Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25.985
1.
J Biomed Opt ; 29(Suppl 3): S33302, 2024 Jun.
Article En | MEDLINE | ID: mdl-38707651

Significance: Cerebral oximeters have the potential to detect abnormal cerebral blood oxygenation to allow for early intervention. However, current commercial systems have two major limitations: (1) spatial coverage of only the frontal region, assuming that surgery-related hemodynamic effects are global and (2) susceptibility to extracerebral signal contamination inherent to continuous-wave near-infrared spectroscopy (NIRS). Aim: This work aimed to assess the feasibility of a high-density, time-resolved (tr) NIRS device (Kernel Flow) to monitor regional oxygenation changes across the cerebral cortex during surgery. Approach: The Flow system was assessed using two protocols. First, digital carotid compression was applied to healthy volunteers to cause a rapid oxygenation decrease across the ipsilateral hemisphere without affecting the contralateral side. Next, the system was used on patients undergoing shoulder surgery to provide continuous monitoring of cerebral oxygenation. In both protocols, the improved depth sensitivity of trNIRS was investigated by applying moment analysis. A dynamic wavelet filtering approach was also developed to remove observed temperature-induced signal drifts. Results: In the first protocol (28±5 years; five females, five males), hair significantly impacted regional sensitivity; however, the enhanced depth sensitivity of trNIRS was able to separate brain and scalp responses in the frontal region. Regional sensitivity was improved in the clinical study given the age-related reduction in hair density of the patients (65±15 years; 14 females, 13 males). In five patients who received phenylephrine to treat hypotension, different scalp and brain oxygenation responses were apparent, although no regional differences were observed. Conclusions: The Kernel Flow has promise as an intraoperative neuromonitoring device. Although regional sensitivity was affected by hair color and density, enhanced depth sensitivity of trNIRS was able to resolve differences in scalp and brain oxygenation responses in both protocols.


Cerebrovascular Circulation , Spectroscopy, Near-Infrared , Humans , Spectroscopy, Near-Infrared/methods , Spectroscopy, Near-Infrared/instrumentation , Female , Male , Adult , Cerebrovascular Circulation/physiology , Hemodynamics/physiology , Oximetry/methods , Oximetry/instrumentation , Oxygen/blood , Oxygen/metabolism , Brain/diagnostic imaging , Brain/blood supply , Equipment Design
2.
Article En | MEDLINE | ID: mdl-38717876

Neurovascular coupling (NVC) provides important insights into the intricate activity of brain functioning and may aid in the early diagnosis of brain diseases. Emerging evidences have shown that NVC could be assessed by the coupling between electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). However, this endeavor presents significant challenges due to the absence of standardized methodologies and reliable techniques for coupling analysis of these two modalities. In this study, we introduced a novel method, i.e., the collaborative multi-output variational Gaussian process convergent cross-mapping (CMVGP-CCM) approach to advance coupling analysis of EEG and fNIRS. To validate the robustness and reliability of the CMVGP-CCM method, we conducted extensive experiments using chaotic time series models with varying noise levels, sequence lengths, and causal driving strengths. In addition, we employed the CMVGP-CCM method to explore the NVC between EEG and fNIRS signals collected from 26 healthy participants using a working memory (WM) task. Results revealed a significant causal effect of EEG signals, particularly the delta, theta, and alpha frequency bands, on the fNIRS signals during WM. This influence was notably observed in the frontal lobe, and its strength exhibited a decline as cognitive demands increased. This study illuminates the complex connections between brain electrical activity and cerebral blood flow, offering new insights into the underlying NVC mechanisms of WM.


Algorithms , Electroencephalography , Memory, Short-Term , Neurovascular Coupling , Spectroscopy, Near-Infrared , Humans , Electroencephalography/methods , Male , Female , Spectroscopy, Near-Infrared/methods , Adult , Normal Distribution , Neurovascular Coupling/physiology , Young Adult , Memory, Short-Term/physiology , Healthy Volunteers , Reproducibility of Results , Multivariate Analysis , Frontal Lobe/physiology , Frontal Lobe/diagnostic imaging , Brain Mapping/methods , Theta Rhythm/physiology , Brain/physiology , Brain/diagnostic imaging , Brain/blood supply , Nonlinear Dynamics , Delta Rhythm/physiology , Alpha Rhythm/physiology
3.
Crit Care Explor ; 6(5): e1094, 2024 May 01.
Article En | MEDLINE | ID: mdl-38727717

OBJECTIVES: Near-infrared spectroscopy (NIRS) is a potentially valuable modality to monitor the adequacy of oxygen delivery to the brain and other tissues in critically ill patients, but little is known about the physiologic determinants of NIRS-derived tissue oxygen saturations. The purpose of this study was to assess the contribution of routinely measured physiologic parameters to tissue oxygen saturation measured by NIRS. DESIGN: An observational sub-study of patients enrolled in the Role of Active Deresuscitation After Resuscitation-2 (RADAR-2) randomized feasibility trial. SETTING: Two ICUs in the United Kingdom. PATIENTS: Patients were recruited for the RADAR-2 study, which compared a conservative approach to fluid therapy and deresuscitation with usual care. Those included in this sub-study underwent continuous NIRS monitoring of cerebral oxygen saturations (SctO2) and quadriceps muscle tissue saturations (SmtO2). INTERVENTION: Synchronized and continuous mean arterial pressure (MAP), heart rate (HR), and pulse oximetry (oxygen saturation, Spo2) measurements were recorded alongside NIRS data. Arterial Paco2, Pao2, and hemoglobin concentration were recorded 12 hourly. Linear mixed effect models were used to investigate the association between these physiologic variables and cerebral and muscle tissue oxygen saturations. MEASUREMENTS AND MAIN RESULTS: Sixty-six patients were included in the analysis. Linear mixed models demonstrated that Paco2, Spo2, MAP, and HR were weakly associated with SctO2 but only explained 7.1% of the total variation. Spo2 and MAP were associated with SmtO2, but together only explained 0.8% of its total variation. The remaining variability was predominantly accounted for by between-subject differences. CONCLUSIONS: Our findings demonstrated that only a small proportion of variability in NIRS-derived cerebral and tissue oximetry measurements could be explained by routinely measured physiologic variables. We conclude that for NIRS to be a useful monitoring modality in critical care, considerable further research is required to understand physiologic determinants and prognostic significance.


Critical Illness , Oximetry , Oxygen Saturation , Spectroscopy, Near-Infrared , Humans , Spectroscopy, Near-Infrared/methods , Male , Female , Oxygen Saturation/physiology , Middle Aged , Aged , Oximetry/methods , Monitoring, Physiologic/methods , Brain/metabolism , Brain/blood supply , United Kingdom , Oxygen/metabolism , Oxygen/blood , Oxygen/analysis , Intensive Care Units , Quadriceps Muscle/metabolism , Quadriceps Muscle/blood supply
4.
Nat Commun ; 15(1): 3987, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734698

Despite advances in active drug targeting for blood-brain barrier penetration, two key challenges persist: first, attachment of a targeting ligand to the drug or drug carrier does not enhance its brain biodistribution; and second, many brain diseases are intricately linked to microcirculation disorders that significantly impede drug accumulation within brain lesions even after they cross the barrier. Inspired by the neuroprotective properties of vinpocetine, which regulates cerebral blood flow, we propose a molecular library design centered on this class of cyclic tertiary amine compounds and develop a self-enhanced brain-targeted nucleic acid delivery system. Our findings reveal that: (i) vinpocetine-derived ionizable-lipidoid nanoparticles efficiently breach the blood-brain barrier; (ii) they have high gene-loading capacity, facilitating endosomal escape and intracellular transport; (iii) their administration is safe with minimal immunogenicity even with prolonged use; and (iv) they have potent pharmacologic brain-protective activity and may synergize with treatments for brain disorders as demonstrated in male APP/PS1 mice.


Blood-Brain Barrier , Brain , Cerebrovascular Circulation , Nanoparticles , Vinca Alkaloids , Animals , Vinca Alkaloids/pharmacology , Vinca Alkaloids/pharmacokinetics , Vinca Alkaloids/administration & dosage , Vinca Alkaloids/chemistry , Nanoparticles/chemistry , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Mice , Cerebrovascular Circulation/drug effects , Male , Brain/metabolism , Brain/drug effects , Brain/blood supply , Humans , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/pharmacology , Mice, Inbred C57BL , Tissue Distribution , Drug Delivery Systems , Mice, Transgenic
6.
J R Soc Interface ; 21(213): 20230659, 2024 04.
Article En | MEDLINE | ID: mdl-38565158

The flow of cerebrospinal fluid (CSF) along perivascular spaces (PVSs) is an important part of the brain's system for clearing metabolic waste. Astrocyte endfeet bound the PVSs of penetrating arteries, separating them from brain extracellular space. Gaps between astrocyte endfeet might provide a low-resistance pathway for fluid transport across the wall. Recent studies suggest that the astrocyte endfeet function as valves that rectify the CSF flow, producing the net flow observed in pial PVSs by changing the size of the gaps in response to pressure changes. In this study, we quantify this rectification based on three features of the PVSs: the quasi-circular geometry, the deformable endfoot wall, and the pressure oscillation inside. We provide an analytical model, based on the thin-shell hoop-stress approximation, and predict a pumping efficiency of about 0.4, which would contribute significantly to the observed flow. When we add the flow resistance of the extracellular space (ECS) to the model, we find an increased net flow during sleep, due to the known increase in ECS porosity (decreased flow resistance) compared to that in the awake state. We corroborate our analytical model with three-dimensional fluid-solid interaction simulations.


Glymphatic System , Glymphatic System/physiology , Brain/blood supply , Arteries/physiology , Pressure , Biological Transport , Cerebrospinal Fluid/metabolism
7.
J Physiol ; 602(10): 2265-2285, 2024 May.
Article En | MEDLINE | ID: mdl-38632887

The mechanisms governing brain vascularization during development remain poorly understood. A key regulator of developmental vascularization is delta like 4 (DLL4), a Notch ligand prominently expressed in endothelial cells (EC). Exposure to hyperoxia in premature infants can disrupt the development and functions of cerebral blood vessels and lead to long-term cognitive impairment. However, its role in cerebral vascular development and the impact of postnatal hyperoxia on DLL4 expression in mouse brain EC have not been explored. We determined the DLL4 expression pattern and its downstream signalling gene expression in brain EC using Dll4+/+ and Dll4+/LacZ mice. We also performed in vitro studies using human brain microvascular endothelial cells. Finally, we determined Dll4 and Cldn5 expression in mouse brain EC exposed to postnatal hyperoxia. DLL4 is expressed in various cell types, with EC being the predominant one in immature brains. Moreover, DLL4 deficiency leads to persistent abnormalities in brain microvasculature and increased vascular permeability both in vivo and in vitro. We have identified that DLL4 insufficiency compromises endothelial integrity through the NOTCH-NICD-RBPJ-CLDN5 pathway, resulting in the downregulation of the tight junction protein claudin 5 (CLDN5). Finally, exposure to neonatal hyperoxia reduces DLL4 and CLDN5 expression in developing mouse brain EC. We reveal that DLL4 is indispensable for brain vascular development and maintaining the blood-brain barrier's function and is repressed by neonatal hyperoxia. We speculate that reduced DLL4 signalling in brain EC may contribute to the impaired brain development observed in neonates exposed to hyperoxia. KEY POINTS: The role of delta like 4 (DLL4), a Notch ligand in vascular endothelial cells, in brain vascular development and functions remains unknown. We demonstrate that DLL4 is expressed at a high level during postnatal brain development in immature brains and DLL4 insufficiency leads to abnormal cerebral vasculature and increases vascular permeability both in vivo and in vitro. We identify that DLL4  regulates endothelial integrity through NOTCH-NICD-RBPJ-CLDN5 signalling. Dll4 and Cldn5 expression are decreased in mouse brain endothelial cells exposed to postnatal hyperoxia.


Adaptor Proteins, Signal Transducing , Animals, Newborn , Calcium-Binding Proteins , Claudin-5 , Endothelial Cells , Hyperoxia , Receptors, Notch , Signal Transduction , Animals , Hyperoxia/metabolism , Claudin-5/metabolism , Claudin-5/genetics , Mice , Humans , Endothelial Cells/metabolism , Receptors, Notch/metabolism , Receptors, Notch/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Brain/metabolism , Brain/blood supply , Brain/growth & development , Mice, Inbred C57BL , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cells, Cultured
8.
Physiol Meas ; 45(4)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38569522

Objective. The continuous delivery of oxygen is critical to sustain brain function, and therefore, measuring brain oxygen consumption can provide vital physiological insight. In this work, we examine the impact of calibration and cerebral blood flow (CBF) measurements on the computation of the relative changes in the cerebral metabolic rate of oxygen consumption (rCMRO2) from hemoglobin-sensitive intrinsic optical imaging data. Using these data, we calculate rCMRO2, and calibrate the model using an isometabolic stimulus.Approach. We used awake head-fixed rodents to obtain hemoglobin-sensitive optical imaging data to test different calibrated and uncalibrated rCMRO2models. Hypercapnia was used for calibration and whisker stimulation was used to test the impact of calibration.Main results. We found that typical uncalibrated models can provide reasonable estimates of rCMRO2with differences as small as 7%-9% compared to their calibrated models. However, calibrated models showed lower variability and less dependence on baseline hemoglobin concentrations. Lastly, we found that supplying the model with measurements of CBF significantly reduced error and variability in rCMRO2change calculations.Significance. The effect of calibration on rCMRO2calculations remains understudied, and we systematically evaluated different rCMRO2calculation scenarios that consider including different measurement combinations. This study provides a quantitative comparison of these scenarios to evaluate trade-offs that can be vital to the design of blood oxygenation sensitive imaging experiments for rCMRO2calculation.


Brain , Optical Imaging , Oxygen Consumption , Oxygen , Wakefulness , Animals , Calibration , Mice , Brain/metabolism , Brain/diagnostic imaging , Brain/blood supply , Oxygen/metabolism , Wakefulness/physiology , Oxygen Consumption/physiology , Cerebrovascular Circulation/physiology , Hemoglobins/metabolism , Hemoglobins/analysis , Male , Mice, Inbred C57BL , Hypercapnia/metabolism , Hypercapnia/diagnostic imaging
9.
Curr Med Imaging ; 20: e15734056219963, 2024.
Article En | MEDLINE | ID: mdl-38660947

BACKGROUND: A contrast agent-free approach would be preferable to the frequently used invasive approaches for evaluating cerebral perfusion in chronic migraineurs (CM). In this work, non-invasive quantitative volumetric perfusion imaging was used to evaluate alterations in cerebral perfusion in CM. METHODS: We used conventional brain structural imaging sequences and 3D pseudo-continuous arterial spin labeling (3D PCASL) to examine thirteen CM patients and fifteen normal controls (NCs). The entire brain gray matter underwent voxel-based analysis, and the cerebral blood flow (CBF) values of the altered positive areas were retrieved to look into the clinical variables' significant correlation. RESULTS: Brain regions with the decreased perfusion were located in the left postcentral gyrus, bilateral middle frontal gyrus, left middle occipital gyrus, left superior parietal lobule, left medial segment of superior frontal gyrus, and right orbital part of the inferior frontal gyrus. White matter fibers with decreased perfusion were located in bilateral superior longitudinal tracts, superior corona radiata, external capsules, anterior and posterior limbs of the internal capsule, anterior corona radiata, inferior longitudinal fasciculus, and right corticospinal tract. However, the correlation analysis showed no significant correlation between the CBF value of the above positive brain regions with clinical variables (p > 0.05). CONCLUSION: The current study provided more useful information to comprehend the pathophysiology of CM and revealed a new insight into the neural mechanism of CM from the pattern of cerebral hypoperfusion.


Cerebrovascular Circulation , Migraine Disorders , Spin Labels , Humans , Cerebrovascular Circulation/physiology , Migraine Disorders/diagnostic imaging , Migraine Disorders/physiopathology , Female , Adult , Male , Imaging, Three-Dimensional/methods , Chronic Disease , Middle Aged , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/blood supply , Brain/physiopathology , Case-Control Studies , Gray Matter/diagnostic imaging , Gray Matter/blood supply
10.
PLoS One ; 19(4): e0296357, 2024.
Article En | MEDLINE | ID: mdl-38578749

OBJECTIVE: Quantitative values derived from PET brain images are of high interest for neuroscientific applications. Insufficient DT correction (DTC) can lead to a systematic bias of the output parameters obtained by a detailed analysis of the time activity curves (TACs). The DTC method currently used for the Siemens 3T MR BrainPET insert is global, i.e., differences in DT losses between detector blocks are not considered, leading to inaccurate DTC and, consequently, to inaccurate measurements masked by a bias. However, following careful evaluation with phantom measurements, a new block-pairwise DTC method has demonstrated a higher degree of accuracy compared to the global DTC method. APPROACH: Differences between the global and the block-pairwise DTC method were studied in this work by applying several radioactive tracers. We evaluated the impact on [11C]ABP688, O-(2-[18F]fluoroethyl)-L-tyrosine (FET), and [15O]H2O TACs. RESULTS: For [11C]ABP688, a relevant bias of between -0.0034 and -0.0053 ml/ (cm3 • min) was found in all studied brain regions for the volume of distribution (VT) when using the current global DTC method. For [18F]FET-PET, differences of up to 10% were observed in the tumor-to-brain ratio (TBRmax), these differences depend on the radial distance of the maximum from the PET isocenter. For [15O]H2O, differences between +4% and -7% were observed in the GM region. Average biases of -4.58%, -3.2%, and -1.2% for the regional cerebral blood flow (CBF (K1)), the rate constant k2, and the volume of distribution VT were observed, respectively. Conversely, in the white matter region, average biases of -4.9%, -7.0%, and 3.8% were observed for CBF (K1), k2, and VT, respectively. CONCLUSION: The bias introduced by the global DTC method leads to an overestimation in the studied quantitative parameters for all applications compared to the block-pairwise method. SIGNIFICANCE: The observed differences between the two DTC methods are particularly relevant for research applications in neuroscientific studies as they affect the accuracy of quantitative Brain PET images.


Brain , Oximes , Positron-Emission Tomography , Pyridines , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Brain/blood supply , Phantoms, Imaging , Head , Magnetic Resonance Imaging
11.
Fluids Barriers CNS ; 21(1): 32, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38584257

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which is associated with various neurological symptoms, including nausea, dizziness, headache, encephalitis, and epileptic seizures. SARS-CoV-2 is considered to affect the central nervous system (CNS) by interacting with the blood-brain barrier (BBB), which is defined by tight junctions that seal paracellular gaps between brain microvascular endothelial cells (BMECs). Although SARS-CoV-2 infection of BMECs has been reported, the detailed mechanism has not been fully elucidated. METHODS: Using the original strain of SARS-CoV-2, the infection in BMECs was confirmed by a detection of intracellular RNA copy number and localization of viral particles. BMEC functions were evaluated by measuring transendothelial electrical resistance (TEER), which evaluates the integrity of tight junction dynamics, and expression levels of proinflammatory genes. BMEC signaling pathway was examined by comprehensive RNA-seq analysis. RESULTS: We observed that iPSC derived brain microvascular endothelial like cells (iPSC-BMELCs) were infected with SARS-CoV-2. SARS-CoV-2 infection resulted in decreased TEER. In addition, SARS-CoV-2 infection decreased expression levels of tight junction markers CLDN3 and CLDN11. SARS-CoV-2 infection also increased expression levels of proinflammatory genes, which are known to be elevated in patients with COVID-19. Furthermore, RNA-seq analysis revealed that SARS-CoV-2 dysregulated the canonical Wnt signaling pathway in iPSC-BMELCs. Modulation of the Wnt signaling by CHIR99021 partially inhibited the infection and the subsequent inflammatory responses. CONCLUSION: These findings suggest that SARS-CoV-2 infection causes BBB dysfunction via Wnt signaling. Thus, iPSC-BMELCs are a useful in vitro model for elucidating COVID-19 neuropathology and drug development.


COVID-19 , Induced Pluripotent Stem Cells , Humans , SARS-CoV-2 , Wnt Signaling Pathway , Endothelial Cells/metabolism , Induced Pluripotent Stem Cells/physiology , Brain/blood supply , Blood-Brain Barrier/metabolism
12.
J Math Biol ; 88(6): 69, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664246

Flow in a porous medium can be driven by the deformations of the boundaries of the porous domain. Such boundary deformations locally change the volume fraction accessible by the fluid, creating non-uniform porosity and permeability throughout the medium. In this work, we construct a deformation-driven porous medium transport model with spatially and temporally varying porosity and permeability that are dependent on the boundary deformations imposed on the medium. We use this model to study the transport of interstitial fluid along the basement membranes in the arterial walls of the brain. The basement membrane is modeled as a deforming annular porous channel with the compressible pore space filled with an incompressible, Newtonian fluid. The role of a forward propagating peristaltic heart pulse wave and a reverse smooth muscle contraction wave on the flow within the basement membranes is investigated. Our results identify combinations of wave amplitudes that can induce either forward or reverse transport along these transport pathways in the brain. The magnitude and direction of fluid transport predicted by our model can help in understanding the clearance of fluids and solutes along the Intramural Periarterial Drainage route and the pathology of cerebral amyloid angiopathy.


Brain , Extracellular Fluid , Extracellular Fluid/metabolism , Extracellular Fluid/physiology , Porosity , Humans , Brain/metabolism , Brain/blood supply , Brain/physiology , Basement Membrane/metabolism , Basement Membrane/physiology , Mathematical Concepts , Biological Transport/physiology , Models, Biological , Computer Simulation , Models, Neurological , Animals , Permeability
13.
Neurobiol Aging ; 139: 5-10, 2024 Jul.
Article En | MEDLINE | ID: mdl-38579393

Cerebrovascular reactivity (CVR) deficits may contribute to small vessel disease, such as white matter hyperintensities (WMH). Moreover, apolipoprotein-e4 (APOE4) carriers at genetic risk for Alzheimer's disease exhibit cerebrovascular dysfunction relative to non-carriers. We examined whether older adults, and APOE4 carriers specifically, with diminished CVR would exhibit higher WMH burden. Independently living older adults (N = 125, mean age = 69.2 years; SD = 7.6; 31.2% male) free of dementia or clinical stroke underwent brain MRI to quantify cerebral perfusion during CVR to hypercapnia and hypocapnia and determine WMH volume. Adjusting for age, sex and intracranial volume, hierarchical regression analysis revealed a significant association between whole brain CVR to hypercapnia and WMH overall [B = -.02, 95% CI (-.04, -.008), p =.003] and in APOE4 carriers [B = -.03, 95% CI (-.06, -.009), p =.009]. Findings suggest deficits in cerebral vasodilatory capacity are associated with WMH burden in older adults and future studies are warranted to further delineate the effect of APOE4 on precipitating WMH.


Apolipoprotein E4 , Cerebrovascular Circulation , Magnetic Resonance Imaging , White Matter , Humans , Male , Female , Aged , White Matter/diagnostic imaging , White Matter/pathology , Apolipoprotein E4/genetics , Middle Aged , Aging/pathology , Aging/physiology , Heterozygote , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology , Brain/blood supply , Hypercapnia/physiopathology , Hypercapnia/diagnostic imaging , Risk , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/pathology
14.
J Physiol ; 602(9): 1953-1966, 2024 May.
Article En | MEDLINE | ID: mdl-38630963

Dynamic cerebral autoregulation (dCA) is the mechanism that describes how the brain maintains cerebral blood flow approximately constant in response to short-term changes in arterial blood pressure. This is known to be impaired in many different pathological conditions, including ischaemic and haemorrhagic stroke, dementia and traumatic brain injury. Many different approaches have thus been used both to analyse and to quantify this mechanism in a range of healthy and diseased subjects, including data-driven models (in both the time and the frequency domain) and biophysical models. However, despite the substantial body of work on both biophysical models and data-driven models of dCA, there remains little work that links the two together. One of the reasons for this is proposed to be the discrepancies between the time constants that govern dCA in models and in experimental data. In this study, the processes that govern dCA are examined and it is proposed that the application of biophysical models remains limited due to a lack of understanding about the physical processes that are being modelled, partly due to the specific model formulation that has been most widely used (the equivalent electrical circuit). Based on the analysis presented here, it is proposed that the two most important time constants are arterial transit time and feedback time constant. It is therefore time to revisit equivalent electrical circuit models of dCA and to develop a more physiologically realistic alternative, one that can more easily be related to experimental data. KEY POINTS: Dynamic cerebral autoregulation is governed by two time constants. The first time constant is the arterial transit time, rather than the traditional 'RC' time constant widely used in previous models. This arterial transit time is approximately 1 s in the brain. The second time constant is the feedback time constant, which is less accurately known, although it is somewhat larger than the arterial transit time. The equivalent electrical circuit model of dynamic cerebral autoregulation should be replaced with a more physiologically representative model.


Cerebrovascular Circulation , Homeostasis , Homeostasis/physiology , Cerebrovascular Circulation/physiology , Humans , Feedback, Physiological , Models, Cardiovascular , Brain/physiology , Brain/blood supply , Animals
15.
Nature ; 628(8009): 863-871, 2024 Apr.
Article En | MEDLINE | ID: mdl-38570687

Vertebrate organs require locally adapted blood vessels1,2. The gain of such organotypic vessel specializations is often deemed to be molecularly unrelated to the process of organ vascularization. Here, opposing this model, we reveal a molecular mechanism for brain-specific angiogenesis that operates under the control of Wnt7a/b ligands-well-known blood-brain barrier maturation signals3-5. The control mechanism relies on Wnt7a/b-dependent expression of Mmp25, which we find is enriched in brain endothelial cells. CRISPR-Cas9 mutagenesis in zebrafish reveals that this poorly characterized glycosylphosphatidylinositol-anchored matrix metalloproteinase is selectively required in endothelial tip cells to enable their initial migration across the pial basement membrane lining the brain surface. Mechanistically, Mmp25 confers brain invasive competence by cleaving meningeal fibroblast-derived collagen IV α5/6 chains within a short non-collagenous region of the central helical part of the heterotrimer. After genetic interference with the pial basement membrane composition, the Wnt-ß-catenin-dependent organotypic control of brain angiogenesis is lost, resulting in properly patterned, yet blood-brain-barrier-defective cerebrovasculatures. We reveal an organ-specific angiogenesis mechanism, shed light on tip cell mechanistic angiodiversity and thereby illustrate how organs, by imposing local constraints on angiogenic tip cells, can select vessels matching their distinctive physiological requirements.


Brain , Neovascularization, Physiologic , Animals , Basement Membrane/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/cytology , Brain/cytology , Brain/blood supply , Brain/metabolism , Cell Movement , Collagen Type IV/metabolism , CRISPR-Cas Systems/genetics , Endothelial Cells/metabolism , Endothelial Cells/cytology , Meninges/cytology , Meninges/blood supply , Meninges/metabolism , Organ Specificity , Wnt Proteins/metabolism , Wnt Signaling Pathway , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics
16.
Sci Rep ; 14(1): 6060, 2024 03 13.
Article En | MEDLINE | ID: mdl-38480803

The cerebral arteries, specifically the anterior cerebral artery (ACA) and posterior cerebral artery (PCA), work together with the smaller calibre arteries to provide effective communication between the anterior and posterior circuits of the brain via the circle of Willis (CoW). Morphologic variations of the cerebral arteries and the CoW may alter blood flow to the brain, resulting in intracranial vascular disorders associated with stroke, and aneurysms. This study aimed to document the morphology of the cerebral arteries and the CoW in the South African population. Two hundred and thirty-nine computed tomography angiography scans were assessed. Cerebral arteries and CoW normal morphology and variations were classified as complete, absent, or hypoplastic. The ACA A1 was absent in 4.91%, hypoplastic in 30.40%, fenestrated in 1.06%, and typical in 63.6%. The ACA A2 was absent in 0.42%, hypoplastic in 26.28%, and typical in 69.44%. We found triple ACA A2 in 2.98%, azygos in 1.28% and fenestrated in 1.28%. The middle cerebral artery (MCA) was hypoplastic in 7.35% and typical in 92.64%. The PCA was hypoplastic in 28.74% and typical in 71.25%. Knowledge of the configuration of the CoW plays a significant role in guiding therapeutic decision-making in treating various neurovascular pathologies.


Brain , Cerebral Arteries , Humans , South Africa , Cerebral Arteries/diagnostic imaging , Cerebral Arteries/anatomy & histology , Brain/blood supply , Circle of Willis/diagnostic imaging , Middle Cerebral Artery , Cerebral Angiography
17.
Neuroradiology ; 66(5): 749-759, 2024 May.
Article En | MEDLINE | ID: mdl-38498208

PURPOSE: CT perfusion of the brain is a powerful tool in stroke imaging, though the radiation dose is rather high. Several strategies for dose reduction have been proposed, including increasing the intervals between the dynamic scans. We determined the impact of temporal resolution on perfusion metrics, therapy decision, and radiation dose reduction in brain CT perfusion from a large dataset of patients with suspected stroke. METHODS: We retrospectively included 3555 perfusion scans from our clinical routine dataset. All cases were processed using the perfusion software VEOcore with a standard sampling of 1.5 s, as well as simulated reduced temporal resolution of 3.0, 4.5, and 6.0 s by leaving out respective time points. The resulting perfusion maps and calculated volumes of infarct core and mismatch were compared quantitatively. Finally, hypothetical decisions for mechanical thrombectomy following the DEFUSE-3 criteria were compared. RESULTS: The agreement between calculated volumes for core (ICC = 0.99, 0.99, and 0.98) and hypoperfusion (ICC = 0.99, 0.99, and 0.97) was excellent for all temporal sampling schemes. Of the 1226 cases with vascular occlusion, 14 (1%) for 3.0 s sampling, 23 (2%) for 4.5 s sampling, and 63 (5%) for 6.0 s sampling would have been treated differently if the DEFUSE-3 criteria had been applied. Reduction of temporal resolution to 3.0 s, 4.5 s, and 6.0 s reduced the radiation dose by a factor of 2, 3, or 4. CONCLUSION: Reducing the temporal sampling of brain perfusion CT has only a minor impact on image quality and treatment decision, but significantly reduces the radiation dose to that of standard non-contrast CT.


Brain Ischemia , Stroke , Humans , Retrospective Studies , Drug Tapering , Stroke/diagnostic imaging , Stroke/therapy , Brain/diagnostic imaging , Brain/blood supply , Tomography, X-Ray Computed/methods , Brain Ischemia/therapy , Perfusion , Perfusion Imaging/methods
18.
Sci Rep ; 14(1): 7252, 2024 03 27.
Article En | MEDLINE | ID: mdl-38538633

Cerebrovascular Reactivity (CVR) refers to the ability of cerebral blood vessels to dilate or constrict under the effect of vasoactive substances and can be estimated using functional Magnetic Resonance Imaging (fMRI). Computation of CVR maps is relevant in various brain diseases and requires specialized data processing. We introduce CVRmap, an opensource software that automates the computation of CVR map. The toolbox complies with the Brain Imaging Data Structure (BIDS) standards.


Brain Diseases , Cerebrovascular Circulation , Humans , Magnetic Resonance Imaging/methods , Angiography , Head , Brain/diagnostic imaging , Brain/blood supply , Brain Mapping
19.
Sci Rep ; 14(1): 7322, 2024 03 27.
Article En | MEDLINE | ID: mdl-38538842

Dynamic susceptibility contrast (DSC) MRI plays a pivotal role in the accurate diagnosis and prognosis of several neurovascular diseases, but is limited by its reliance on gadolinium, an intravascularly injected chelated metal. Here, we determined the feasibility of measuring perfusion using a DSC analysis of breath-hold-induced gradient-echo-MRI signal changes. We acquired data at both 3 T and 7 T from ten healthy participants who engaged in eight consecutive breath-holds. By pairing a novel arterial input function strategy with a standard DSC MRI analysis, we measured the cerebral blood volume, flow, and transit delay, and found values to agree with those documented in the literature using gadolinium. We also observed voxel-wise agreement between breath-hold and arterial spin labeling measures of cerebral blood flow. Breath-holding resulted in significantly higher contrast-to-noise (6.2 at 3 T vs. 8.5 at 7 T) and gray matter-to-white matter contrast at higher field strength. Finally, using a simulation framework to assess the effect of dynamic vasodilation on perfusion estimation, we found global perfusion underestimation of 20-40%. For the first time, we have assessed the feasibility of and limitations associated with using breath-holds for perfusion estimation with DSC. We hope that the methods and results presented in this study will help pave the way toward contrast-free perfusion imaging, in both basic and clinical research.


Contrast Media , Gadolinium , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/blood supply , Perfusion , Cerebrovascular Circulation
20.
Am J Physiol Heart Circ Physiol ; 326(5): H1291-H1303, 2024 May 01.
Article En | MEDLINE | ID: mdl-38517228

Increasing evidence indicates the role of mitochondrial and vascular dysfunction in aging and aging-associated pathologies; however, the exact mechanisms and chronological processes remain enigmatic. High-energy demand organs, such as the brain, depend on the health of their mitochondria and vasculature for the maintenance of normal functions, therefore representing vulnerable targets for aging. This methodology article describes an analysis pipeline for three-dimensional (3-D) mitochondria-associated signal geometry of two-photon image stacks of brain vasculature. The analysis methods allow the quantification of mitochondria-associated signals obtained in real time in their physiological environment. In addition, signal geometry results will allow the extrapolation of fission and fusion events under normal conditions, during aging, or in the presence of different pathological conditions, therefore contributing to our understanding of the role mitochondria play in a variety of aging-associated diseases with vascular etiology.NEW & NOTEWORTHY Analysis pipeline for 3-D mitochondria-associated signal geometry of two-photon image stacks of brain vasculature.


Imaging, Three-Dimensional , Mitochondria , Mitochondria/metabolism , Animals , Microscopy, Fluorescence, Multiphoton/methods , Endothelial Cells/metabolism , Mitochondrial Dynamics , Brain/blood supply , Brain/metabolism , Mice , Aging/metabolism
...