Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23.947
1.
Cell Commun Signal ; 22(1): 279, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773637

O-linked N-acetylglucosamine (O-GlcNAc) protein modification (O-GlcNAcylation) is a critical post-translational modification (PTM) of cytoplasmic and nuclear proteins. O-GlcNAcylation levels are regulated by the activity of two enzymes, O-GlcNAc transferase (OGT) and O­GlcNAcase (OGA). While OGT attaches O-GlcNAc to proteins, OGA removes O-GlcNAc from proteins. Since its discovery, researchers have demonstrated O-GlcNAcylation on thousands of proteins implicated in numerous different biological processes. Moreover, dysregulation of O-GlcNAcylation has been associated with several pathologies, including cancers, ischemia-reperfusion injury, and neurodegenerative diseases. In this review, we focus on progress in our understanding of the role of O-GlcNAcylation in bone pathophysiology, and we discuss the potential molecular mechanisms of O-GlcNAcylation modulation of bone-related diseases. In addition, we explore significant advances in the identification of O-GlcNAcylation-related regulators as potential therapeutic targets, providing novel therapeutic strategies for the treatment of bone-related disorders.


Acetylglucosamine , N-Acetylglucosaminyltransferases , Humans , Animals , N-Acetylglucosaminyltransferases/metabolism , Acetylglucosamine/metabolism , Bone and Bones/metabolism , Protein Processing, Post-Translational , Bone Diseases/metabolism
2.
PLoS One ; 19(5): e0300292, 2024.
Article En | MEDLINE | ID: mdl-38718051

The aim of the study was to investigate the effect of returning to a balanced diet combined with chromium picolinate (CrPic) or chromium nanoparticles (CrNPs) supplementation at a pharmacologically relevant dose of 0.3 mg/kg body weight on the expression level of selected genes and bone turnover markers in the blood and bones of rats fed an obese diet. The results of the study showed that chronic intake of a high-fat obesogenic diet negatively affects bone turnover by impairing processes of both synthesis and degradation of bones. The switch to a healthy diet proved insufficient to regulate bone metabolism disorders induced by an obesogenic diet, even when it was supplemented with chromium, irrespective of its form. Supplementation with CrPic with no change in diet stimulated bone metabolism only at the molecular level, towards increased osteoclastogenesis (bone resorption). In contrast, CrNPs added to the high-fat diet effectively regulated bone turnover by increasing both osteoblastogenesis and osteoclastogenesis, with these changes directed more towards bone formation. The results of the study suggest that unfavourable changes in bone metabolism induced by chronic intake of a high-fat diet can be mitigated by supplementation with CrNPs, whereas a change in eating habits fails to achieve a similar effect.


Bone Remodeling , Chromium , Diet, High-Fat , Animals , Diet, High-Fat/adverse effects , Rats , Chromium/administration & dosage , Chromium/pharmacology , Male , Bone Remodeling/drug effects , Nanoparticles/chemistry , Dietary Fiber/pharmacology , Picolinic Acids/pharmacology , Picolinic Acids/administration & dosage , Dietary Supplements , Bone and Bones/metabolism , Bone and Bones/drug effects , Rats, Wistar , Metal Nanoparticles/chemistry , Metal Nanoparticles/administration & dosage , Osteogenesis/drug effects
3.
J Transl Med ; 22(1): 437, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720345

BACKGROUND: Biological-derived hydroxyapatite is widely used as a bone substitute for addressing bone defects, but its limited osteoconductive properties necessitate further improvement. The osteo-immunomodulatory properties hold crucial promise in maintaining bone homeostasis, and precise modulation of macrophage polarization is essential in this process. Metabolism serves as a guiding force for immunity, and fluoride modification represents a promising strategy for modulating the osteoimmunological environment by regulating immunometabolism. In this context, we synthesized fluorinated porcine hydroxyapatite (FPHA), and has demonstrated its enhanced biological properties and osteogenic capacity. However, it remains unknown whether and how FPHA affects the immune microenvironment of the bone defects. METHODS: FPHA was synthesized and its composition and structural properties were confirmed. Macrophages were cultured with FPHA extract to investigate the effects of FPHA on their polarization and the related osteo-immune microenvironment. Furthermore, total RNA of these macrophages was extracted, and RNA-seq analysis was performed to explore the underlying mechanisms associated with the observed changes in macrophages. The metabolic states were evaluated with a Seahorse analyzer. Additionally, immunohistochemical staining was performed to evaluate the macrophages response after implantation of the novel bone substitutes in critical size calvarial defects in SD rats. RESULTS: The incorporation of fluoride ions in FPHA was validated. FPHA promoted macrophage proliferation and enhanced the expression of M2 markers while suppressing the expression of M1 markers. Additionally, FPHA inhibited the expression of inflammatory factors and upregulated the expression of osteogenic factors, thereby enhancing the osteogenic differentiation capacity of the rBMSCs. RNA-seq analysis suggested that the polarization-regulating function of FPHA may be related to changes in cellular metabolism. Further experiments confirmed that FPHA enhanced mitochondrial function and promoted the metabolic shift of macrophages from glycolysis to oxidative phosphorylation. Moreover, in vivo experiments validated the above results in the calvarial defect model in SD rats. CONCLUSION: In summary, our study reveals that FPHA induces a metabolic shift in macrophages from glycolysis to oxidative phosphorylation. This shift leads to an increased tendency toward M2 polarization in macrophages, consequently creating a favorable osteo-immune microenvironment. These findings provide valuable insights into the impact of incorporating an appropriate concentration of fluoride on immunometabolism and macrophage mitochondrial function, which have important implications for the development of fluoride-modified immunometabolism-based bone regenerative biomaterials and the clinical application of FPHA or other fluoride-containing materials.


Durapatite , Glycolysis , Macrophages , Oxidative Phosphorylation , Rats, Sprague-Dawley , Animals , Durapatite/chemistry , Macrophages/metabolism , Macrophages/drug effects , Oxidative Phosphorylation/drug effects , Glycolysis/drug effects , Rats , Swine , Cell Proliferation/drug effects , Male , Osteogenesis/drug effects , Skull/pathology , Skull/drug effects , Mice , Cellular Microenvironment/drug effects , RAW 264.7 Cells , Bone and Bones/metabolism , Bone and Bones/drug effects
4.
BMC Res Notes ; 17(1): 128, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711110

The elemental composition of chemical elements can vary between healthy and diseased tissues, providing essential insights into metabolic processes in physiological and diseased states. This study aimed to evaluate the calcium (Ca) and phosphorus (P) levels in the bones of rats with/without streptozotocin-induced diabetes and/or exposure to infrasound. X-ray fluorescence spectroscopy was used to determine the concentrations of Ca and P in Wistar rat tibiae samples.The results showed a significant decrease in bone P concentration in streptozotocin-induced diabetic rats compared to untreated animals. Similarly, the Ca/P ratio was higher in the streptozotocin-induced diabetic group. No significant differences were observed in bone Ca concentration between the studied groups or between animals exposed and not exposed to infrasound.Moreover, streptozotocin-induced diabetic rats had lower bone P concentration but unaltered bone Ca concentration compared to untreated rats. Infrasound exposure did not impact bone Ca or P levels. The reduced bone P concentration may be associated with an increased risk of bone fractures in diabetes.


Calcium , Diabetes Mellitus, Experimental , Phosphorus , Rats, Wistar , Streptozocin , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/chemically induced , Phosphorus/metabolism , Calcium/metabolism , Rats , Male , Spectrometry, X-Ray Emission , Tibia/metabolism , Sound/adverse effects , Bone and Bones/metabolism , Glucose Intolerance/metabolism
5.
Cell Metab ; 36(5): 888-890, 2024 May 07.
Article En | MEDLINE | ID: mdl-38718755

Bone is an endocrine organ that participates in whole-body homeostasis. The biology of bone-derived osteokines, however, remains unclear. Liang et al. integrate experimental and computational methods to discover new osteokines, establish their cell of origin and target site, and study their role in aging and during mechanical stress.


Bone and Bones , Humans , Animals , Bone and Bones/metabolism , Aging/physiology , Aging/metabolism , Stress, Mechanical
6.
Int J Mol Sci ; 25(9)2024 May 06.
Article En | MEDLINE | ID: mdl-38732267

Osteoporosis, characterized by reduced bone density and increased fracture risk, affects over 200 million people worldwide, predominantly older adults and postmenopausal women. The disruption of the balance between bone-forming osteoblasts and bone-resorbing osteoclasts underlies osteoporosis pathophysiology. Standard treatment includes lifestyle modifications, calcium and vitamin D supplementation and specific drugs that either inhibit osteoclasts or stimulate osteoblasts. However, these treatments have limitations, including side effects and compliance issues. Natural products have emerged as potential osteoporosis therapeutics, but their mechanisms of action remain poorly understood. In this study, we investigate the efficacy of natural compounds in modulating molecular targets relevant to osteoporosis, focusing on the Mitogen-Activated Protein Kinase (MAPK) pathway and the gut microbiome's influence on bone homeostasis. Using an in silico and in vitro methodology, we have identified quercetin as a promising candidate in modulating MAPK activity, offering a potential therapeutic perspective for osteoporosis treatment.


Biological Products , Bone Remodeling , Osteoporosis , Humans , Bone Remodeling/drug effects , Osteoporosis/drug therapy , Osteoporosis/metabolism , Biological Products/pharmacology , Biological Products/therapeutic use , Quercetin/pharmacology , Quercetin/therapeutic use , Osteoblasts/drug effects , Osteoblasts/metabolism , Bone and Bones/metabolism , Bone and Bones/drug effects , MAP Kinase Signaling System/drug effects , Gastrointestinal Microbiome/drug effects , Osteoclasts/metabolism , Osteoclasts/drug effects , Animals
7.
Front Endocrinol (Lausanne) ; 15: 1298851, 2024.
Article En | MEDLINE | ID: mdl-38711977

The first evidence of the existence of vitamin A was the observation 1881 that a substance present in small amounts in milk was necessary for normal development and life. It was not until more than 100 years later that it was understood that vitamin A acts as a hormone through nuclear receptors. Unlike classical hormones, vitamin A cannot be synthesized by the body but needs to be supplied by the food as retinyl esters in animal products and ß-carotene in vegetables and fruits. Globally, vitamin A deficiency is a huge health problem, but in the industrialized world excess of vitamin A has been suggested to be a risk factor for secondary osteoporosis and enhanced susceptibility to fractures. Preclinical studies unequivocally have shown that increased amounts of vitamin A cause decreased cortical bone mass and weaker bones due to enhanced periosteal bone resorption. Initial clinical studies demonstrated a negative association between intake of vitamin A, as well as serum levels of vitamin A, and bone mass and fracture susceptibility. In some studies, these observations have been confirmed, but in other studies no such associations have been observed. One meta-analysis found that both low and high serum levels of vitamin A were associated with increased relative risk of hip fractures. Another meta-analysis also found that low levels of serum vitamin A increased the risk for hip fracture but could not find any association with high serum levels of vitamin A and hip fracture. It is apparent that more clinical studies, including large numbers of incident fractures, are needed to determine which levels of vitamin A that are harmful or beneficial for bone mass and fracture. It is the aim of the present review to describe how vitamin A was discovered and how vitamin A is absorbed, metabolized and is acting as a ligand for nuclear receptors. The effects by vitamin A in preclinical studies are summarized and the clinical investigations studying the effect by vitamin A on bone mass and fracture susceptibility are discussed in detail.


Bone Density , Fractures, Bone , Vitamin A , Humans , Vitamin A/metabolism , Vitamin A/blood , Animals , Fractures, Bone/metabolism , Fractures, Bone/etiology , Fractures, Bone/epidemiology , Signal Transduction , Osteoporosis/metabolism , Vitamin A Deficiency/metabolism , Vitamin A Deficiency/complications , Bone and Bones/metabolism
8.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731934

Adult bones are continuously remodeled by the balance between bone resorption by osteoclasts and subsequent bone formation by osteoblasts. Many studies have provided molecular evidence that bone remodeling is under the control of circadian rhythms. Circadian fluctuations have been reported in the serum and urine levels of bone turnover markers, such as digested collagen fragments and bone alkaline phosphatase. Additionally, the expressions of over a quarter of all transcripts in bones show circadian rhythmicity, including the genes encoding master transcription factors for osteoblastogenesis and osteoclastogenesis, osteogenic cytokines, and signaling pathway proteins. Serum levels of calcium, phosphate, parathyroid hormone, and calcitonin also display circadian rhythmicity. Finally, osteoblast- and osteoclast-specific knockout mice targeting the core circadian regulator gene Bmal1 show disrupted bone remodeling, although the results have not always been consistent. Despite these studies, however, establishing a direct link between circadian rhythms and bone remodeling in vivo remains a major challenge. It is nearly impossible to repeatedly collect bone materials from human subjects while following circadian changes. In addition, the differences in circadian gene regulation between diurnal humans and nocturnal mice, the main model organism, remain unclear. Filling the knowledge gap in the circadian regulation of bone remodeling could reveal novel regulatory mechanisms underlying many bone disorders including osteoporosis, genetic diseases, and fracture healing. This is also an important question for the basic understanding of how cell differentiation progresses under the influence of cyclically fluctuating environments.


Bone Remodeling , Circadian Rhythm , Bone Remodeling/genetics , Animals , Circadian Rhythm/physiology , Circadian Rhythm/genetics , Humans , Osteoblasts/metabolism , Osteogenesis/genetics , Osteoclasts/metabolism , Gene Expression Regulation , Bone and Bones/metabolism
9.
Cell Mol Life Sci ; 81(1): 204, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700532

The silent information regulator T1 (SIRT1) is linked to longevity and is a crucial mediator of osteoblast function. We investigated the direct role of Sirt1 during bone modeling and remodeling stages in vivo using Tamoxifen-inducible osteoblast-specific Sirt1 conditional knockout (cKO) mice. cKO mice exhibited lower trabecular and cortical bone mass in the distal femur. These phenotypes were coupled with lower bone formation and bone resorption. Metabolomics analysis revealed that the metabolites involved in glycolysis were significantly decreased in cKO mice. Further analysis of the quantitative acetylome revealed 11 proteins with upregulated acetylation levels in both the femur and calvaria of cKO mice. Cross-analysis identified four proteins with the same upregulated lysine acetylation site in both the femur and calvaria of cKO mice. A combined analysis of the metabolome and acetylome, as well as immunoprecipitation, gene knockout, and site-mutation experiments, revealed that Sirt1 deletion inhibited glycolysis by directly binding to and increasing the acetylation level of Glutamine oxaloacetic transaminase 1 (GOT1). In conclusion, our study suggested that Sirt1 played a crucial role in regulating osteoblast metabolism to maintain bone homeostasis through its deacetylase activity on GOT1. These findings provided a novel insight into the potential targeting of osteoblast metabolism for the treatment of bone-related diseases.


Glycolysis , Homeostasis , Mice, Knockout , Osteoblasts , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Osteoblasts/metabolism , Mice , Acetylation , Bone and Bones/metabolism , Osteogenesis , Femur/metabolism
10.
J Vis Exp ; (207)2024 May 03.
Article En | MEDLINE | ID: mdl-38767376

Understanding the relationship between the cells and their location within each tissue is critical to uncover the biological processes associated with normal development and disease pathology. Spatial transcriptomics is a powerful method that enables the analysis of the whole transcriptome within tissue samples, thus providing information about the cellular gene expression and the histological context in which the cells reside. While this method has been extensively utilized for many soft tissues, its application for the analyses of hard tissues such as bone has been challenging. The major challenge resides in the inability to preserve good quality RNA and tissue morphology while processing the hard tissue samples for sectioning. Therefore, a method is described here to process freshly obtained bone tissue samples to effectively generate spatial transcriptomics data. The method allows for the decalcification of the samples, granting successful tissue sections with preserved morphological details while avoiding RNA degradation. In addition, detailed guidelines are provided for samples that were previously paraffin-embedded, without demineralization, such as samples collected from tissue banks. Using these guidelines, high-quality spatial transcriptomics data generated from tissue bank samples of primary tumor and lung metastasis of bone osteosarcoma are shown.


Bone Neoplasms , Bone and Bones , Transcriptome , Humans , Transcriptome/genetics , Bone and Bones/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/metabolism , Gene Expression Profiling/methods , Paraffin Embedding/methods , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism
11.
Int J Artif Organs ; 47(5): 338-346, 2024 May.
Article En | MEDLINE | ID: mdl-38693724

In the present study, porous silk fibroin sponges (SFS) were prepared using silk fibroin (SF), fish bone collagen (FBC), and olive oil (OO). The study investigates the potential use of using this sponge as skin tissue regeneration. The sponge was characterized for its physicochemical, mechanical, antimicrobial, and drug release properties. An in vitro study was carried out using human keratinocyte cell line (HaCaT). Biodegradation study using enzymatic method was carried out. The results showed that the mechanical properties such as tensile strength (23.40 ± 0.05 MPa), elongation at break (14.25 ± 0.02%), and water absorption (30.23 ± 0.01%) of the SFS were excellent, indicating promising performance. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays proved the biocompatible nature of the SFS. The SFS exhibited outstanding antibacterial properties against E. coli (4.72 ± 0.05 mm) and S. aureus (4.98 ± 0.07 mm). The developed SFS promote a promising solution for skin tissue regeneration and wound dressing.


Anti-Bacterial Agents , Collagen , Fibroins , Regeneration , Skin , Staphylococcus aureus , Tissue Scaffolds , Wound Healing , Fibroins/chemistry , Fibroins/pharmacology , Wound Healing/drug effects , Humans , Collagen/metabolism , Animals , Regeneration/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Skin/drug effects , Skin/metabolism , Staphylococcus aureus/drug effects , HaCaT Cells , Escherichia coli/drug effects , Keratinocytes/drug effects , Olive Oil , Bone and Bones/drug effects , Bone and Bones/metabolism , Fishes , Tensile Strength , Porosity , Biocompatible Materials , Cell Line
12.
Age Ageing ; 53(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38770543

CONTEXT: Chronic kidney disease (CKD) leads to alterations in fibroblast growth factor 23 (FGF23) and the renal-bone axis. This may be partly driven by altered inflammation and iron status. Vitamin D supplementation may reduce inflammation. OBJECTIVE AND METHODS: Older adults with early CKD (estimated glomerular filtration rate (eGFR) 30-60 ml/min/1.73 m2; CKDG3a/b; n = 35) or normal renal function (eGFR >90 ml/min/1.73 m2; CKDG1; n = 35) received 12,000, 24,000 or 48,000 IU D3/month for 1 year. Markers of the renal-bone axis, inflammation and iron status were investigated pre- and post-supplementation. Predictors of c-terminal and intact FGF23 (cFGF23; iFGF23) were identified by univariate and multivariate regression. RESULTS: Pre-supplementation, comparing CKDG3a/b to CKDG1, plasma cFGF23, iFGF23, PTH, sclerostin and TNFα were significantly higher and Klotho, 1,25-dihydroxyvitamin D and iron were lower. Post-supplementation, only cFGF23, 25(OH)D and IL6 differed between groups. The response to supplementation differed between eGFR groups. Only in the CKDG1 group, phosphate decreased, cFGF23, iFGF23 and procollagen type I N-propeptide increased. In the CKDG3a/b group, TNFα significantly decreased, and iron increased. Plasma 25(OH)D and IL10 increased, and carboxy-terminal collagen crosslinks decreased in both groups. In univariate models cFGF23 and iFGF23 were predicted by eGFR and regulators of calcium and phosphate metabolism at both time points; IL6 predicted cFGF23 (post-supplementation) and iFGF23 (pre-supplementation) in univariate models. Hepcidin predicted post-supplementation cFGF23 in multivariate models with eGFR. CONCLUSION: Alterations in regulators of the renal-bone axis, inflammation and iron status were found in early CKD. The response to vitamin D3 supplementation differed between eGFR groups. Plasma IL6 predicted both cFGF23 and iFGF23 and hepcidin predicted cFGF23.


Biomarkers , Dietary Supplements , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Glomerular Filtration Rate , Iron , Kidney , Renal Insufficiency, Chronic , Vitamin D , Humans , Aged , Male , Female , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/drug therapy , Glomerular Filtration Rate/drug effects , Biomarkers/blood , Fibroblast Growth Factors/blood , Iron/blood , Kidney/physiopathology , Kidney/drug effects , Vitamin D/blood , Vitamin D/analogs & derivatives , Aged, 80 and over , Treatment Outcome , Inflammation/blood , Inflammation/drug therapy , Inflammation Mediators/blood , Age Factors , Cholecalciferol/administration & dosage , Cholecalciferol/blood , Time Factors , Bone and Bones/drug effects , Bone and Bones/metabolism
13.
FASEB J ; 38(9): e23642, 2024 May 15.
Article En | MEDLINE | ID: mdl-38690719

Alterations to the human organism that are brought about by aging are comprehensive and detrimental. Of these, an imbalance in bone homeostasis is a major outward manifestation of aging. In older adults, the decreased osteogenic activity of bone marrow mesenchymal stem cells and the inhibition of bone marrow mesenchymal stem cell differentiation lead to decreased bone mass, increased risk of fracture, and impaired bone injury healing. In the past decades, numerous studies have reported the epigenetic alterations that occur during aging, such as decreased core histones, altered DNA methylation patterns, and abnormalities in noncoding RNAs, which ultimately lead to genomic abnormalities and affect the expression of downstream signaling osteoporosis treatment and promoter of fracture healing in older adults. The current review summarizes the impact of epigenetic regulation mechanisms on age-related bone homeostasis imbalance.


Aging , Bone and Bones , Epigenesis, Genetic , Homeostasis , Humans , Aging/genetics , Aging/physiology , Animals , Bone and Bones/metabolism , DNA Methylation , Osteoporosis/genetics , Osteoporosis/metabolism , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Osteogenesis/physiology , Histones/metabolism
14.
Front Endocrinol (Lausanne) ; 15: 1301213, 2024.
Article En | MEDLINE | ID: mdl-38742199

Purpose: To investigate the relationship between bone turnover markers (BTMs) and thyroid indicators in Graves' disease (GD) and to further assess predictive value of changes in early stage retrospectively. Methods: We studied 435 patients with GD and 113 healthy physical examiners retrospectively and followed up these two groups of patients after 6 months. We investigated the correlations between BTMs and other 15 observed factors, and analyzed the predictive value of FT3 and FT4 before and after treatment (FT3-P/FT3-A, FT4-P/FT4-A) on whether BTMs recovered. Results: The levels of thyroid hormones and BTMs in GD group were significantly higher than those in control group (P < 0.05) and decreased after 6 months of treatment. FT3, W, Ca and ALP were independent factors in predicting the elevation of OST. Duration of disease, FT3, TSH and ALP were independent factors in predicting the elevation of P1NP. Age, duration of disease, TRAb and ALP were independent factors in predicting the elevation of CTX-1. The AUC of FT3-P/FT3-A and FT4-P/FT4-A for predicting OST recovery were 0.748 and 0.705 (P < 0.05), respectively, and the cut-off values were 0.51 and 0.595. There was no predictive value for P1NP and CTX-1 recovery (P > 0.05). Conclusion: BTMs were abnormally elevated in GD and were significantly correlated with serum levels of FT3, FT4, TRAb, Ca, and ALP. FT3 decreased more than 51% and FT4 dropped more than 59.5% after 6 months of treatment were independent predictors for the recovery of BTMs in GD.


Biomarkers , Bone Remodeling , Graves Disease , Predictive Value of Tests , Humans , Male , Female , Graves Disease/blood , Graves Disease/drug therapy , Graves Disease/metabolism , Adult , Biomarkers/blood , Retrospective Studies , Middle Aged , Thyroid Gland/metabolism , Bone and Bones/metabolism , Thyroid Hormones/blood , Case-Control Studies , Prognosis , Antithyroid Agents/therapeutic use , Thyroxine/blood , Triiodothyronine/blood , Follow-Up Studies
15.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38732046

Obesity, type 2 diabetes mellitus (T2DM) and osteoporosis are serious diseases with an ever-increasing incidence that quite often coexist, especially in the elderly. Individuals with obesity and T2DM have impaired bone quality and an elevated risk of fragility fractures, despite higher and/or unchanged bone mineral density (BMD). The effect of obesity on fracture risk is site-specific, with reduced risk for several fractures (e.g., hip, pelvis, and wrist) and increased risk for others (e.g., humerus, ankle, upper leg, elbow, vertebrae, and rib). Patients with T2DM have a greater risk of hip, upper leg, foot, humerus, and total fractures. A chronic pro-inflammatory state, increased risk of falls, secondary complications, and pharmacotherapy can contribute to the pathophysiology of aforementioned fractures. Bisphosphonates and denosumab significantly reduced the risk of vertebral fractures in patients with both obesity and T2DM. Teriparatide significantly lowered non-vertebral fracture risk in T2DM subjects. It is important to recognize elevated fracture risk and osteoporosis in obese and T2DM patients, as they are currently considered low risk and tend to be underdiagnosed and undertreated. The implementation of better diagnostic tools, including trabecular bone score, lumbar spine BMD/body mass index (BMI) ratio, and microRNAs to predict bone fragility, could improve fracture prevention in this patient group.


Bone Density , Diabetes Mellitus, Type 2 , Obesity , Osteoporosis , Humans , Diabetes Mellitus, Type 2/complications , Osteoporosis/etiology , Osteoporosis/drug therapy , Obesity/complications , Fractures, Bone/etiology , Bone and Bones/metabolism , Bone and Bones/pathology
16.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732094

This article reviews the role of fibroblast growth factor 23 (FGF23) protein in phosphate metabolism, highlighting its regulation of vitamin D, parathyroid hormone, and bone metabolism. Although it was traditionally thought that phosphate-calcium homeostasis was controlled exclusively by parathyroid hormone (PTH) and calcitriol, pathophysiological studies revealed the influence of FGF23. This protein, expressed mainly in bone, inhibits the renal reabsorption of phosphate and calcitriol formation, mediated by the α-klotho co-receptor. In addition to its role in phosphate metabolism, FGF23 exhibits pleiotropic effects in non-renal systems such as the cardiovascular, immune, and metabolic systems, including the regulation of gene expression and cardiac fibrosis. Although it has been proposed as a biomarker and therapeutic target, the inhibition of FGF23 poses challenges due to its potential side effects. However, the approval of drugs such as burosumab represents a milestone in the treatment of FGF23-related diseases.


Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Phosphates , Humans , Fibroblast Growth Factor-23/metabolism , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Animals , Phosphates/metabolism , Parathyroid Hormone/metabolism , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Vitamin D/metabolism , Bone and Bones/metabolism , Klotho Proteins
17.
Sci Rep ; 14(1): 10888, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740835

Ethylenediaminetetraacetic acid (EDTA), a classically used chelating agent of decalcification, maintains good morphological details, but its slow decalcification limits its wider applications. Many procedures have been reported to accelerate EDTA-based decalcification, involving temperature, concentration, sonication, agitation, vacuum, microwave, or combination. However, these procedures, concentrating on purely tissue-outside physical factors to increase the chemical diffusion, do not enable EDTA to exert its full capacity due to tissue intrinsic chemical resistances around the diffusion passage. The resistances, such as tissue inner lipids and electric charges, impede the penetration of EDTA. We hypothesized that delipidation and shielding electric charges would accelerate EDTA-based penetration and the subsequent decalcification. The hypothesis was verified by the observation of speedy penetration of EDTA with additives of detergents and hypertonic saline, testing on tissue-mimicking gels of collagen and adult mouse bones. Using a 26% EDTA mixture with the additives at 45°C, a conventional 7-day decalcification of adult mouse ankle joints could be completed within 24 h while the tissue morphological structure, antigenicity, enzymes, and DNA were well preserved, and mRNA better retained compared to using 15% EDTA at room temperature. The addition of hypertonic saline and detergents to EDTA decalcification is a simple, rapid, and inexpensive method that doesn't disrupt the current histological workflow. This method is equally or even more effective than the currently most used decalcification methods in preserving the morphological details of tissues. It can be highly beneficial for the related community.


Detergents , Edetic Acid , RNA, Messenger , Animals , Edetic Acid/chemistry , Edetic Acid/pharmacology , Detergents/chemistry , Mice , RNA, Messenger/genetics , Saline Solution, Hypertonic/chemistry , Bone and Bones/metabolism , Bone and Bones/drug effects , Bone and Bones/chemistry , Decalcification Technique/methods
18.
J Bras Nefrol ; 46(3): e20240023, 2024.
Article En, Pt | MEDLINE | ID: mdl-38748946

In the last few years, evidence from the Brazilian Registry of Bone Biopsy (REBRABO) has pointed out a high incidence of aluminum (Al) accumulation in the bones of patients with CKD under dialysis. This surprising finding does not appear to be merely a passive metal accumulation, as prospective data from REBRABO suggest that the presence of Al in bone may be independently associated with major adverse cardiovascular events. This information contrasts with the perception of epidemiologic control of this condition around the world. In this opinion paper, we discussed why the diagnosis of Al accumulation in bone is not reported in other parts of the world. We also discuss a range of possibilities to understand why bone Al accumulation still occurs, not as a classical syndrome with systemic signs of intoxication, as occurred it has in the past.


Aluminum , Bone and Bones , Humans , Aluminum/metabolism , Aluminum/adverse effects , Bone and Bones/metabolism , Renal Dialysis , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/complications , Brazil/epidemiology
19.
Drug Des Devel Ther ; 18: 979-989, 2024.
Article En | MEDLINE | ID: mdl-38562519

As a continuous process comprising bone resorption and formation, bone remodeling, plays an essential role in maintaining the balance of bone metabolism. One type of metabolic osteopathy is osteoporosis, which is defined by low bone mass and deteriorating bone microstructure. Osteoporosis patients are more likely to experience frequent osteoporotic fractures, which makes osteoporosis prevention and treatment crucial. A growing body of research has revealed that exosomes, which are homogenous vesicles released by most cell types, play a major role in mediating a number of pathophysiological processes, including osteoporosis. Exosomes may act as a mediator in cell-to-cell communication and offer a fresh perspective on information sharing. This review discusses the characteristics of exosomes and outlines the exosomes' underlying mechanism that contributes to the onset of osteoporosis. Recent years have seen a rise in interest in the role of exosomes in osteoporosis, which has given rise to innovative therapeutic approaches for the disease prevention and management.


Exosomes , Osteoporosis , Humans , Exosomes/metabolism , Osteoporosis/drug therapy , Osteoporosis/metabolism , Bone and Bones/metabolism , Bone Remodeling
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167162, 2024 Jun.
Article En | MEDLINE | ID: mdl-38604490

The molecular mechanism underlying the promotion of fracture healing by mechanical stimuli remains unclear. The present study aimed to investigate the role of zinc finger protein 36 like 2 (ZFP36L2)-histone deacetylase 1 (HDAC1) axis on the osteogenic responses to moderate mechanical stimulation. Appropriate stimulation of fluid shear stress (FSS) was performed on MC3T3-E1 cells transduced with ZFP36L2 and HDAC1 recombinant adenoviruses, aiming to validate the influence of mechanical stress on the expression of ZFP36L2-HDAC1 and the osteogenic differentiation and mineralization. The results showed that moderate FSS stimulation significantly upregulated the expression of ZFP36L2 in MC3T3-E1 cells (p < 0.01). The overexpression of ZFP36L1 markedly enhanced the levels of osteogenic differentiation markers, including bone morphogenetic protein 2 (BMP2), runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), Osterix, and collagen type I alpha 1 (COL1A1) (p < 0.01). ZFP36L2 accelerated the degradation of HDAC1 by specifically binding to its 3' UTR region, thereby fulfilling its function at the post-transcriptional regulatory gene level and promoting the osteogenic differentiation and mineralization fate of cells. Mechanical unloading notably diminished/elevated the expression of ZFP36L2/HDAC1, decreased bone mineral density and bone volume fraction, hindered the release of osteogenic-related factors and vascular endothelial growth factor in callus tissue (p < 0.01), and was detrimental to fracture healing. Collectively, proper stress stimulation plays a crucial role in facilitating osteogenesis through the promotion of ZFP36L2 and subsequent degradation of HDAC1. Targeting ZFP36L2-HDAC1 axis may provide promising insights to enhance bone defect healing.


Cell Differentiation , Histone Deacetylase 1 , Osteogenesis , Stress, Mechanical , Animals , Mice , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/genetics , Osteogenesis/physiology , Cell Line , Bone and Bones/metabolism , Osteoblasts/metabolism
...