Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 150
1.
J Neuroinflammation ; 19(1): 289, 2022 Dec 03.
Article En | MEDLINE | ID: mdl-36463233

BACKGROUND: Neuroinflammation is one of the most important processes in secondary injury after traumatic brain injury (TBI). Triggering receptor expressed on myeloid cells 2 (TREM2) has been proven to exert neuroprotective effects in neurodegenerative diseases and stroke by modulating neuroinflammation, and promoting phagocytosis and cell survival. However, the role of TREM2 in TBI has not yet been elucidated. In this study, we are the first to use COG1410, an agonist of TREM2, to assess the effects of TREM2 activation in a murine TBI model. METHODS: Adult male wild-type (WT) C57BL/6 mice and adult male TREM2 KO mice were subjected to different treatments. TBI was established by the controlled cortical impact (CCI) method. COG1410 was delivered 1 h after CCI via tail vein injection. Western blot analysis, immunofluorescence, laser speckle contrast imaging (LSCI), neurological behaviour tests, brain electrophysiological monitoring, Evans blue assays, magnetic resonance imaging (MRI), and brain water content measurement were performed in this study. RESULTS: The expression of endogenous TREM2 peaked at 3 d after CCI, and it was mainly expressed on microglia and neurons. We found that COG1410 improved neurological functions within 3 d, as well as neurological functions and brain electrophysiological activity at 2 weeks after CCI. COG1410 exerted neuroprotective effects by inhibiting neutrophil infiltration and microglial activation, and suppressing neuroinflammation after CCI. In addition, COG1410 treatment alleviated blood brain barrier (BBB) disruption and brain oedema; furthermore, COG1410 promoted cerebral blood flow (CBF) recovery at traumatic injury sites after CCI. In addition, COG1410 suppressed neural apoptosis at 3 d after CCI. TREM2 activation upregulated p-Akt, p-CREB, BDNF, and Bcl-2 and suppressed TNF-α, IL-1ß, Bax, and cleaved caspase-3 at 3 d after CCI. Moreover, TREM2 knockout abolished the effects of COG1410 on vascular phenotypes and microglial states. Finally, the neuroprotective effects of COG1410 were suppressed by TREM2 depletion. CONCLUSIONS: Altogether, we are the first to demonstrate that TREM2 activation by COG1410 alleviated neural damage through activation of Akt/CREB/BDNF signalling axis in microglia after CCI. Finally, COG1410 treatment improved neurological behaviour and brain electrophysiological activity after CCI.


Brain Injuries, Traumatic , Animals , Male , Mice , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/immunology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/immunology , Membrane Glycoproteins/agonists , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Receptors, Immunologic/agonists , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Disease Models, Animal , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/immunology , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/immunology , Nervous System/drug effects , Nervous System/immunology
2.
Int J Med Sci ; 19(13): 1903-1911, 2022.
Article En | MEDLINE | ID: mdl-36438922

COVID-19 clinically manifests from asymptomatic to the critical range. Immune response provokes the pro-inflammatory interactions, which lead to the cytokines, reactive oxygen/nitrogen species, peptidases, and arachidonic acid metabolites enlargement and activation of coagulation components. Matrix metalloproteinases (MMPs) contribute to tissue destruction in the development of COVID-19. Due to the endothelial, systemic course of the disease, VEGF A participates actively in COVID-19 development, while neurotrophic and metabolic effects of BDNF recommends for the prediction of complications in COVID-19 patients. Searching for a marker that would improve and simplify the ranking in COVID-19, the study intended to evaluate the relationship of MMP-9 with VEGF A, BDNF, and MMP-8 with the COVID-19 severity. Upon admission to the hospital and before the therapy administration, 77 patients were classified into a mild, moderate, severe, or critical group. Due to the inflammatory stage in COVID-19, a comparison between groups showed related differences in leukocytes, neutrophils, lymphocytes, and platelets counts as anticipated. Only in seriously ill patients, there is a significant increase in the serum concentration of MMP-9, MMP-8, and VEGF A, while BDNF values did not show significant variations between groups. However, all those parameters positively correlated with each other. The ratio of MMP-9/BDNF markedly decreased in the severe and critically patients compared to the mild group. Testing the capability of this ratio to predict the COVID-19 stage by ROC curves, we found the MMP-9/BDNF could be a suitable marker for differentiating stages I/II (AUC 0.7597), stage I/III (AUC 0.9011), and stage I/IV (AUC 0.7727). Presented data describe for the first time the high-level systemic MMP-9/BDNF ratio in patients with COVID-19. This parameter could contribute to a more precise determination of the phase of the disease.


Biomarkers , Brain-Derived Neurotrophic Factor , COVID-19 , Matrix Metalloproteinase 9 , Humans , Biomarkers/blood , Biomarkers/metabolism , Brain-Derived Neurotrophic Factor/blood , Brain-Derived Neurotrophic Factor/immunology , COVID-19/blood , COVID-19/immunology , Matrix Metalloproteinase 8/blood , Matrix Metalloproteinase 8/immunology , Matrix Metalloproteinase 9/blood , Matrix Metalloproteinase 9/immunology , Vascular Endothelial Growth Factor A/blood , Vascular Endothelial Growth Factor A/immunology , Predictive Value of Tests
3.
Cells ; 10(4)2021 04 13.
Article En | MEDLINE | ID: mdl-33924474

Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system (CNS) affecting more than two million people worldwide. In MS, oligodendrocytes and myelin sheaths are destroyed by autoimmune-mediated inflammation, while remyelination is impaired. Recent investigations of post-mortem tissue suggest that Fibroblast growth factor (FGF) signaling may regulate inflammation and myelination in MS. FGF2 expression seems to correlate positively with macrophages/microglia and negatively with myelination; FGF1 was suggested to promote remyelination. In myelin oligodendrocyte glycoprotein (MOG)35-55-induced experimental autoimmune encephalomyelitis (EAE), systemic deletion of FGF2 suggested that FGF2 may promote remyelination. Specific deletion of FGF receptors (FGFRs) in oligodendrocytes in this EAE model resulted in a decrease of lymphocyte and macrophage/microglia infiltration as well as myelin and axon degeneration. These effects were mediated by ERK/Akt phosphorylation, a brain-derived neurotrophic factor, and downregulation of inhibitors of remyelination. In the first part of this review, the most important pharmacotherapeutic principles for MS will be illustrated, and then we will review recent advances made on FGF signaling in MS. Thus, we will suggest application of FGFR inhibitors, which are currently used in Phase II and III cancer trials, as a therapeutic option to reduce inflammation and induce remyelination in EAE and eventually MS.


Encephalomyelitis, Autoimmune, Experimental/genetics , Fibroblast Growth Factor 2/genetics , Microglia/immunology , Multiple Sclerosis/genetics , Myelin Sheath/immunology , Receptor, Fibroblast Growth Factor, Type 2/genetics , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/immunology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Fibroblast Growth Factor 2/deficiency , Gene Expression Regulation , Humans , Immunologic Factors/therapeutic use , Mice, Knockout , Microglia/drug effects , Microglia/pathology , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Myelin Sheath/drug effects , Myelin Sheath/pathology , Myelin-Oligodendrocyte Glycoprotein/administration & dosage , Oligodendroglia/drug effects , Oligodendroglia/immunology , Oligodendroglia/pathology , Peptide Fragments/administration & dosage , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/immunology , Remyelination/drug effects , Remyelination/genetics , Remyelination/immunology , Signal Transduction
4.
Eur J Immunol ; 51(3): 557-566, 2021 03.
Article En | MEDLINE | ID: mdl-33169371

Macroenvironmental factors, including a patient's physical and social environment, play a role in cancer risk and progression. Our previous preclinical studies have shown that the enriched environment (EE) confers anti-obesity and anti-cancer phenotypes that are associated with enhanced adaptive immunity and are mediated by brain-derived neurotrophic factor (BDNF). Natural killer (NK) cells have anti-cancer and anti-viral properties, and their absence or depletion is associated with inferior clinical outcomes. In this study, we investigated the effects of EE on NK cell maturation following their depletion. Mice living in EE displayed a higher proportion of NK cells in the spleen, bone marrow, and blood, compared to those living in the standard environment (SE). EE enhanced NK cell maturation in the spleen and was associated with upregulation of BDNF expression in the hypothalamus. Hypothalamic BDNF overexpression reproduced the EE effects on NK cell maturation in secondary lymphoid tissues. Conversely, hypothalamic BDNF knockdown blocked the EE modulation on NK cell maturation. Our results demonstrate that a bio-behavior intervention enhanced NK cell maturation and was mediated at least in part by hypothalamic BDNF.


Brain-Derived Neurotrophic Factor/immunology , Hypothalamus/immunology , Killer Cells, Natural/immunology , Animals , Environment , Lymphoid Tissue/immunology , Male , Mice , Mice, Inbred C57BL , Neoplasms/immunology , Spleen/immunology , Up-Regulation/immunology
5.
Neurosci Lett ; 739: 135448, 2020 11 20.
Article En | MEDLINE | ID: mdl-33129847

Zika virus (ZIKV) is a mosquito-borne Flavivirus structurally and antigenically related to Dengue virus (DENV). Zika virus has been associated with congenital anomalies and most ZIKV outbreaks have occurred in endemic areas of DENV. The present study investigated the effects of prior DENV serotype 1 (DENV1) immunity in immunocompetent female Swiss mice on gestational ZIKV infection in offspring. Physical/reflex development, locomotor activity, anxiety, visual acuity, and brain-derived neurotrophic factor (BDNF) levels were evaluated in offspring during infancy and adolescence. Anti-DENV1 and anti-ZIKV antibodies were detected in sera of the progenitors, whereas no ZIKV genomes were detected in the offspring brain. Pups from dams with only DENV1 immunity presented alterations of physical/reflex development. Pups from all infected dams exhibited time-related impairments in locomotor activity and anxiolytic-like behavior. Offspring from DENV/ZIKV-infected dams exhibited impairments in visual acuity during infancy but not during adolescence, which was consistent with morphometric analysis of the optic nerve. Pups from DENV1-, ZIKV-, and DENV/ZIKV-infected dams exhibited a decrease in BDNF levels during infancy and an increase during adolescence in distinct brain regions. In summary, we found no influence of prior DENV1 immunity on gestational ZIKV infection in offspring, with the exception of alterations of early visual parameters, and an increase in BDNF levels in the hippocampus during adolescence.


Behavior, Animal , Dengue/immunology , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/psychology , Zika Virus Infection/immunology , Zika Virus Infection/psychology , Animals , Brain/immunology , Brain/virology , Brain-Derived Neurotrophic Factor/immunology , Brain-Derived Neurotrophic Factor/metabolism , Female , Male , Maze Learning , Mice , Pregnancy
6.
Theranostics ; 10(18): 8227-8249, 2020.
Article En | MEDLINE | ID: mdl-32724468

The regenerative capacity of the peripheral nervous system is closely related to the role that Schwann cells (SCs) play in construction of the basement membrane containing multiple extracellular matrix proteins and secretion of neurotrophic factors, including laminin (LN) and brain-derived neurotrophic factor (BDNF). Here, we developed a self-assembling peptide (SAP) nanofiber hydrogel based on self-assembling backbone Ac-(RADA)4-NH2 (RAD) dual-functionalized with laminin-derived motif IKVAV (IKV) and a BDNF-mimetic peptide epitope RGIDKRHWNSQ (RGI) for peripheral nerve regeneration, with the hydrogel providing a three-dimensional (3D) microenvironment for SCs and neurites. Methods: Circular dichroism (CD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to characterize the secondary structures, microscopic structures, and morphologies of self-assembling nanofiber hydrogels. Then the SC adhesion, myelination and neurotrophin secretion were evaluated on the hydrogels. Finally, the SAP hydrogels were injected into hollow chitosan tubes to bridge a 10-mm-long sciatic nerve defect in rats, and in vivo gene expression at 1 week, axonal regeneration, target muscular re-innervation, and functional recovery at 12 weeks were assessed. Results: The bioactive peptide motifs were covalently linked to the C-terminal of the self-assembling peptide and the functionalized peptides could form well-defined nanofibrous hydrogels capable of providing a 3D microenvironment similar to native extracellular matrix. SCs displayed improved cell adhesion on hydrogels with both IKV and RGI, accompanied by increased cell spreading and elongation relative to other groups. RSCs cultured on hydrogels with IKV and RGI showed enhanced gene expression of NGF, BDNF, CNTF, PMP22 and NRP2, and decreased gene expression of NCAM compared with those cultured on other three groups after a 7-day incubation. Additionally, the secretion of NGF, BDNF, and CNTF of RSCs was significantly improved on dual-functionalized peptide hydrogels after 3 days. At 1 week after implantation, the expressions of neurotrophin and myelin-related genes in the nerve grafts in SAP and Autograft groups were higher than that in Hollow group, and the expression of S100 in groups containing both IKV and RGI was significantly higher than that in groups containing either IKV or RGI hydrogels, suggesting enhanced SC proliferation. The morphometric parameters of the regenerated nerves, their electrophysiological performance, the innervated muscle weight and remodeling of muscle fibers, and motor function showed that RAD/IKV/RGI and RAD/IKV-GG-RGI hydrogels could markedly improve axonal regeneration with enhanced re-myelination and motor functional recovery through the synergetic effect of IKV and RGI functional motifs. Conclusions: We found that the dual-functionalized SAP hydrogels promoted RSC adhesion, myelination, and neurotrophin secretion in vitro and successfully bridged a 10-mm gap representing a sciatic nerve defect in rats in vivo. The results demonstrated the synergistic effect of IKVAV and RGI on axonal regrowth and function recovery after peripheral nerve injury.


Brain-Derived Neurotrophic Factor/immunology , Laminin/immunology , Nerve Regeneration/immunology , Oligopeptides/immunology , Peptide Fragments/immunology , Peripheral Nerve Injuries/therapy , Tissue Scaffolds/chemistry , Animals , Brain-Derived Neurotrophic Factor/chemistry , Cell Line , Dendrimers/chemistry , Disease Models, Animal , Epitopes/immunology , Humans , Hydrogels/chemistry , Male , Nanofibers/chemistry , Oligopeptides/chemistry , Peripheral Nerve Injuries/pathology , Peripheral Nerve Injuries/physiopathology , Rats , Recovery of Function/immunology , Schwann Cells , Sciatic Nerve/injuries , Sciatic Nerve/pathology , Sciatic Nerve/physiopathology
7.
Front Immunol ; 11: 1357, 2020.
Article En | MEDLINE | ID: mdl-32676082

Streptococcus pneumoniae meningitis is a life-threatening bacterial infection of the central nervous system (CNS), and its unfavorable prognosis usually results from an intense inflammatory response. Recent studies have shown that brain-derived neurotrophic factor (BDNF) mediates anti-inflammatory and neuroprotective effects in CNS diseases; however, the distinct contribution of BDNF to pneumococcal meningitis (PM) remains unknown. In this study, we sought to investigate the effects of endogenous BDNF on the inflammatory response and brain damage in experimental PM. We used Camk2a-CreERT2 mice to delete Bdnf from the cerebral cortex and hippocampus, and meningitis was induced by intracisternal infection with S. pneumoniae. Clinical parameters were assessed during acute meningitis. At 24 h post-infection, histopathology, neutrophil granulocytes infiltration, and microglia/macrophage proliferation of brain tissues were evaluated. Additionally, cortical damage and hippocampal apoptosis were assessed using Nissl staining and terminal deoxynucleotidyl transferase dUTP-nick-end labeling (TUNEL), respectively. Pro-inflammatory cytokine levels were determined using real-time polymerase chain reaction (RT-PCR). Key molecules associated with the related signaling pathways were analyzed by RT-PCR and western blot. To investigate the role of microglia/macrophage in infected BDNF conditional knockout mice, GW2580 was used for microglia/macrophage depletion. Here, we, for the first time, found that BDNF conditional knockouts exhibited more profound clinical impairment, pathological severity, and neuron injury and enhanced microglia/macrophage proliferation than were observed in their littermate controls. Furthermore, the BDNF conditional knockouts showed an obviously increase in the expression of pro-inflammatory factors (Tnf-α, Il-1ß, and Il-6). Mechanistically, loss of BDNF activated TLR2- and NOD2-mediated downstream nuclear factor kappa B (NF-κB) p65 and p38 mitogen-activated protein kinase (MAPK) pathways associated with S. pneumoniae infection. Furthermore, targeted depletion of microglia/macrophage population decreased the resistance of mice to PM with diminishing neuroinflammation in BDNF conditional knockouts. Our findings suggest that loss of BDNF may enhance the inflammatory response and contribute to brain injury during PM at least partially by modulating TLR2- and NOD2-mediated signaling pathways, thereby providing a potential therapeutic target for future interventions in bacterial meningitis pathologies.


Brain-Derived Neurotrophic Factor/immunology , Inflammation/immunology , Inflammation/pathology , Meningitis, Pneumococcal/immunology , Meningitis, Pneumococcal/pathology , Animals , Brain Injuries/immunology , Brain Injuries/pathology , Brain-Derived Neurotrophic Factor/deficiency , Disease Models, Animal , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/immunology
8.
Muscle Nerve ; 62(3): 404-412, 2020 09.
Article En | MEDLINE | ID: mdl-32497302

BACKGROUND: After facial nerve injury and surgical repair in rats, recovery of vibrissal whisking is associated with a high proportion of mono-innervated neuro-muscular junctions (NMJs). Our earlier work with Sprague Dawley (SD)/Royal College of Surgeons (RCS) rats, which are blind and spontaneously restore NMJ-monoinnervation and whisking, showed correlations between functional recovery and increase of fibroblast growth factor-2 (FGF2) and brain-derived neurotrophic factor (BDNF) in denervated vibrissal muscles. METHODS: We used normally sighted rats (Wistar), in which NMJ-polyinnervation is highly correlated with poor whisking recovery, and injected the vibrissal muscle levator labii superioris (LLS) with combinations of BDNF, anti-BDNF, and FGF2 at different postoperative periods after facial nerve injury. RESULTS: Rats receiving anti-BDNF+FGF2 showed low NMJ-polyinnervation and best recovery of whisking amplitude. CONCLUSIONS: Restoration of target reinnervation after peripheral nerve injury requires a complex mixture of trophic factors with a specific time course of availability for each of them.


Antibodies, Neutralizing/therapeutic use , Brain-Derived Neurotrophic Factor/immunology , Facial Nerve Injuries/drug therapy , Fibroblast Growth Factor 2/therapeutic use , Nerve Regeneration/physiology , Recovery of Function/physiology , Vibrissae/physiology , Animals , Brain-Derived Neurotrophic Factor/pharmacology , Denervation , Facial Muscles/drug effects , Facial Muscles/innervation , Facial Muscles/physiopathology , Facial Nerve Injuries/physiopathology , Female , Fibroblast Growth Factor 2/pharmacology , Nerve Regeneration/drug effects , Rats , Rats, Wistar , Recovery of Function/drug effects
9.
J Agric Food Chem ; 68(21): 5835-5846, 2020 May 27.
Article En | MEDLINE | ID: mdl-32363873

Sea-buckthorn flavonoids (SFs) have been used as functional food components for their bioactive potential in preventing metabolic complications caused by diet, such as obesity and inflammation. However, the protective effect of SFs on cognitive functions is not fully clear. In this study, a high-fat and high-fructose diet (HFFD)-induced obese mice model was treated with SFs for 14 weeks. It was found that the oral SF administration (0.06% and 0.31% w/w, mixed in diet) significantly reduced bodyweight gain and insulin resistance in the HFFD-fed mice. SFs significantly prevented HFFD-induced neuronal loss and memory impairment in behavioral tests. Additionally, SFs also suppressed the HFFD-induced synaptic dysfunction and neuronal damages by increasing the protein expressions of PSD-95. Furthermore, SF treatment activated the ERK/CREB/BDNF and IRS-1/AKT pathways and inactivated the NF-κB signaling and its downstream inflammatory mediator expressions. In conclusion, SFs are a potential nutraceutical to prevent high-energy density diet-induced cognitive impairments, which could be possibly explained by their mediating effects on insulin signaling and inflammatory responses in the brain.


Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Diet, High-Fat/adverse effects , Flavonoids/administration & dosage , Fructose/adverse effects , Hippophae/chemistry , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/immunology , Cognitive Dysfunction/immunology , Cognitive Dysfunction/psychology , Fructose/metabolism , Humans , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/immunology , Insulin Resistance , Male , Memory/drug effects , Mice , Mice, Inbred C57BL , NF-kappa B/genetics , NF-kappa B/immunology , Neurons/drug effects , Neurons/immunology
10.
J Neuroinflammation ; 17(1): 169, 2020 May 28.
Article En | MEDLINE | ID: mdl-32466783

BACKGROUND: Sepsis-associated encephalopathy (SAE) increases the mortality of septic patients, but its mechanism remains unclear. The present study aimed to investigate the roles of T lymphocytes, proBDNF, and their interaction in the pathogenesis of SAE. METHODS: Fear conditioning tests were conducted for cognitive assessment in the lipopolysaccharide (LPS, 5 mg kg-1)-induced septic mice. Meninges and peripheral blood were harvested for flow cytometry or qPCR. FTY720 and monoclonal anti-proBDNF antibody (McAb-proB) were used to investigate the effect of lymphocyte depletion and blocking proBDNF on the impaired cognitive functions in the septic mice. RESULTS: In the septic mice, cognitive function was impaired, the percentage of CD4+ T cells were decreased in the meninges (P = 0.0021) and circulation (P = 0.0222), and pro-inflammatory cytokines were upregulated, but the anti-inflammatory cytokines interleukin (IL)-4 (P < 0.0001) and IL-13 (P = 0.0350) were downregulated in the meninges. Lymphocyte depletion by intragastrically treated FTY720 (1 mg kg-1) for 1 week ameliorated LPS-induced learning deficit. In addition, proBDNF was increased in the meningeal (P = 0.0042) and peripheral (P = 0.0090) CD4+ T cells. Intraperitoneal injection of McAb-proB (100 µg) before LPS treatment significantly alleviated cognitive dysfunction, inhibited the downregulation of meningeal (P = 0.0264) and peripheral (P = 0.0080) CD4+ T cells, and normalized the gene expression of cytokines in the meninges. However, intra-cerebroventricular McAb-proB injection (1 µg) did not have such effect. Finally, exogenous proBDNF downregulated the percentage of CD4+ T cells in cultured splenocytes from septic mice (P = 0.0021). CONCLUSION: Upregulated proBDNF in immune system promoted the pathogenesis of SAE through downregulating the circulating CD4+ T cells, limiting its infiltration into the meninges and perturbing the meningeal pro-/anti-inflammatory homeostasis.


Brain-Derived Neurotrophic Factor/immunology , CD4-Positive T-Lymphocytes/immunology , Meninges/immunology , Protein Precursors/immunology , Sepsis-Associated Encephalopathy/immunology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Lipopolysaccharides/toxicity , Male , Mice , Mice, Inbred C57BL , Protein Precursors/metabolism , Sepsis-Associated Encephalopathy/chemically induced , Sepsis-Associated Encephalopathy/metabolism
11.
MAbs ; 12(1): 1755000, 2020.
Article En | MEDLINE | ID: mdl-32329655

The role of brain-derived neurotrophic factor (BDNF) signaling in chronic pain has been well documented. Given the important central role of BDNF in long term plasticity and memory, we sought to engineer a high affinity, peripherally-restricted monoclonal antibody against BDNF to modulate pain. BDNF shares 100% sequence homology across human and rodents; thus, we selected chickens as an alternative immune host for initial antibody generation. Here, we describe the affinity optimization of complementarity-determining region-grafted, chicken-derived R3bH01, an anti-BDNF antibody specifically blocking the TrkB receptor interaction. Antibody optimization led to the identification of B30, which has a > 300-fold improvement in affinity based on BIAcore, an 800-fold improvement in potency in a cell-based pERK assay and demonstrates exquisite selectivity over related neurotrophins. Affinity improvements measured in vitro translated to in vivo pharmacological activity, with B30 demonstrating a 30-fold improvement in potency over parental R3bH01 in a peripheral nerve injury model. We further demonstrate that peripheral BDNF plays a role in maintaining the plasticity of sensory neurons following nerve damage, with B30 reversing neuron hyperexcitability associated with heat and mechanical stimuli in a dose-dependent fashion. In summary, our data demonstrate that effective sequestration of BDNF via a high affinity neutralizing antibody has potential utility in modulating the pathophysiological mechanisms that drive chronic pain states.


Antibodies, Monoclonal/immunology , Antibody Affinity/immunology , Brain-Derived Neurotrophic Factor/immunology , Chronic Pain/metabolism , Animals , Antibodies, Monoclonal/pharmacology , Brain-Derived Neurotrophic Factor/antagonists & inhibitors , Brain-Derived Neurotrophic Factor/metabolism , Chickens , Chronic Pain/physiopathology , Chronic Pain/prevention & control , Disease Models, Animal , Humans , Male , Pain Measurement , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/physiopathology , Peripheral Nerve Injuries/prevention & control , Protein Binding/drug effects , Rats, Sprague-Dawley , Receptor, trkB/metabolism
12.
Clin Exp Allergy ; 50(5): 577-584, 2020 05.
Article En | MEDLINE | ID: mdl-31925827

BACKGROUND: Pruritus is a major symptom of atopic dermatitis (AD) and is transmitted by a subpopulation of non-myelinated C-type free nerve endings in the epidermis and upper dermis. Stimulation of these nerve terminals is affected by histamine, neurotrophins and physical factors. Eosinophils of patients with AD are a source of neurotrophins, including brain-derived neurotrophic factor (BDNF), levels of which correlate with disease severity. OBJECTIVE: The purpose of this study was to determine the anatomical localization of eosinophils in the skin of patients with AD with regard to peripheral nerves and to investigate whether eosinophils induce sprouting and neurite outgrowth in murine sensory neurons. METHODS: Cryosections of skin derived from AD and control (NA) patients were subjected to immunofluorescence analysis with markers for eosinophils, BDNF and neuronal cells. Stimulated eosinophil supernatants were used for the treatment of cultured peripheral mouse dorsal root ganglia (DRG) neurons followed by morphometric analysis. RESULTS: Dermal axon density and the proximity of eosinophils to nerve fibres were significantly higher in AD patients vs NA. Both neuronal projections and eosinophils expressed BDNF. Furthermore, activated eosinophil supernatants induced BDNF-dependent mouse DRG neuron branching. CONCLUSIONS AND CLINICAL RELEVANCE: Our results indicate that BDNF-positive eosinophils are also localized in close proximity with nerve fibres in AD, suggesting a functional relationship between BDNF-expressing eosinophils and neuronal projections. These observations suggest that eosinophils may have considerable impact on pruritus by supporting sensory nerve branching.


Brain-Derived Neurotrophic Factor/immunology , Dermatitis, Atopic , Dermis , Eosinophils , Epidermis , Sensory Receptor Cells , Adolescent , Adult , Dermatitis, Atopic/immunology , Dermatitis, Atopic/pathology , Dermis/immunology , Dermis/innervation , Dermis/pathology , Eosinophils/immunology , Eosinophils/pathology , Epidermis/immunology , Epidermis/innervation , Epidermis/pathology , Female , Humans , Male , Sensory Receptor Cells/immunology , Sensory Receptor Cells/pathology
13.
Proc Natl Acad Sci U S A ; 117(1): 426-431, 2020 01 07.
Article En | MEDLINE | ID: mdl-31871166

Herein we present a concept in cancer where an immune response is detrimental rather than helpful. In the cancer setting, the immune system is generally considered to be helpful in curtailing the initiation and progression of tumors. In this work we show that a patient's immune response to their tumor can, in fact, either enhance or inhibit tumor cell growth. Two closely related autoantibodies to the growth factor receptor TrkB were isolated from cancer patients' B cells. Although highly similar in sequence, one antibody was an agonist while the other was an antagonist. The agonist antibody was shown to increase breast cancer cell growth both in vitro and in vivo, whereas the antagonist antibody inhibited growth. From a mechanistic point of view, we showed that binding of the agonist antibody to the TrkB receptor was functional in that it initiated downstream signaling identical to its natural growth factor ligand, brain-derived neurotrophic factor (BDNF). Our study shows that individual autoantibodies may play a role in cancer patients.


Autoantibodies/immunology , Autoantigens/immunology , Breast Neoplasms/pathology , Membrane Glycoproteins/immunology , Neoplasm Metastasis/immunology , Receptor, trkB/immunology , Animals , Autoantibodies/blood , Autoantibodies/isolation & purification , Autoantibodies/metabolism , Autoantigens/blood , Autoantigens/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Brain-Derived Neurotrophic Factor/immunology , Brain-Derived Neurotrophic Factor/metabolism , Breast Neoplasms/blood , Breast Neoplasms/immunology , Cell Line, Tumor , Cell Movement/immunology , Cell Proliferation , Female , Humans , Membrane Glycoproteins/agonists , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/blood , Mice , Receptor, trkB/agonists , Receptor, trkB/antagonists & inhibitors , Receptor, trkB/blood , Signal Transduction/immunology
14.
Am J Physiol Renal Physiol ; 317(5): F1305-F1310, 2019 11 01.
Article En | MEDLINE | ID: mdl-31566429

We investigated the involvement of brain-derived neurotrophic factor (BDNF) in bladder and urethral dysfunction using spinal cord-injured mice. We evaluated bladder and urethral function of female mice with 4-wk spinal cord injury (SCI) by filling cystometry and electromyography (EMG) of the external urethral sphincter (EUS) under a conscious condition. Anti-BDNF antibodies (10 µg·kg-1·h-1) were administered in some mice for 1 wk before the evaluation. Bladder and spinal (L6-S1) BDNF protein levels were examined by ELISA. Transcript levels of transient receptor potential channels or acid-sensing ion channels (Asic) in L6-S1 dorsal root ganglia were evaluated by RT-PCR. Voided volume and voiding efficiency were significantly increased without any changes in nonvoiding contractions, and the duration of reduced EMG activity during the voiding phase was significantly prolonged in anti-BDNF antibody-treated SCI mice. Compared with spinal cord-intact mice, SCI mice showed increased concentrations of bladder and spinal BDNF. Anti-BDNF antibody treatment decreased bladder and spinal BDNF protein concentrations of SCI mice. Asic2 and Asic3 transcripts were significantly increased after SCI but decreased after anti-BDNF antibody administration. These results indicate that upregulated expression of bladder and spinal BDNF is involved in the emergence of inefficient voiding in SCI mice. Thus, BDNF-targeting treatment could be an effective modality for the treatment of voiding problems, including inefficient voiding and detrusor sphincter dyssynergia after SCI.


Antibodies , Brain-Derived Neurotrophic Factor/antagonists & inhibitors , Spinal Cord Injuries/complications , Urination Disorders/etiology , Acid Sensing Ion Channels/genetics , Acid Sensing Ion Channels/metabolism , Animals , Brain-Derived Neurotrophic Factor/immunology , Brain-Derived Neurotrophic Factor/metabolism , Female , Gene Expression Regulation/immunology , Mice , RNA-Directed DNA Polymerase , Real-Time Polymerase Chain Reaction , Spinal Cord/metabolism , Up-Regulation , Urinary Bladder/metabolism
15.
BMC Complement Altern Med ; 19(1): 11, 2019 Jan 08.
Article En | MEDLINE | ID: mdl-30621666

BACKGROUND: Post-traumatic stress disorder (PTSD) is a disease associated with that the experience of traumatic stress. The traumatic experience results in the development of a prolonged stress response that causes impaired memory function and increased inflammation in the hippocampus. Currently, antidepressants are the only approved therapy for PTSD. However, the efficacy of antidepressants in the treatment of PTSD is marginal. The ethanol extract of Aralia continentalis (AC) is traditionally used in oriental medicine, and has been showed to possess pharmacological properties, including anti-inflammatory, anti-cancer, anti-atherosclerotic, and anti-diabetic effects. Nevertheless, the effects of AC on cognitive memory and its mechanism of action in PTSD remain unclear. Given the necessity of further treatment options for PTSD, we investigated the effect of AC on the spatial cognitive impairment caused by single prolonged stress (SPS) in a rat model of PTSD. METHODS: Male rats were treated with various intraperitoneal (i.p.) doses of AC for 21 consecutive days after inducing chronic stress with the SPS procedure. RESULTS: Cognitive impairment caused by SPS were inhibited after treatment with 100 mg/kg AC, as measured by the Morris water maze test and an object recognition test. Additionally, AC treatment significantly alleviated memory-related decreases in brain-derived neurotrophic factor (BDNF) mRNA and protein levels in the hippocampus. Our results suggest that AC significantly inhibited the cognitive deficits caused by SPS via increased expression of pro-inflammatory cytokines, including tumor necrosis factor-α and interleukin-6, in the rat brain. CONCLUSIONS: AC reversed the behavioral impairments and inflammation triggered by SPS-derived traumatic stress and should be further evaluated as a potential therapeutic drug for PTSD.


Anti-Inflammatory Agents/administration & dosage , Aralia/chemistry , Brain-Derived Neurotrophic Factor/genetics , Cognitive Dysfunction/drug therapy , Plant Extracts/administration & dosage , Stress Disorders, Post-Traumatic/drug therapy , Animals , Anti-Inflammatory Agents/isolation & purification , Brain-Derived Neurotrophic Factor/immunology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/immunology , Cognitive Dysfunction/psychology , Disease Models, Animal , Humans , Male , Maze Learning , Plant Extracts/isolation & purification , Rats , Rats, Sprague-Dawley , Stress Disorders, Post-Traumatic/genetics , Stress Disorders, Post-Traumatic/immunology , Stress Disorders, Post-Traumatic/psychology
16.
J Neuroimmunol ; 328: 78-85, 2019 03 15.
Article En | MEDLINE | ID: mdl-30623801

The murine anti-CD52 antibody, an equivalent of the humanized antibody alemtuzumab, which is successfully used in the treatment of multiple sclerosis, was used to explore a potential neuroprotective effect driven by immune cell derived brain-derived neurotrophic factor (BDNF). Therefore, lineage specific constitutive knock-out mice with a BDNF deficiency in T cells and macrophages were used and compared to treated wildtype mice. Neither therapeutic nor preventive application of the murine anti-CD52 antibody in an animal model of multiple sclerosis, the MOG35-55 EAE, revealed a beneficial contribution of immune cell derived BDNF to the disease outcome. Furthermore, preventive application of the murine anti-CD52 antibody worsened the clinical EAE disease course and could only be overcome by a prolonged recovery phase after treatment and before disease induction.


Alemtuzumab/pharmacology , Brain-Derived Neurotrophic Factor/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Immunologic Factors/pharmacology , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroprotective Agents/pharmacology , Spinal Cord/immunology , Spinal Cord/pathology , T-Lymphocytes/immunology
17.
Food Funct ; 10(1): 244-249, 2019 Jan 22.
Article En | MEDLINE | ID: mdl-30547177

To investigate the effects and the underlying mechanisms of ginsenoside Rf in a surgically induced rat endometriosis model, endometriosis was constructed through homologous transplantation and the Wistar rats were further randomly classified into the sham group, the estradiol valerate (E2V) control group, the endometriosis group, and the ginsenoside Rf groups (1.0, 2.0 and 4.0 mg kg-1, respectively). After 7 days of treatment, the implant volume and writhing responses were recorded. Vascular endothelial growth factor (VEGF), inducible nitric oxide synthase (iNOS), interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α were analyzed using enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT-PCR) assay. Brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinases (TrkB), and phosphate-c-AMP-responsive element binding protein (pCREB) were further measured. Compared with the endometriosis group, ginsenoside Rf could decrease the volume of the endometriotic implants and writhing responses. Furthermore, the expression levels of VEGF and inflammation-related iNOS, IL-6, IL-1ß, and TNF-α were significantly down-regulated in the ginsenoside Rf groups in a dose-dependent manner. The results also showed that ginsenoside Rf could decrease the expression of BDNF, TrkB, and pCREB in the endometriotic implants. The alleviation of endometriosis-associated dysmenorrhea and inflammation by ginsenoside Rf may be partially mediated by the BDNF-TrkB-CREB pathway.


Brain-Derived Neurotrophic Factor/immunology , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/immunology , Dysmenorrhea/drug therapy , Endometriosis/drug therapy , Ginsenosides/administration & dosage , Receptor, trkB/immunology , Animals , Brain-Derived Neurotrophic Factor/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Dysmenorrhea/genetics , Dysmenorrhea/immunology , Endometriosis/genetics , Endometriosis/immunology , Female , Humans , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Rats , Rats, Wistar , Receptor, trkB/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
18.
Neurosci Lett ; 692: 1-9, 2019 01 23.
Article En | MEDLINE | ID: mdl-30367955

Early-life infection has been shown to have profound effects on the brain and behavior across the lifespan, a phenomenon termed "early-life programming". Indeed, many neuropsychiatric disorders begin or have their origins early in life and have been linked to early-life immune activation (e.g. autism, ADHD, and schizophrenia). Furthermore, many of these disorders show a robust sex bias, with males having a higher risk of developing early-onset neurodevelopmental disorders. The concept of early-life programming is now well established, however, it is still unclear how such effects are initiated and then maintained across time to produce such a phenomenon. To begin to address this question, we examined changes in microglia, the immune cells of the brain, and peripheral immune cells in the hours immediately following early-life infection in male and female rats. We found that males showed a significant decrease in BDNF expression and females showed a significant increase in IL-6 expression in the cerebellum following E.coli infection on postnatal day 4; however, for most cytokines examined in the brain and in the periphery we were unable to identify any sex differences in the immune response, at least at the time points examined. Instead, neonatal infection with E.coli increased the expression of a number of cytokines in the brain of both males and females similarly including TNF-α, IL-1ß, and CD11b (a marker of microglia activation) in the hippocampus and, in the spleen, TNF-α and IL-1ß. We also found that protein levels of GRO-KC, MIP-1a, MCP1, IP-10, TNF-α, and IL-10 were elevated 8-hours postinfection, but this response was resolved by 24-hours. Lastly, we found that males have more thin microglia than females on P5, however, neonatal infection had no effect on any of the microglia morphologies we examined. These data show that sex differences in the acute immune response to neonatal infection are likely gene, region, and even time dependent. Future research should consider these factors in order to develop a comprehensive understanding of the immune response in males and females as these changes are likely the initiating agents that lead to the long-term, and often sex-specific, effects of early-life infection.


Cerebellum/immunology , Escherichia coli Infections/immunology , Hippocampus/immunology , Microglia/immunology , Sex Characteristics , Animals , Animals, Newborn , Brain-Derived Neurotrophic Factor/immunology , Cerebellum/microbiology , Female , Hippocampus/microbiology , Inflammation/blood , Inflammation/immunology , Inflammation/microbiology , Inflammation Mediators/blood , Inflammation Mediators/immunology , Interleukin-1beta/immunology , Interleukin-6/immunology , Male , Microglia/microbiology , Phenotype , Rats, Sprague-Dawley
19.
Molecules ; 23(8)2018 Jul 24.
Article En | MEDLINE | ID: mdl-30042304

CB2 cannabinoid receptor (CB2R) gene is associated with depression. We investigated the gene-environment interaction between CB2R function and diverse stressors. First, anxiety-like behavior during chronic-mild-stress (CMS) was evaluated in C57BL/6JJmsSlc mice following treatment with CB2R agonist JWH015 or inverse-agonist AM630. Second, locomotor activity and anxiety-like behavior were measured following exposure to an immune poly I:C stressor. Gene expressions of HPA axis related molecules, Fkbp5, Nr3c1 and Crf and pro-inflammatory cytokine Il-1b, as well as Bdnf as a key neurotrophin that supports neuron health, function, and synaptic plasticity, were determined in hippocampus of Cnr2 knockout mice, as indicators of stressful environment. CMS-induced anxiety-like behavior was enhanced by AM630 and reduced by JWH015 and fluvoxamine. Poly I:C reduced locomotor activity and increased anxiety-like behavior, and these effects were pronounced in the heterozygote than in the wild type mice. Fkbp5 and Nr3c1 expression were lower in the Cnr2 heterozygotes than in the wild type mice with Poly I:C treatment. These findings indicate that interaction between CB2R gene and stressors increases the risk of depression-like behaviors that may be linked with neuro-immune crosstalk. Further studies in human subjects are necessary to determine the role of CB2R and environmental interaction in the development of depression.


Anxiety/genetics , Depression/genetics , Gene-Environment Interaction , Hypothalamo-Hypophyseal System/immunology , Pituitary-Adrenal System/immunology , Receptor, Cannabinoid, CB2/genetics , Animals , Anxiety/chemically induced , Anxiety/immunology , Anxiety/physiopathology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/immunology , Cannabinoid Receptor Agonists/pharmacology , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/immunology , Depression/chemically induced , Depression/immunology , Depression/physiopathology , Disease Models, Animal , Gene Expression Regulation , Hippocampus/drug effects , Hippocampus/immunology , Hippocampus/physiopathology , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/physiopathology , Immunologic Factors/administration & dosage , Indoles/pharmacology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Locomotion/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/physiopathology , Poly I-C/administration & dosage , Receptor, Cannabinoid, CB2/deficiency , Receptor, Cannabinoid, CB2/immunology , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/immunology , Signal Transduction , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/immunology
20.
Biosens Bioelectron ; 116: 108-115, 2018 Sep 30.
Article En | MEDLINE | ID: mdl-29860089

Brain-derived neurotrophic factor (BDNF) was detected in the extracellular matrix of neuronal cells using a dual probe immunosensor (DPI), where one of them was used as a working and another bioconjugate loading probe. The working probe was fabricated by covalently immobilizing capture anti-BDNF (Cap Ab) on the gold nanoparticles (AuNPs)/conducting polymer composite layer. The bioconjugate probe was modified by drop casting a bioconjugate particles composed of conducting polymer self-assembled AuNPs, immobilized with detection anti-BDNF (Det Ab) and toluidine blue O (TBO). Each sensor layer was characterized using the surface analysis and electrochemical methods. Two modified probes were precisely faced each other to form a microfluidic channel structure and the gap between inside modified surfaces was about 19 µm. At optimized conditions, the DPI showed a linear dynamic range from 4.0 to 600.0 pg/ml with a detection limit of 1.5 ±â€¯0.012 pg/ml. Interference effect of IgG, arginine, glutamine, serine, albumin, and fibrinogene were examined and stability of the developed biosensor was also investigated. The reliability of the DPI sensor was evaluated by monitoring the extracellular release of BDNF using exogenic activators (ethanol, K+, and nicotine) in neuronal and non-neuronal cells. In addition, the effect of nicotine onto neuroblastoma cancer cells (SH-SY5Y) was studied in detail.


Biosensing Techniques , Brain-Derived Neurotrophic Factor/analysis , Brain-Derived Neurotrophic Factor/metabolism , Immunoassay , Nicotine/pharmacology , Animals , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Brain-Derived Neurotrophic Factor/immunology , Cell Line, Tumor , Chlorocebus aethiops , Electrochemical Techniques , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Neurons/drug effects , Polymers/chemistry , Rats , Vero Cells
...