses. Although numerous isolated postcranial fossils have become accepted by many workers as belonging to a particular species, it is worthwhile revisiting the evidence for each attribution before including them in comparative samples in relation to the descriptions of new fossils, functional analyses in relation to particular taxa, or in evolutionary contexts. Although some workers eschew the taxonomic attribution of postcranial fossils as being less important (or interesting) than interpreting their functional morphology, it is impossible to consider the evolution of functional anatomy in a taxonomic and phylogenetic vacuum. There are 21 widely recognized hominin taxa that have been described from sites in Africa dated from the Late Miocene to the Middle Pleistocene; postcranial elements have been attributed to 17 of these. The bones that have been thus assigned range from many parts of a skeleton to isolated elements. However, the extent to which postcranial material can be reliably attributed to a specific taxon varies considerably from site to site and species to species, and is often the subject of considerable debate. Here, we review the postcranial remains attributed to African hominin taxa from the Late Miocene to the Middle and Late Pleistocene and place these assignations into categories of reliability. The catalog of attributions presented here may serve as a guide for making taxonomic decisions in the future.


Hominidae , Humans , Animals , Hominidae/anatomy & histology , Phylogeny , Reproducibility of Results , Fossils , Bone and Bones/anatomy & histology
15.
Head Face Med ; 18(1): 31, 2022 Sep 05.
Article En | MEDLINE | ID: mdl-36064714

BACKGROUND: Previous studies have reported inconsistent effects of premolar extraction on the oropharynx and hyoid bones. Currently, no strong evidence is available regarding the effect of extraction on upper airway size. Hence, the aim of this study was to analyse the effects of first premolar extraction on the oropharynx and hyoid bone positions in female adult patients, and further explored differences in oropharynx and hyoid bone changes among skeletal patterns. METHODS: The study population included 40 female adult patients who did not undergo extraction and 120 female adult patients who underwent extraction of four premolars; the including patients had four distinct sagittal and vertical skeletal patterns. Cone-beam computed tomography was performed before (T0) and after (T1) orthodontic treatment. Eight oropharynx variables and five hyoid bone variables were measured using Dolphin 3D Imaging software. Paired and independent t-tests were used to analyse measurements between timepoints and groups, respectively. RESULTS: The oropharynx volume increased significantly in the extraction group; changes did not differ significantly between extraction and non-extraction groups. Oropharynx variables did not differ significantly at T0 among the four skeletal pattern groups. After orthodontic extraction treatment, the oropharynx volume increased significantly in the class I-norm and class I-hyper subgroups, but not in the class II-norm and class II-hyper subgroups. Significant increases were observed in the oropharynx volume and most constricted axial area from T0 to T1 in the moderate retraction group, but not in the maximum retraction group. Extraction patients exhibited significant posterior movement of the hyoid, particularly among maximum retraction patients. CONCLUSIONS: In female adult patients, first premolar extraction tends to increase the oropharynx size and cause posterior movement of the hyoid bone, particularly in skeletal class I patients. For skeletal class II and hyperdivergent patients with a narrow oropharynx, first premolar extraction does not negatively influence oropharynx size or hyoid bone position. The differences of oropharyngeal changes between moderate retraction patients and maximum retraction patients were not significant.


Bicuspid , Bone and Bones , Cone-Beam Computed Tomography , Hyoid Bone , Oropharynx , Tooth Extraction , Adult , Bicuspid/diagnostic imaging , Bicuspid/surgery , Bone and Bones/anatomy & histology , Bone and Bones/diagnostic imaging , Cone-Beam Computed Tomography/methods , Female , Humans , Hyoid Bone/diagnostic imaging , Oropharynx/diagnostic imaging , Retrospective Studies
16.
J Exp Biol ; 225(20)2022 10 15.
Article En | MEDLINE | ID: mdl-36177797

Many species of lizards are partially enveloped by a dermal armour made of ossified units called osteoderms. Lizard osteoderms demonstrate considerable species-specific variation in morphology and histology. Although a physical/protective role (against predators, prey, conspecifics and impact loading during falls) is frequently advanced, empirical data on the biomechanics of lizard osteoderms are scarce, limiting our understanding of form-function relationships. Here, we report deformation recorded at the surface of temporal osteoderms during controlled external loading of preserved specimens of 11 lizard species (Tiliqua rugosa, Tiliqua scincoides, Corucia zebrata, Pseudopus apodus, Timon lepidus, Matobosaurus validus, Broadleysaurus major, Tribolonotus gracilis, Tribolonotus novaeguineae, Heloderma horridum and Heloderma suspectum). Based on the strain recorded in situ and from isolated osteoderms, the skin of the species investigated can be ranked along a marked stiffness gradient that mostly reflects the features of the osteoderms. Some species such as T. rugosa and the two Heloderma species had very stiff osteoderms and skin while others such as T. lepidus and P. apodus were at the other end of the spectrum. Histological sections of the osteoderms suggest that fused (versus compound) osteoderms with a thick layer of capping tissue are found in species with a stiff skin. In most cases, loading neighbouring osteoderms induced a large strain in the instrumented osteoderm, attesting that, in most species, lizard osteoderms are tightly interconnected. These data empirically confirm that the morphological diversity observed in lizard osteoderms is matched by variability in biomechanical properties.


Lizards , Animals , Biomechanical Phenomena , Bone and Bones/anatomy & histology , Lizards/anatomy & histology , Osteogenesis , Skin
17.
J Anat ; 241(2): 272-296, 2022 08.
Article En | MEDLINE | ID: mdl-35801524

The Late Cretaceous (Maastrichtian) Ruth Mason Dinosaur Quarry (RMDQ) represents a monodominant Edmontosaurus annectens bonebed from the Hell Creek Formation of South Dakota and has been determined as a catastrophic death assemblage likely belonging to a single population, providing an ideal sample to investigate hadrosaurid growth and population dynamics. For this study, size-frequency distributions were constructed from linear measurements of long bones (humeri, femora, tibiae) from RMDQ that revealed five relatively distinct size classes along a generally right-skewed distribution, which is consistent with a catastrophic assemblage. To test the relationship between morphological size ranges and ontogenetic age classes, subsets from each size-frequency peak were transversely thin-sectioned at mid-diaphysis to conduct an ontogenetic age assessment based on growth marks and observations of the bone microstructure. When combining these independent datasets, growth marks aligned with size-frequency peaks, with the exclusion of the overlapping subadult-adult size range, indicating a strong size-age relationship in early ontogeny. A growth curve analysis of tibiae indicated that E. annectens exhibited a similar growth trajectory to the Campanian hadrosaurid Maiasaura, although attaining a much larger asymptotic body size by about 9 years of age, further suggesting that the clade as a whole may have inherited a similar growth strategy. This rich new dataset for E. annectens provides new perspectives on other hypotheses of hadrosaurid life history. When the RMDQ population was compared with size distributions from other hadrosaurid bonebed assemblages, juveniles (categorized as ages one and two) were either completely absent from or heavily underrepresented in the samples, providing support for the hypothesized segregation between juvenile and adult hadrosaurids. Osteohistological comparison with material from polar and temperate populations of Edmontosaurus revealed that previous conclusions correlating osteohistological growth patterns with the strength of environmental stressors were a result of sampling non-overlapping ontogenetic growth stages.


Dinosaurs , Animals , Body Size , Bone and Bones/anatomy & histology , Dinosaurs/anatomy & histology , Fossils , South Dakota
18.
J Anat ; 240(6): 1005-1019, 2022 06.
Article En | MEDLINE | ID: mdl-35332552

Dicraeosaurid sauropods are iconically characterized by the presence of elongate hemispinous processes in presacral vertebrae. These hemispinous processes can show an extreme degree of elongation, such as in the Argentinean forms Amargasaurus cazaui, Pilmatueia faundezi and Bajadasaurus pronuspinax. These hyperelongated hemispinous processes have been variably interpreted as a support structure for a padded crest/sail as a display, a bison-like hump or as the internal osseous cores of cervical horns. With the purpose to test these hypotheses, here we analyze, for the first time, the external morphology, internal microanatomy and bone microstructure of the hemispinous processes from the holotype of Amargasaurus, in addition to a second dicraeosaurid indet. (also from the La Amarga Formatin; Lower Cretaceous, Argentina). Transverse thin-sections sampled from the proximal, mid and distal portions of both cervical and dorsal hemispinous processes reveal that the cortical bone is formed by highly vascularized fibrolamellar bone interrupted with cyclical growth marks. Obliquely oriented Sharpey's fibres are mostly located in the medial and lateral portions of the cortex. Secondary remodelling is evidenced by the presence of abundant secondary osteons irregularly distributed within the cortex. Both anatomical and histological evidence does not support the presence of a keratinized sheath (i.e. horn) covering the hyperelongated hemispinous processes of Amargasaurus, and either, using a parsimonious criterium, in other dicraeosaurids with similar vertebral morphology. The spatial distribution and relative orientation of the Sharpey's fibres suggest the presence of an important system of interspinous ligaments that possibly connect successive hemispinous processes in Amargasaurus. These ligaments were distributed along the entirety of the hemispinous processes. The differential distribution of secondary osteons indicates that the cervical hemispinous processes of Amargasaurus were subjected to mechanical forces that generated higher compression strain on the anterior side of the elements. Current data support the hypothesis for the presence of a 'cervical sail' in Amargasaurus and other dicraeosaurids.


Dinosaurs , Animals , Bone and Bones/anatomy & histology , Dinosaurs/anatomy & histology , Haversian System , Ligaments/anatomy & histology , Spine/anatomy & histology
19.
Sci Rep ; 12(1): 4739, 2022 03 18.
Article En | MEDLINE | ID: mdl-35304879

Variations in the cross-sectional properties of long bones are used to reconstruct the activity of human groups and differences in their respective habitual behaviors. Knowledge of what factors influence bone structure in Homo sapiens and Neandertals is still insufficient thus, this study investigated which biological and environmental variables influence variations in the femoral robusticity indicator of these two species. The sample consisted of 13 adult Neandertals from the Middle Paleolithic and 1959 adult individuals of H. sapiens ranging chronologically from the Upper Paleolithic to recent times. The femoral biomechanical properties were derived from the European data set, the subject literature, and new CT scans. The material was tested using a Mantel test and statistical models. In the models, the polar moment of area (J) was the dependent variable; sex, age, chronological period, type of lifestyle, percentage of the cortical area (%CA), the ratio of second moment areas of inertia about the X and Y axes (Ix/Iy), and maximum slope of the terrain were independent covariates. The Mantel tests revealed spatial autocorrelation of the femoral index in H. sapiens but not in Neandertals. A generalized additive mixed model showed that sex, %CA, Ix/Iy, chronological period, and terrain significantly influenced variation in the robusticity indicator of H. sapiens femora. A linear mixed model revealed that none of the analyzed variables correlated with the femoral robusticity indicator of Neandertals. We did not confirm that the gradual decline in the femoral robusticity indicator of H. sapiens from the Middle Paleolithic to recent times is related to the type of lifestyle; however, it may be associated with lower levels of mechanical loading during adolescence. The lack of correlation between the analysed variables and the indicator of femoral robusticity in Neandertals may suggest that they needed a different level of mechanical stimulus to produce a morphological response in the long bone than H. sapiens.


Hominidae , Neanderthals , Adolescent , Adult , Animals , Bone and Bones/anatomy & histology , Femur/physiology , Fossils , Hominidae/anatomy & histology , Humans , Lower Extremity/anatomy & histology , Neanderthals/anatomy & histology , Tomography, X-Ray Computed
20.
J Anat ; 241(2): 297-336, 2022 08.
Article En | MEDLINE | ID: mdl-35249216

Sauropodomorph dinosaurs include the largest terrestrial animals that ever lived on Earth. The early representatives of this clade were, however, relatively small and partially to totally bipedal, conversely to the gigantic and quadrupedal sauropods. Although the sauropod bauplan is well defined, notably by the acquisition of columnar limbs, the evolutionary sequence leading to its emergence remains debated. Here, we aim to tackle this evolutionary episode by investigating shape variation in the six limb long bones for the first time using three-dimensional geometric morphometrics. The morphological features of the forelimb zeugopod bones related to the sauropod bauplan tend to appear abruptly, whereas the pattern is more gradual for the hindlimb zeugopod bones. The stylopod bones tend to show the same pattern as their respective zeugopods. The abrupt emergence of the sauropod forelimb questions the locomotor abilities of non-sauropodan sauropodomorphs inferred as quadrupeds. Features characterizing sauropods tend to corroborate a view of their locomotion mainly based on stylopod retraction. An allometric investigation of the shape variation in accordance with size highlight differences in hindlimb bone allometries between the sauropods and the non-sauropodan sauropodomorphs. These differences notably correspond to an unexpected robustness decrease trend in the sauropod hindlimb zeugopod. In addition to forelimb bones that appear to be proportionally more gracile than in non-sauropodan sauropodomorphs, sauropods may have relied on limb architecture and features related to the size increase, rather than general robustness, to deal with the role of weight-bearing.


Dinosaurs , Gigantism , Animals , Biological Evolution , Bone and Bones/anatomy & histology , Dinosaurs/anatomy & histology , Fossils , Phylogeny
...