Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 564
Filtrar
1.
Medicine (Baltimore) ; 103(38): e38049, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39312366

RESUMEN

This study aimed to investigate and compare the neurophysiological impacts of two widely used anesthetic agents, Fentanyl and Ketamine, on EEG power spectra during different stages of anesthesia in adult patients undergoing minimally invasive surgery. EEG data were collected from patients undergoing anesthesia with either Fentanyl or Ketamine. The data were analyzed for relative power spectrum and fast-to-slow wave power ratios, alongside Spectral Edge Frequency 95% (SEF95), at 3 key stages: pre-anesthesia, during stable anesthesia, and post-anesthesia. EEG Relative Power Spectrum: Initially, both groups exhibited similar EEG spectral profiles, establishing a uniform baseline (P > .05). Upon anesthesia induction, the Fentanyl group showed a substantial increase in delta band power (P < .05), suggesting deeper anesthesia, while the Ketamine group maintained higher alpha and beta band activity (P < .05), indicative of a lighter sedative effect. Fast and Slow Wave Power Ratios: The Fentanyl group exhibited a marked reduction in the fast-to-slow wave power ratio during anesthesia (P < .05), persisting post-anesthesia (P < .05) and indicating a lingering effect on brain activity. Conversely, the Ketamine group demonstrated a more stable ratio (P > .05), conducive to settings requiring rapid cognitive recovery. Spectral Edge Frequency 95% (SEF95): Analysis showed a significant decrease in SEF95 values for the Fentanyl group during anesthesia (P < .05), reflecting a shift towards lower frequency power. The Ketamine group experienced a less pronounced decrease (P > .05), maintaining a higher SEF95 value that suggested a lighter level of sedation. The study highlighted the distinct impacts of Fentanyl and Ketamine on EEG power spectra, with Fentanyl inducing deeper anesthesia as evidenced by shifts towards lower frequency activity and a significant decrease in SEF95 values. In contrast, Ketamine's preservation of higher frequency activity and more stable SEF95 values suggests a lighter, more dissociative anesthetic state. These findings emphasize the importance of EEG monitoring in anesthesia for tailoring anesthetic protocols to individual patient needs and optimizing postoperative outcomes.


Asunto(s)
Electroencefalografía , Fentanilo , Ketamina , Procedimientos Quirúrgicos Mínimamente Invasivos , Humanos , Ketamina/administración & dosificación , Fentanilo/administración & dosificación , Masculino , Femenino , Adulto , Electroencefalografía/métodos , Electroencefalografía/efectos de los fármacos , Persona de Mediana Edad , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Ondas Encefálicas/efectos de los fármacos , Anestésicos Intravenosos/administración & dosificación , Anestésicos Disociativos/administración & dosificación
2.
eNeuro ; 11(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39256042

RESUMEN

Spike-and-wave discharges (SWDs) and sleep spindles are characteristic electroencephalographic (EEG) hallmarks of absence seizures and nonrapid eye movement sleep, respectively. They are commonly generated by the cortico-thalamo-cortical network including the thalamic reticular nucleus (TRN). It has been reported that SWD development is accompanied by a decrease in sleep spindle density in absence seizure patients and animal models. However, whether the decrease in sleep spindle density precedes, coincides with, or follows, the SWD development remains unknown. To clarify this, we exploited Pvalb-tetracycline transactivator (tTA)::tetO-ArchT (PV-ArchT) double-transgenic mouse, which can induce an absence seizure phenotype in a time-controllable manner by expressing ArchT in PV neurons of the TRN. In these mice, EEG recordings demonstrated that a decrease in sleep spindle density occurred 1 week before the onset of typical SWDs, with the expression of ArchT. To confirm such temporal relationship observed in these genetic model mice, we used a gamma-butyrolactone (GBL) pharmacological model of SWDs. Prior to GBL administration, we administered caffeine to wild-type mice for 3 consecutive days to induce a decrease in sleep spindle density. We then administered low-dose GBL, which cannot induce SWDs in normally conditioned mice but led to the occurrence of SWDs in caffeine-conditioned mice. These findings indicate a temporal relationship in which the decrease in sleep spindle density consistently precedes SWD development. Furthermore, the decrease in sleep spindle activity may have a role in facilitating the development of SWDs. Our findings suggest that sleep spindle reductions could serve as early indicators of seizure susceptibility.


Asunto(s)
Electroencefalografía , Ratones Transgénicos , Sueño , Animales , Sueño/fisiología , Masculino , Ratones , Epilepsia Tipo Ausencia/fisiopatología , Epilepsia Tipo Ausencia/genética , Modelos Animales de Enfermedad , Fases del Sueño/fisiología , Fases del Sueño/efectos de los fármacos , Cafeína/farmacología , Ratones Endogámicos C57BL , Factores de Tiempo , Ondas Encefálicas/fisiología , Ondas Encefálicas/efectos de los fármacos
3.
Exp Mol Pathol ; 139: 104921, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39096892

RESUMEN

Seizures are neurological disorders triggered by an imbalance in the activity of excitatory and inhibitory neurotransmitters in the brain. When triggered chronically, this imbalance can lead to epilepsy. Critically, many of the affected individuals are refractory to treatment. Given this, anti-inflammatory drugs, in particular glucocorticoids, have been considered as a potential antiepileptogenic therapy. Glucocorticoids are currently used in the treatment of refractory patients, although there have been contradictory results in terms of their use in association with antiepileptic drugs, which reinforces the need for a more thorough investigation of their effects. In this context, the present study evaluated the effects of dexamethasone (DEX, 0.6 mg/kg) on the electroencephalographic (EEG) and histopathological parameters of male Wistar rats submitted to acute seizure induced by pentylenetetrazol (PTZ). The EEG monitoring revealed that DEX reduced the total brainwave power, in comparison with PTZ, in 12 h after the convulsive episode, exerting this effect in up to 36 h (p < 0.05 for all comparisons). An increase in the accommodation of the oscillations of the delta, alpha, and gamma frequencies was also observed from the first 12 h onwards, with the accommodation of the theta frequency occurring after 36 h, and that of the beta frequency 24 h after the seizure. The histopathological analyses showed that the CA3 region and hilum of the hippocampus suffered cell loss after the PTZ-induced seizure (control vs. PTZ, p < 0.05), although DEX was not able to protect these regions against cell death (PTZ vs. DEX + PTZ, p > 0.05). While DEX did not reverse the cell damage caused by PTZ, the data indicate that DEX has beneficial properties in the EEG analysis, which makes it a promising candidate for the attenuation of the epileptiform wave patterns that can precipitate refractory seizures.


Asunto(s)
Ondas Encefálicas , Dexametasona , Electroencefalografía , Pentilenotetrazol , Ratas Wistar , Convulsiones , Animales , Dexametasona/farmacología , Dexametasona/efectos adversos , Pentilenotetrazol/toxicidad , Convulsiones/tratamiento farmacológico , Convulsiones/inducido químicamente , Convulsiones/fisiopatología , Masculino , Ratas , Ondas Encefálicas/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/fisiopatología , Anticonvulsivantes/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/fisiopatología
4.
Int J Neuropsychopharmacol ; 27(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39096235

RESUMEN

BACKGROUND: "Metacontrol" describes the ability to maintain an optimal balance between cognitive control styles that are either more persistent or more flexible. Recent studies have shown a link between metacontrol and aperiodic EEG patterns. The present study aimed to gain more insight into the neurobiological underpinnings of metacontrol by using methylphenidate (MPH), a compound known to increase postsynaptic catecholamine levels and modulate cortical noise. METHODS: In a double-blind, randomized, placebo-controlled study design, we investigated the effect of MPH (0.5 mg/kg) on aperiodic EEG activity during a flanker task in a sample of n = 25 neurotypical adults. To quantify cortical noise, we employed the fitting oscillations and one over f algorithm. RESULTS: Compared with placebo, MPH increased the aperiodic exponent, suggesting that it reduces cortical noise in 2 ways. First, it did so in a state-like fashion, as the main effect of the drug was visible and significant in both pre-trial and within-trial periods. Second, the electrode-specific analyses showed that the drug also affects specific processes by dampening the downregulation of noise in conditions requiring more control. CONCLUSIONS: Our findings suggest that the aperiodic exponent provides a neural marker of metacontrol states and changes therein. Further, we propose that the effectiveness of medications targeting catecholaminergic signaling can be evaluated by studying changes of cortical noise, fostering the idea of using the quantification of cortical noise as an indicator in pharmacological treatment.


Asunto(s)
Electroencefalografía , Metilfenidato , Humanos , Método Doble Ciego , Metilfenidato/farmacología , Masculino , Adulto , Femenino , Electroencefalografía/efectos de los fármacos , Adulto Joven , Estimulantes del Sistema Nervioso Central/farmacología , Catecolaminas/metabolismo , Ondas Encefálicas/efectos de los fármacos
5.
Brain Res ; 1842: 149118, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38986828

RESUMEN

Abnormal patterns of brain connectivity characterize epilepsy. However, little is known about these patterns during the stages preceding a seizure induced by pentylenetetrazol (PTZ). To investigate brain connectivity in male Wistar rats during the preictal phase of PTZ-induced seizures (60 mg/kg), we recorded local field potentials in the primary motor (M1) cortex, the ventral anterior (VA) nucleus of the thalamus, the hippocampal CA1 area, and the dentate gyrus (DG) during the baseline period and after PTZ administration. While there were no changes in power density between the baseline and preictal periods, we observed an increase in directional functional connectivity in theta from the hippocampal formation to M1 and VA, as well as in middle gamma from DG to CA1 and from CA1 to M1, and also in slow gamma from M1 to CA1. These findings are supported by increased phase coherence between DG-M1 in theta and CA1-M1 in middle gamma, as well as enhanced phase-amplitude coupling of delta-middle gamma in M1 and delta-fast gamma in CA1. Interestingly, we also noted a slight decrease in phase synchrony between CA1 and VA in slow gamma. Together, these results demonstrate increased functional connectivity between brain regions during the PTZ-induced preictal period, with this increase being particularly driven by the hippocampal formation.


Asunto(s)
Encéfalo , Pentilenotetrazol , Ratas Wistar , Convulsiones , Animales , Pentilenotetrazol/farmacología , Masculino , Convulsiones/inducido químicamente , Convulsiones/fisiopatología , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Ratas , Vías Nerviosas/fisiopatología , Vías Nerviosas/efectos de los fármacos , Modelos Animales de Enfermedad , Electroencefalografía/métodos , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/fisiopatología , Convulsivantes/toxicidad , Convulsivantes/farmacología , Ondas Encefálicas/efectos de los fármacos , Ondas Encefálicas/fisiología , Corteza Motora/efectos de los fármacos , Corteza Motora/fisiopatología
6.
Biomed Pharmacother ; 176: 116771, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795639

RESUMEN

Anxiety-like conditions can interfere with daily activities as the adaptive mechanism fails to cope with stress. These conditions are often linked with increased oxidative stress, and abrupt neurotransmission and electroencephalography (EEG) wave pattern. Geraniol, a monoterpenoid, has antioxidant and anti-inflammatory activities, as well as brain-calming effects. Therefore, in this study, geraniol was tested for the potential anxiolytic effects in a rat model of anxiety. The rats were exposed to an electric foot shock (1 mA for 1 s) to develop anxiety-like symptoms. Treatment was carried out using geraniol (10 and 30 mg/kg) and the standard diazepam drug. The behavior of the rats was analyzed using the open field test, light-dark test, and social interaction test. Afterward, the rats were decapitated to collect samples for neurochemical and biochemical analyses. The cortical-EEG wave pattern was also obtained. The study revealed that the electric foot shock induced anxiety-like symptoms, increased oxidative stress, and altered hippocampal neurotransmitter levels. The power of low-beta and high-beta was amplified with the increased coupling of delta-beta waves in anxiety group. However, the treatment with geraniol and diazepam normalized cortical-EEG wave pattern and hippocampal serotonin and catecholamines profile which was also reflected by reduced anxious behavior and normalized antioxidant levels. The study reports an anxiolytic potential of geraniol, which can be further explored in future.


Asunto(s)
Monoterpenos Acíclicos , Ansiolíticos , Ansiedad , Conducta Animal , Electroencefalografía , Hipocampo , Estrés Oxidativo , Ratas Wistar , Transmisión Sináptica , Animales , Monoterpenos Acíclicos/farmacología , Estrés Oxidativo/efectos de los fármacos , Ansiedad/tratamiento farmacológico , Masculino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ansiolíticos/farmacología , Ratas , Transmisión Sináptica/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Electrochoque , Antioxidantes/farmacología , Terpenos/farmacología , Diazepam/farmacología , Modelos Animales de Enfermedad , Ondas Encefálicas/efectos de los fármacos
7.
Pediatr Neurol ; 156: 41-50, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729071

RESUMEN

BACKGROUND: The decision to treat children with benign epilepsy with centrotemporal spikes (BECTS) using antiseizure medications (ASM) is controversial. Our goal is to compare the effect of ASM treatment on the alteration of electroencephalographic (EEG) functional connectivity and power across four frequency bands in children with BECTS. METHODS: Children with BECTS with two-year follow-up were retrospectively divided into ASM versus non-ASM groups. The network properties of the EEGs as based on network-based statistic and graph theory were evaluated by the following indices: global efficiency, clustering coefficient, betweenness centrality, and nodal strength in four frequency bands (delta, theta, alpha, and beta). EEG power including absolute power (AP) and relative power (RP) was analyzed in four frequency bands. RESULTS: In children with BECTS with ASM treatment, there was no significant change in EEG connectivity across all bands before and after two years of ASM. In children with BECTS without ASM treatment, there was a significant increase of global efficiency, clustering coefficient, and nodal strength but not the betweenness centrality in the delta band after two years of follow-up. A decrease in AP in the delta and theta bands and a decrease in RP in the theta band were found in the ASM group after two years of treatment. CONCLUSIONS: Our results suggest that ASM may play a role in modulating the development of increasing overall brain connectivity and in downregulating overt synaptic activity, but not intrinsic focal connectivity, in the early years of BECTS. The changes in the EEG power indicate that ASM significantly normalized slow-wave band power.


Asunto(s)
Anticonvulsivantes , Electroencefalografía , Epilepsia Rolándica , Humanos , Epilepsia Rolándica/tratamiento farmacológico , Epilepsia Rolándica/fisiopatología , Femenino , Niño , Masculino , Anticonvulsivantes/farmacología , Estudios Retrospectivos , Preescolar , Estudios de Seguimiento , Ondas Encefálicas/efectos de los fármacos , Ondas Encefálicas/fisiología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiopatología , Encéfalo/fisiopatología , Encéfalo/efectos de los fármacos
8.
Neuroimage ; 292: 120606, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38604538

RESUMEN

Radon is a naturally occurring gas that contributes significantly to radiation in the environment and is the second leading cause of lung cancer globally. Previous studies have shown that other environmental toxins have deleterious effects on brain development, though radon has not been studied as thoroughly in this context. This study examined the impact of home radon exposure on the neural oscillatory activity serving attention reorientation in youths. Fifty-six participants (ages 6-14 years) completed a classic Posner cuing task during magnetoencephalography (MEG), and home radon levels were measured for each participant. Time-frequency spectrograms indicated stronger theta (3-7 Hz, 300-800 ms), alpha (9-13 Hz, 400-900 ms), and beta responses (14-24 Hz, 400-900 ms) during the task relative to baseline. Source reconstruction of each significant oscillatory response was performed, and validity maps were computed by subtracting the task conditions (invalidly cued - validly cued). These validity maps were examined for associations with radon exposure, age, and their interaction in a linear regression design. Children with greater radon exposure showed aberrant oscillatory activity across distributed regions critical for attentional processing and attention reorientation (e.g., dorsolateral prefrontal cortex, and anterior cingulate cortex). Generally, youths with greater radon exposure exhibited a reverse neural validity effect in almost all regions and showed greater overall power relative to peers with lesser radon exposure. We also detected an interactive effect between radon exposure and age where youths with greater radon exposure exhibited divergent developmental trajectories in neural substrates implicated in attentional processing (e.g., bilateral prefrontal cortices, superior temporal gyri, and inferior parietal lobules). These data suggest aberrant, but potentially compensatory neural processing as a function of increasing home radon exposure in areas critical for attention and higher order cognition.


Asunto(s)
Atención , Magnetoencefalografía , Radón , Humanos , Adolescente , Niño , Masculino , Femenino , Radón/toxicidad , Radón/efectos adversos , Atención/efectos de la radiación , Atención/fisiología , Exposición a Riesgos Ambientales/efectos adversos , Encéfalo/efectos de la radiación , Ondas Encefálicas/efectos de la radiación , Ondas Encefálicas/fisiología , Ondas Encefálicas/efectos de los fármacos , Orientación/fisiología
9.
Epilepsy Res ; 202: 107359, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582072

RESUMEN

PURPOSE: In developmental and epileptic encephalopathy with spike-and-wave activation in sleep (DEE-SWAS), the thalamocortical network is suggested to play an important role in the pathophysiology of the progression from focal epilepsy to DEE-SWAS. Ethosuximide (ESM) exerts effects by blocking T-type calcium channels in thalamic neurons. With the thalamocortical network in mind, we studied the prediction of ESM effectiveness in DEE-SWAS treatment using phase-amplitude coupling (PAC) analysis. METHODS: We retrospectively enrolled children with DEE-SWAS who had an electroencephalogram (EEG) recorded between January 2009 and September 2022 and were prescribed ESM at Okayama University Hospital. Only patients whose EEG showed continuous spike-and-wave during sleep were included. We extracted 5-min non-rapid eye movement sleep stage N2 segments from EEG recorded before starting ESM. We calculated the modulation index (MI) as the measure of PAC in pair combination comprising one of two fast oscillation types (gamma, 40-80 Hz; ripples, 80-150 Hz) and one of five slow-wave bands (delta, 0.5-1, 1-2, 2-3, and 3-4 Hz; theta, 4-8 Hz), and compared it between ESM responders and non-responders. RESULTS: We identified 20 children with a diagnosis of DEE-SWAS who took ESM. Fifteen were ESM responders. Regarding gamma oscillations, significant differences were seen only in MI with 0.5-1 Hz slow waves in the frontal pole and occipital regions. Regarding ripples, ESM responders had significantly higher MI in coupling with all slow waves in the frontal pole region, 0.5-1, 3-4, and 4-8 Hz slow waves in the frontal region, 3-4 Hz slow waves in the parietal region, 0.5-1, 2-3, 3-4, and 4-8 Hz slow waves in the occipital region, and 3-4 Hz slow waves in the anterior-temporal region. SIGNIFICANCE: High MI in a wider area of the brain may represent the epileptic network mediated by the thalamus in DEE-SWAS and may be a predictor of ESM effectiveness.


Asunto(s)
Anticonvulsivantes , Electroencefalografía , Etosuximida , Sueño , Humanos , Etosuximida/uso terapéutico , Etosuximida/farmacología , Masculino , Femenino , Electroencefalografía/métodos , Estudios Retrospectivos , Anticonvulsivantes/uso terapéutico , Anticonvulsivantes/farmacología , Preescolar , Niño , Sueño/efectos de los fármacos , Sueño/fisiología , Lactante , Ondas Encefálicas/efectos de los fármacos , Ondas Encefálicas/fisiología , Tálamo/efectos de los fármacos , Tálamo/fisiopatología , Espasmos Infantiles/tratamiento farmacológico , Espasmos Infantiles/fisiopatología
10.
Trials ; 23(1): 890, 2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36273218

RESUMEN

BACKGROUND: Attention deficit/hyperactivity disorder (ADHD) is the most common chronic mental and behavioral disorder among children. Some studies showed the lower levels of vitamin D in patients with ADHD compared with the healthy people. Few clinical trials were conducted in this field. The present study will be performed to examine the effect of vitamin D supplementation in children with ADHD. METHODS: We will conduct a double-blind, randomized controlled clinical trial to investigate the effect of vitamin D supplementation on brain waves, behavioral performance, serum nitric oxide, malondialdehyde, and high-sensitivity C-reactive protein in 50 patients with ADHD. The intervention group will receive one capsule 50,000 IU vitamin D every week, for 8 weeks. The control group will receive one placebo capsule containing 1000 mg olive oil every week. Electroencephalography will be performed for 10 min using Brain Master Discovery from 19 scalp sites both before the first intervention and the 10 sessions of the therapy. The artifact-free periods of 1-min electroencephalography data will be analyzed for quantitative electroencephalography measures. DISCUSSION: For the first time, this clinical trial will evaluate the effect of vitamin D supplementation on brain waves, serum nitric oxide, malondialdehyde, and high-sensitivity C-reactive protein in patients with ADHD. The results of the present clinical trial will provide a better vision about the vitamin D efficacy in patients with ADHD. TRIAL REGISTRATION: Registered on 5 November 2020 at Iranian Registry of Clinical Trials with code number IRCT20200922048802N1 ( https://www.irct.ir/trial/51410 ).


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Suplementos Dietéticos , Vitamina D , Niño , Humanos , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Ondas Encefálicas/efectos de los fármacos , Proteína C-Reactiva , Método Doble Ciego , Irán , Malondialdehído , Óxido Nítrico , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento , Vitamina D/farmacología
11.
Sci Rep ; 12(1): 1919, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35121751

RESUMEN

Robust biomarkers for anti-epileptic drugs (AEDs) activity in the human brain are essential to increase the probability of successful drug development. The frequency analysis of electroencephalographic (EEG) activity, either spontaneous or evoked by transcranial magnetic stimulation (TMS-EEG) can provide cortical readouts for AEDs. However, a systematic evaluation of the effect of AEDs on spontaneous oscillations and TMS-related spectral perturbation (TRSP) has not yet been provided. We studied the effects of Lamotrigine, Levetiracetam, and of a novel potassium channel opener (XEN1101) in two groups of healthy volunteers. Levetiracetam suppressed TRSP theta, alpha and beta power, whereas Lamotrigine decreased delta and theta but increased the alpha power. Finally, XEN1101 decreased TRSP delta, theta, alpha and beta power. Resting-state EEG showed a decrease of theta band power after Lamotrigine intake. Levetiracetam increased theta, beta and gamma power, while XEN1101 produced an increase of delta, theta, beta and gamma power. Spontaneous and TMS-related cortical oscillations represent a powerful tool to characterize the effect of AEDs on in vivo brain activity. Spectral fingerprints of specific AEDs should be further investigated to provide robust and objective biomarkers of biological effect in human clinical trials.


Asunto(s)
Anticonvulsivantes/farmacología , Ondas Encefálicas/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Electroencefalografía , Lamotrigina/farmacología , Levetiracetam/farmacología , Compuestos Orgánicos/farmacología , Estimulación Magnética Transcraneal , Adulto , Corteza Cerebral/fisiología , Voluntarios Sanos , Humanos , Masculino , Adulto Joven
12.
Sci Rep ; 12(1): 2117, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136089

RESUMEN

Previous spectral analysis studies on insomnia have shown inconsistent results due to their heterogeneity and small sample sizes. We compared the difference of electroencephalogram (EEG) spectral power during sleep among participants without insomnia, insomniacs with no hypnotic use, hypnotic users with no insomnia complaints, and hypnotic users with insomnia complaints using the Sleep Heart Health Study data, which is large sample size and has good quality control. The fast Fourier transformation was used to calculate the EEG power spectrum for total sleep duration within contiguous 30-s epochs of sleep. For 1985 participants, EEG spectral power was compared among the groups while adjusting for potential confounding factors that could affect sleep EEG. The power spectra during total sleep differed significantly among the groups in all frequency bands (pcorr < 0.001). We found that quantitative EEG spectral power in the beta and sigma bands of total sleep differed (pcorr < 0.001) between participants without insomnia and hypnotic users with insomnia complaints after controlling for potential confounders. The higher beta and sigma power were found in the hypnotic users with insomnia complaints than in the non-insomnia participants. This study suggests differences in the microstructures of polysomnography-derived sleep EEG between the two groups.


Asunto(s)
Ondas Encefálicas/efectos de los fármacos , Polisomnografía , Fármacos Inductores del Sueño/uso terapéutico , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Sueño REM/efectos de los fármacos , Adulto , Anciano , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fármacos Inductores del Sueño/farmacología
13.
Neuroimage ; 249: 118891, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007718

RESUMEN

Recent neuroimaging studies have demonstrated that spontaneous brain activity exhibits rich spatiotemporal structure that can be characterized as the exploration of a repertoire of spatially distributed patterns that recur over time. The repertoire of brain states may reflect the capacity for consciousness, since general anesthetics suppress and psychedelic drugs enhance such dynamics. However, the modulation of brain activity repertoire across varying states of consciousness has not yet been studied in a systematic and unified framework. As a unique drug that has both psychedelic and anesthetic properties depending on the dose, ketamine offers an opportunity to examine brain reconfiguration dynamics along a continuum of consciousness. Here we investigated the dynamic organization of cortical activity during wakefulness and during altered states of consciousness induced by different doses of ketamine. Through k-means clustering analysis of the envelope data of source-localized electroencephalographic (EEG) signals, we identified a set of recurring states that represent frequency-specific spatial coactivation patterns. We quantified the effect of ketamine on individual brain states in terms of fractional occupancy and transition probabilities and found that ketamine anesthesia tends to shift the configuration toward brain states with low spatial variability. Furthermore, by assessing the temporal dynamics of the occurrence and transitions of brain states, we showed that subanesthetic ketamine is associated with a richer repertoire, while anesthetic ketamine induces dynamic changes in brain state organization, with the repertoire richness evolving from a reduced level to one comparable to that of normal wakefulness before recovery of consciousness. These results provide a novel description of ketamine's modulation of the dynamic configuration of cortical activity and advance understanding of the neurophysiological mechanism of ketamine in terms of the spatial, temporal, and spectral structures of underlying whole-brain dynamics.


Asunto(s)
Anestésicos Disociativos/farmacología , Ondas Encefálicas/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Estado de Conciencia/efectos de los fármacos , Electroencefalografía/métodos , Ketamina/farmacología , Vigilia/efectos de los fármacos , Adulto , Anestesia General , Anestésicos Disociativos/administración & dosificación , Humanos , Ketamina/administración & dosificación
14.
Sci Rep ; 12(1): 114, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997092

RESUMEN

Microglia are subject to change in tandem with the endogenously generated biological oscillations known as our circadian rhythm. Studies have shown microglia harbor an intrinsic molecular clock which regulates diurnal changes in morphology and influences inflammatory responses. In the adult brain, microglia play an important role in the regulation of condensed extracellular matrix structures called perineuronal nets (PNNs), and it has been suggested that PNNs are also regulated in a circadian and diurnal manner. We sought to determine whether microglia mediate the diurnal regulation of PNNs via CSF1R inhibitor dependent microglial depletion in C57BL/6J mice, and how the absence of microglia might affect cortical diurnal gene expression rhythms. While we observe diurnal differences in microglial morphology, where microglia are most ramified at the onset of the dark phase, we do not find diurnal differences in PNN intensity. However, PNN intensity increases across many brain regions in the absence of microglia, supporting a role for microglia in the regulation of PNNs. Here, we also show that cortical diurnal gene expression rhythms are intact, with no cycling gene changes without microglia. These findings demonstrate a role for microglia in the maintenance of PNNs, but not in the maintenance of diurnal rhythms.


Asunto(s)
Ondas Encefálicas , Ritmo Circadiano , Microglía/patología , Red Nerviosa/patología , Corteza Somatosensorial/patología , Animales , Ondas Encefálicas/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Regulación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Red Nerviosa/fisiopatología , Compuestos Orgánicos/farmacología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Corteza Somatosensorial/efectos de los fármacos , Corteza Somatosensorial/metabolismo , Corteza Somatosensorial/fisiopatología , Factores de Tiempo
15.
Nutr Neurosci ; 25(1): 159-168, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32116139

RESUMEN

Objectives: Removing artificial food coloring (AFC) is a common dietary intervention for children with Attention-Deficit/Hyperactivity Disorder (ADHD), but has not been tested in young adults. This pilot study examined the effects of AFC on ADHD symptoms and electroencephalography (EEG) in college students with and without ADHD.Methods: At baseline, control and ADHD participants completed the Adult ADHD Self-Report Scale (ASRS), simple and complex attention measures, and resting-state EEG recordings. ADHD participants (n = 18) and a subset of controls (extended control group or EC, n = 11) avoided AFC in their diet for 2 weeks and then were randomized to a double-blind, placebo-controlled crossover challenge. Subjects received either 225 mg AFC disguised in chocolate cookies or placebo chocolate cookies for 3 days each week, with testing on the third day each week. Baseline comparisons were made using Student's t-test or Wilcoxon rank sum tests and challenge period analyses were run using General Linear Modeling.Results: The ADHD group had significantly greater scores on the ASRS (p < 0.001), confirming a symptom differential between groups; however, there were no differences in attentional measures or EEG at baseline. The AFC challenge resulted in an increase in posterior mean gamma power (p = 0.05), a decrease in posterior relative alpha power (p = 0.04), and a marginal increase in inattentive symptoms (p = 0.08) in the ADHD group. There were no effects of AFC in the EC group.Discussion: This study indicates that AFC exposure may affect brainwave activity and ADHD symptoms in college students with ADHD. Larger studies are needed to confirm these findings.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/inducido químicamente , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Electroencefalografía , Colorantes de Alimentos/efectos adversos , Proyectos Piloto , Ondas Encefálicas/efectos de los fármacos , Ondas Encefálicas/fisiología , Estudios Cruzados , Método Doble Ciego , Humanos , Estudiantes , Adulto Joven
16.
Clin Neurophysiol ; 134: 1-8, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34922194

RESUMEN

OBJECTIVE: Phase-amplitude coupling between high-frequency (≥150 Hz) and delta (3-4 Hz) oscillations - modulation index (MI) - is a promising, objective biomarker of epileptogenicity. We determined whether sevoflurane anesthesia preferentially enhances this metric within the epileptogenic zone. METHODS: This is an observational study of intraoperative electrocorticography data from 621 electrodes chronically implanted into eight patients with drug-resistant, focal epilepsy. All patients were anesthetized with sevoflurane during resective surgery, which subsequently resulted in seizure control. We classified 'removed' and 'retained' brain sites as epileptogenic and non-epileptogenic, respectively. Mixed model analysis determined which anesthetic stage optimized MI-based classification of epileptogenic sites. RESULTS: MI increased as a function of anesthetic stage, ranging from baseline (i.e., oxygen alone) to 2.0 minimum alveolar concentration (MAC) of sevoflurane, preferentially at sites showing higher initial MI values. This phenomenon was accentuated just prior to sevoflurane reaching 2.0 MAC, at which time, the odds of a site being classified as epileptogenic were enhanced by 86.6 times for every increase of 1.0 MI. CONCLUSIONS: Intraoperative MI best localized the epileptogenic zone immediately before sevoflurane reaching 2.0 MAC in this small cohort of patients. SIGNIFICANCE: Prospective, large cohort studies are warranted to determine whether sevoflurane anesthesia can reduce the need for extraoperative, invasive evaluation.


Asunto(s)
Anestésicos por Inhalación/administración & dosificación , Ondas Encefálicas/efectos de los fármacos , Encéfalo/efectos de los fármacos , Epilepsia Refractaria/fisiopatología , Epilepsias Parciales/fisiopatología , Sevoflurano/administración & dosificación , Adolescente , Anestesia General , Encéfalo/fisiopatología , Encéfalo/cirugía , Ondas Encefálicas/fisiología , Niño , Preescolar , Epilepsia Refractaria/cirugía , Electrocorticografía , Epilepsias Parciales/cirugía , Humanos , Procedimientos Neuroquirúrgicos , Estudios Prospectivos , Adulto Joven
17.
Artículo en Inglés | MEDLINE | ID: mdl-34971723

RESUMEN

BACKGROUND: Sub-anesthetic ketamine doses rapidly reduce depressive symptoms, although additional investigations of the underlying neural mechanisms and the prediction of response outcomes are needed. Electroencephalographic (EEG)-derived measures have shown promise in predicting antidepressant response to a variety of treatments, and are sensitive to ketamine administration. This study examined their utility in characterizing changes in depressive symptoms following single and repeated ketamine infusions. METHODS: Recordings were obtained from patients with treatment-resistant major depressive disorder (MDD) (N = 24) enrolled in a multi-phase clinical ketamine trial. During the randomized, double-blind, crossover phase (Phase 1), patients received intravenous ketamine (0.5 mg/kg) and midazolam (30 µg/kg), at least 1 week apart. For each medication, three resting, eyes-closed recordings were obtained per session (pre-infusion, immediately post-infusion, 2 h post-infusion), and changes in power (delta, theta1/2/total, alpha1/2/total, beta, gamma), alpha asymmetry, theta cordance, and theta source-localized anterior cingulate cortex activity were quantified. The relationships between ketamine-induced changes with early (Phase 1) and sustained (Phases 2,3: open-label repeated infusions) decreases in depressive symptoms (Montgomery-Åsberg Depression Rating Score, MADRS) and suicidal ideation (MADRS item 10) were examined. RESULTS: Both medications decreased alpha and theta immediately post-infusion, however, only midazolam increased delta (post-infusion), and only ketamine increased gamma (immediately post- and 2 h post-infusion). Regional- and frequency-specific ketamine-induced EEG changes were related to and predictive of decreases in depressive symptoms (theta, gamma) and suicidal ideation (alpha). Early and sustained treatment responders differed at baseline in surface-level and source-localized theta. CONCLUSIONS: Ketamine exerts frequency-specific changes on EEG-derived measures, which are related to depressive symptom decreases in treatment-resistant MDD and provide information regarding early and sustained individual response to ketamine. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov: Action of Ketamine in Treatment-Resistant Depression, NCT01945047.


Asunto(s)
Analgésicos/administración & dosificación , Ondas Encefálicas/efectos de los fármacos , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Electrofisiología , Giro del Cíngulo/efectos de los fármacos , Ketamina/administración & dosificación , Adulto , Anestésicos Intravenosos/administración & dosificación , Estudios Cruzados , Electroencefalografía , Femenino , Humanos , Infusiones Intravenosas , Masculino , Midazolam/administración & dosificación , Escalas de Valoración Psiquiátrica
18.
Neuroimage ; 245: 118769, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34861394

RESUMEN

The effects of hippocampal neuronal afterdischarges (nAD) on hemodynamic parameters, such as blood-oxygen-level-dependent (BOLD) signals) and local cerebral blood volume (CBV) changes, as well as neuronal activity and metabolic parameters in the dentate gyrus, was investigated in rats by combining in vivo electrophysiology with functional magnetic resonance imaging (fMRI) or 1H-nuclear magnetic resonance spectroscopy (1H-NMRS). Brief electrical high-frequency pulse-burst stimulation of the right perforant pathway triggered nAD, a seizure-like activity, in the right dentate gyrus with a high incidence, a phenomenon that in turn caused a sustained decrease in BOLD signals for more than 30 min. The decrease was associated with a reduction in CBV but not with signs of hypoxic metabolism. nAD also triggered transient changes mainly in the low gamma frequency band that recovered within 20 min, so that the longer-lasting altered hemodynamics reflected a switch in blood supply rather than transient changes in ongoing neuronal activity. Even in the presence of reduced baseline BOLD signals, neurovascular coupling mechanisms remained intact, making long-lasting vasospasm unlikely. Subsequently generated nAD did not further alter the baseline BOLD signals. Similarly, nAD did not alter baseline BOLD signals when acetaminophen was previously administered, because acetaminophen alone had already caused a similar decrease in baseline BOLD signals as observed after the first nAD. Thus, at least two different blood supply states exist for the hippocampus, one low and one high, with both states allowing similar neuronal activity. Both acetaminophen and nAD switch from the high to the low blood supply state. As a result, the hemodynamic response function to an identical stimulus differed after nAD or acetaminophen, although the triggered neuronal activity was similar.


Asunto(s)
Ondas Encefálicas/fisiología , Electrocorticografía , Hipocampo/fisiología , Imagen por Resonancia Magnética , Neuroimagen , Acoplamiento Neurovascular/fisiología , Espectroscopía de Protones por Resonancia Magnética , Convulsiones/fisiopatología , Animales , Ondas Encefálicas/efectos de los fármacos , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Masculino , Acoplamiento Neurovascular/efectos de los fármacos , Ratas , Ratas Wistar , Convulsiones/metabolismo
19.
Sci Rep ; 11(1): 22716, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34811404

RESUMEN

Spectral power density (SPD) indexed by electroencephalogram (EEG) recordings has recently gained attention in elucidating neural mechanisms of chronic pain syndromes and medication use. We compared SPD variations between 15 fibromyalgia (FM) women in use of opioid in the last three months (73.33% used tramadol) with 32 non-users. EEG data were obtained with Eyes Open (EO) and Eyes Closed (EC) resting state. SPD peak amplitudes between EO-EC were smaller in opioid users in central theta, central beta, and parietal beta, and at parietal delta. However, these variations were positive for opioid users. Multivariate analyses of variance (ANOVAs) revealed that EO-EC variations in parietal delta were negatively correlated with the disability due to pain, and central and parietal beta activity variations were positively correlated with worse sleep quality. These clinical variables explained from 12.5 to 17.2% of SPD variance. In addition, central beta showed 67% sensitivity / 72% specificity and parietal beta showed 73% sensitivity/62% specificity in discriminating opioid users from non-users. These findings suggest oscillations in EEG might be a sensitive surrogate marker to screen FM opioid users and a promising tool to understand the effects of opioid use and how these effects relate to functional and sleep-related symptoms.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Mapeo Encefálico , Ondas Encefálicas/efectos de los fármacos , Encéfalo/efectos de los fármacos , Electroencefalografía , Fibromialgia/tratamiento farmacológico , Descanso , Adulto , Encéfalo/fisiopatología , Estudios Transversales , Femenino , Fibromialgia/diagnóstico , Fibromialgia/fisiopatología , Humanos , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Procesamiento de Señales Asistido por Computador , Factores de Tiempo
20.
Neuroimage ; 245: 118659, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34767940

RESUMEN

Studying changes in cortical oscillations can help elucidate the mechanistic link between receptor physiology and the clinical effects of anaesthetic drugs. Propofol, a GABA-ergic drug produces divergent effects on visual cortical activity: increasing induced gamma-band responses (GBR) while decreasing evoked responses. Dexmedetomidine, an α2- adrenergic agonist, differs from GABA-ergic sedatives both mechanistically and clinically as it allows easy arousability from deep sedation with less cognitive side-effects. Here we use magnetoencephalography (MEG) to characterize and compare the effects of GABA-ergic (propofol) and non-GABA-ergic (dexmedetomidine) sedation, on visual and motor cortical oscillations. Sixteen male participants received target-controlled infusions of propofol and dexmedetomidine, producing mild-sedation, in a placebo-controlled, cross-over study. MEG data was collected during a combined visuomotor task. The key findings were that propofol significantly enhanced visual stimulus induced GBR (44% increase in amplitude) while dexmedetomidine decreased it (40%). Propofol also decreased the amplitudes of the Mv100 (visual M100) (27%) and Mv150 (52%) visual evoked fields (VEF), whilst dexmedetomidine had no effect on these. During the motor task, neither drug had any significant effect on movement related gamma synchrony (MRGS), movement related beta de-synchronisation (MRBD) or Mm100 (movement-related M100) movement-related evoked fields (MEF), although dexmedetomidine slowed the Mm300. Dexmedetomidine increased (92%) post-movement beta synchronisation/rebound (PMBR) power while propofol reduced it (70%, statistically non- significant). Overall, dexmedetomidine and propofol, at equi-sedative doses, produce contrasting effects on visual induced GBR, VEF, PMBR and MEF. These findings provide a mechanistic link between the known receptor physiology of these sedative drugs with their known clinical effects and may be used to explore mechanisms of other anaesthetic drugs on human consciousness.


Asunto(s)
Ondas Encefálicas/efectos de los fármacos , Dexmedetomidina/farmacología , Hipnóticos y Sedantes/farmacología , Magnetoencefalografía/métodos , Corteza Motora/efectos de los fármacos , Propofol/farmacología , Adulto , Sedación Consciente , Estado de Conciencia/efectos de los fármacos , Estudios Cruzados , Humanos , Masculino , Movimiento/fisiología , Vigilia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA