Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.876
1.
Cell Death Dis ; 15(5): 345, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769311

Treatment-naïve small cell lung cancer (SCLC) is typically susceptible to standard-of-care chemotherapy consisting of cisplatin and etoposide recently combined with PD-L1 inhibitors. Yet, in most cases, SCLC patients develop resistance to first-line therapy and alternative therapies are urgently required to overcome this resistance. In this study, we tested the efficacy of dinaciclib, an FDA-orphan drug and inhibitor of the cyclin-dependent kinase (CDK) 9, among other CDKs, in SCLC. Furthermore, we report on a newly developed, highly specific CDK9 inhibitor, VC-1, with tumour-killing activity in SCLC. CDK9 inhibition displayed high killing potential in a panel of mouse and human SCLC cell lines. Mechanistically, CDK9 inhibition led to a reduction in MCL-1 and cFLIP anti-apoptotic proteins and killed cells, almost exclusively, by intrinsic apoptosis. While CDK9 inhibition did not synergise with chemotherapy, it displayed high efficacy in chemotherapy-resistant cells. In vivo, CDK9 inhibition effectively reduced tumour growth and improved survival in both autochthonous and syngeneic SCLC models. Together, this study shows that CDK9 inhibition is a promising therapeutic agent against SCLC and could be applied to chemo-refractory or resistant SCLC.


Cyclin-Dependent Kinase 9 , Indolizines , Lung Neoplasms , Pyridinium Compounds , Small Cell Lung Carcinoma , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Cyclin-Dependent Kinase 9/metabolism , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/pathology , Humans , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Cell Line, Tumor , Mice , Pyridinium Compounds/pharmacology , Pyridinium Compounds/therapeutic use , Indolizines/pharmacology , Cyclic N-Oxides/pharmacology , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
3.
Drug Dev Res ; 85(3): e22193, 2024 May.
Article En | MEDLINE | ID: mdl-38685605

The scaffolds of two known CDK inhibitors (CAN508 and dinaciclib) were the starting point for synthesizing two series of pyarazolo[1,5-a]pyrimidines to obtain potent inhibitors with proper selectivity. The study presented four promising compounds; 10d, 10e, 16a, and 16c based on cytotoxic studies. Compound 16a revealed superior activity in the preliminary anticancer screening with GI % = 79.02-99.13 against 15 cancer cell lines at 10 µM from NCI full panel 60 cancer cell lines and was then selected for further investigation. Furthermore, the four compounds revealed good safety profile toward the normal cell lines WI-38. These four compounds were subjected to CDK inhibitory activity against four different isoforms. All of them showed potent inhibition against CDK5/P25 and CDK9/CYCLINT. Compound 10d revealed the best activity against CDK5/P25 (IC50 = 0.063 µM) with proper selectivity index against CDK1 and CDK2. Compound 16c exhibited the highest inhibitory activity against CDK9/CYCLINT (IC50 = 0.074 µM) with good selectivity index against other isoforms. Finally, docking simulations were performed for compounds 10e and 16c accompanied by molecular dynamic simulations to understand their behavior in the active site of the two CDKs with respect to both CAN508 and dinaciclib.


Antineoplastic Agents , Bridged Bicyclo Compounds, Heterocyclic , Cyclic N-Oxides , Drug Design , Indolizines , Molecular Docking Simulation , Protein Kinase Inhibitors , Pyridinium Compounds , Humans , Pyridinium Compounds/pharmacology , Pyridinium Compounds/chemistry , Indolizines/pharmacology , Indolizines/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cyclic N-Oxides/pharmacology , Cyclic N-Oxides/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cyclin-Dependent Kinases/antagonists & inhibitors , Structure-Activity Relationship , Pyrimidines/pharmacology , Pyrimidines/chemistry , Drug Screening Assays, Antitumor , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Cyclin-Dependent Kinase 9/metabolism
4.
Pharmacol Rep ; 76(2): 263-272, 2024 Apr.
Article En | MEDLINE | ID: mdl-38472637

Renal tubulointerstitial fibrosis (RTIF) is a common feature and inevitable consequence of all progressive chronic kidney diseases, leading to end-stage renal failure regardless of the initial cause. Although research over the past few decades has greatly improved our understanding of the pathophysiology of RTIF, until now there has been no specific treatment available that can halt the progression of RTIF. Norcantharidin (NCTD) is a demethylated analogue of cantharidin, a natural compound isolated from 1500 species of medicinal insect, the blister beetle (Mylabris phalerata Pallas), traditionally used for medicinal purposes. Many studies have found that NCTD can attenuate RTIF and has the potential to be an anti-RTIF drug. This article reviews the recent progress of NCTD in the treatment of RTIF, with emphasis on the pharmacological mechanism of NCTD against RTIF.


Kidney Diseases , Humans , Kidney Diseases/drug therapy , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Fibrosis
5.
Anticancer Drugs ; 35(6): 548-555, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38502829

Shwachman-Diamond syndrome (SDS) is an autosomal recessive genetic disease, which is prone to transform into myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). TP53 mutation is a driving factor involved in the transformation of SDS into MDS/AML, and in the evolution of MDS to AML. Allogeneic hematopoietic stem cell transplantation (Allo-HSCT) is the only curable approach, however, challenge remains regarding the balance between efficacy and the high risk from treatment-related toxicity and mortality to achieve temporary disease control before transplantation to gain time and opportunities for transplantation. At present, pre-transplant bridging therapy has emerged as one of the important options with improved efficacy, reduced tumor burden, and less treatment-related toxicity. Here we reported azacitidine combined with venetoclax was used as pre-transplant bridging regimen in a TP53-mutant AML-MR case developed from SDS. He achieved complete remission with incomplete recovery and proceeded to Allo-HSCT. We hope to provide some evidence and insight for in-depth research and clinical treatment by presenting this case.


Antineoplastic Combined Chemotherapy Protocols , Azacitidine , Bridged Bicyclo Compounds, Heterocyclic , Leukemia, Myeloid, Acute , Mutation , Sulfonamides , Tumor Suppressor Protein p53 , Humans , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Azacitidine/therapeutic use , Azacitidine/administration & dosage , Sulfonamides/therapeutic use , Sulfonamides/administration & dosage , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Tumor Suppressor Protein p53/genetics , Male , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Hematopoietic Stem Cell Transplantation , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics
6.
Medicine (Baltimore) ; 103(9): e37394, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38428865

Therapeutic resistance in cancer remains a dilemma that scientists and oncologists are eager to solve. Despite several preclinical and clinical studies dedicated to overcoming therapeutic resistance, they often do not yield the expected outcomes. This is primarily due to the multifactorial phenomenon of therapeutic resistance. Norcantharidin (NCTD) is an artificial compound derived from cantharidin that has significant anticancer efficacy without incurring serious side effects. Intriguingly, extensive research suggests that NCTD is essential for boosting anticancer efficacy and reversing treatment resistance. This review article presents a full description of how NCTD can effectively overcome cancer resistance to standard treatments such as chemotherapy, radiation, hormone therapy, and targeted therapy. We also discuss the potential prospects and challenges associated with using NCTD as a therapeutic strategy for reversing resistance to cancer therapy. We anticipate that our review will serve as a valuable reference for researchers and clinicians.


Antineoplastic Agents , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Apoptosis , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cell Line, Tumor , Neoplasms/drug therapy
7.
Nat Commun ; 15(1): 2428, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38499526

The molecular mechanisms of venetoclax-based therapy failure in patients with acute myeloid leukemia were recently clarified, but the mechanisms by which patients with myelodysplastic syndromes (MDS) acquire secondary resistance to venetoclax after an initial response remain to be elucidated. Here, we show an expansion of MDS hematopoietic stem cells (HSCs) with a granulo-monocytic-biased transcriptional differentiation state in MDS patients who initially responded to venetoclax but eventually relapsed. While MDS HSCs in an undifferentiated cellular state are sensitive to venetoclax treatment, differentiation towards a granulo-monocytic-biased transcriptional state, through the acquisition or expansion of clones with STAG2 or RUNX1 mutations, affects HSCs' survival dependence from BCL2-mediated anti-apoptotic pathways to TNFα-induced pro-survival NF-κB signaling and drives resistance to venetoclax-mediated cytotoxicity. Our findings reveal how hematopoietic stem and progenitor cell (HSPC) can eventually overcome therapy-induced depletion and underscore the importance of using close molecular monitoring to prevent HSPC hierarchical change in MDS patients enrolled in clinical trials of venetoclax.


Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Hematopoietic Stem Cells/metabolism , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Sulfonamides/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics
8.
Oncotarget ; 15: 220-231, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38484153

ABT199/venetoclax, an inhibitor of the pro-survival BCL-2 protein, has improved AML treatment. Its efficacy in hematopoietic stem cell transplantation (HSCT), when combined with other chemotherapeutic drugs, has not been thoroughly investigated. The present study demonstrates the synergistic cytotoxicity of ABT199/venetoclax with the DNA alkylator thiotepa (Thio) in AML cells. Cleavage of Caspase 3, PARP1 and HSP90, as well as increased Annexin V positivity, suggest potent activation of apoptosis by this two-drug combination; increased levels of γ-H2AX, P-CHK1 (S317), P-CHK2 (S19) and P-SMC1 (S957) indicate an enhanced DNA damage response. Likewise, the increased level of P-SAPK/JNK (T183/Y185) and decreased P-PI3Kp85 (Y458) suggest enhanced activation of stress signaling pathways. These molecular readouts were synergistically enhanced when ABT199/venetoclax and Thio were combined with fludarabine, cladribine and busulfan. The five-drug combination decreased the levels of BCL-2, BCL-xL and MCL-1, suggesting its potential clinical relevance in overcoming ABT199/venetoclax resistance. Moreover, this combination is active against P53-negative and FLT3-ITD-positive cell lines. Enhanced activation of apoptosis was observed in leukemia patient-derived cell samples exposed to the five-drug combination, suggesting a clinical relevance. The results provide a rationale for clinical trials using these two- and five-drug combinations as part of a conditioning regimen for AML patients undergoing HSCT.


Busulfan , Leukemia, Myeloid, Acute , Sulfonamides , Vidarabine/analogs & derivatives , Humans , Busulfan/pharmacology , Thiotepa/therapeutic use , Cladribine/pharmacology , Leukemia, Myeloid, Acute/genetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Drug Combinations , Cell Line, Tumor , Apoptosis
10.
Sci Rep ; 14(1): 4975, 2024 02 29.
Article En | MEDLINE | ID: mdl-38424468

Venetoclax has been approved recently for treatment of Acute myeloid leukemia (AML). Venetoclax is a BH3-mimetic and induces apoptosis via Bcl-2 inhibition. However, venetoclax's effect is still restrictive and a novel strategy is needed. In the present study, we demonstrate that sodium butyrate (NaB) facilitates the venetoclax's efficacy of cell death in AML cells. As a single agent, NaB or venetoclax exerted just a weak effect on cell death induction for AML cell line KG-1. The combination with NaB and venetoclax drastically induced cell death. NaB upregulated pro-apoptotic factors, Bax and Bak, indicating the synergistic effect by the collaboration with Bcl-2 inhibition by venetoclax. The combined treatment with NaB and venetoclax strongly cleaved a caspase substrate poly (ADP-ribose) polymerase (PARP) and a potent pan-caspase inhibitor Q-VD-OPh almost completely blocked the cell death induced by the combination, meaning that the combination mainly induced apoptosis. The combination with NaB and venetoclax also strongly induced cell death in another AML cell line SKNO-1 but did not affect chronic myeloid leukemia (CML) cell line K562, indicating that the effect was specific for AML cells. Our results provide a novel strategy to strengthen the effect of venetoclax for AML treatment.


Butyrates , Leukemia, Myeloid, Acute , Sulfonamides , Humans , Cell Line, Tumor , Butyrates/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Apoptosis , Caspases
12.
Nat Commun ; 15(1): 1476, 2024 Feb 17.
Article En | MEDLINE | ID: mdl-38368459

Overexpressed pro-survival B-cell lymphoma-2 (BCL-2) family proteins BCL-2 and BCL-XL can render tumor cells malignant. Leukemia drug venetoclax is currently the only approved selective BCL-2 inhibitor. However, its application has led to an emergence of resistant mutations, calling for drugs with an innovative mechanism of action. Herein we present cyclic peptides (CPs) with nanomolar-level binding affinities to BCL-2 or BCL-XL, and further reveal the structural and functional mechanisms of how these CPs target two proteins in a fashion that is remarkably different from traditional small-molecule inhibitors. In addition, these CPs can bind to the venetoclax-resistant clinical BCL-2 mutants with similar affinities as to the wild-type protein. Furthermore, we identify a single-residue discrepancy between BCL-2 D111 and BCL-XL A104 as a molecular "switch" that can differently engage CPs. Our study suggests that CPs may inhibit BCL-2 or BCL-XL by delicately modulating protein-protein interactions, potentially benefiting the development of next-generation therapeutics.


Antineoplastic Agents , Peptides, Cyclic , Peptides, Cyclic/pharmacology , bcl-X Protein/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Sulfonamides/pharmacology , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , Apoptosis , Cell Line, Tumor
13.
Eur J Pharmacol ; 968: 176418, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38350590

The management of patients with acute myeloid leukemia (AML) remains a challenge because of the complexity and heterogeneity of this malignancy. Despite the recent approval of several novel targeted drugs, resistance seems inevitable, and clinical outcomes are still suboptimal. Increasing evidence supports the use of natural plants as an important source of anti-leukemic therapeutics. Licochalcone A (LCA) is an active flavonoid isolated from the roots of licorice, Glycyrrhiza uralensis Fisch., possessing extensive anti-tumor activities. However, its effects on AML and the underlying mechanisms remain unknown. Here, we showed that LCA decreased the viability of established human AML cell lines in a dose- and time-dependent manner. LCA significantly induced mitochondrial apoptotic cell death, accompanied by the downregulation of MCL-1, upregulation of BIM, truncation of BID, and cleavage of PARP. A prominent decline in the phosphorylation of multiple critical molecules, including AKT, glycogen synthase kinase-3ß (GSK3ß), ERK, and P38 was observed upon LCA treatment, indicating PI3K and MAPK signals were suppressed. Both transcription and translation of c-Myc were also inhibited by LCA. In addition, LCA enhanced the cytotoxicity of the BCL-2 inhibitor venetoclax. Furthermore, the anti-survival and pro-apoptotic effects were confirmed in primary blasts from 10 patients with de novo AML. Thus, our results expand the applications of LCA, which can be regarded as a valuable agent in treating AML.


Chalcones , Leukemia, Myeloid, Acute , Proto-Oncogene Proteins c-bcl-2 , Sulfonamides , Humans , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Line, Tumor , Leukemia, Myeloid, Acute/pathology , Apoptosis , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Mitochondria
14.
Nat Commun ; 15(1): 1821, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38418901

Interferon gamma (IFNγ) is a critical cytokine known for its diverse roles in immune regulation, inflammation, and tumor surveillance. However, while IFNγ levels were elevated in sera of most newly diagnosed acute myeloid leukemia (AML) patients, its complex interplay in AML remains insufficiently understood. We aim to characterize these complex interactions through comprehensive bulk and single-cell approaches in bone marrow of newly diagnosed AML patients. We identify monocytic AML as having a unique microenvironment characterized by IFNγ producing T and NK cells, high IFNγ signaling, and immunosuppressive features. IFNγ signaling score strongly correlates with venetoclax resistance in primary AML patient cells. Additionally, IFNγ treatment of primary AML patient cells increased venetoclax resistance. Lastly, a parsimonious 47-gene IFNγ score demonstrates robust prognostic value. In summary, our findings suggest that inhibiting IFNγ is a potential treatment strategy to overcoming venetoclax resistance and immune evasion in AML patients.


Interferon-gamma , Leukemia, Myeloid, Acute , Sulfonamides , Humans , Interferon-gamma/pharmacology , Prognosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/diagnosis , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Tumor Microenvironment
15.
Br J Haematol ; 204(4): 1146-1158, 2024 Apr.
Article En | MEDLINE | ID: mdl-38296617

Venetoclax, an oral BCL-2 inhibitor, has been widely incorporated in the treatment of acute myeloid leukaemia. The combination of hypomethylating agents and venetoclax is the current standard of care for elderly and patient's ineligible for aggressive therapies. However, venetoclax is being increasingly used with aggressive chemotherapy regimens both in the front line and in the relapse setting. Our growing experience and intensive research demonstrate that certain genetic abnormalities are associated with venetoclax sensitivity, while others with resistance, and that resistance can emerge during treatment leading to disease relapse. In the current review, we provide a summary of the known mechanisms of venetoclax cytotoxicity, both regarding the inhibition of BCL-2-mediated apoptosis and its effect on cell metabolism. We describe how these pathways are linked to venetoclax resistance and are associated with specific mutations. Finally, we provide the rationale for novel drug combinations in current and future clinical trials.


Leukemia, Myeloid, Acute , Neoplasm Recurrence, Local , Sulfonamides , Humans , Aged , Neoplasm Recurrence, Local/drug therapy , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Recurrence , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology
16.
Adv Mater ; 36(19): e2312735, 2024 May.
Article En | MEDLINE | ID: mdl-38290128

Devices interfacing with biological tissues can provide valuable insights into function, disease, and metabolism through electrical and mechanical signals. However, certain neuromuscular tissues, like those in the gastrointestinal tract, undergo significant strains of up to 40%. Conventional inextensible devices cannot capture the dynamic responses in these tissues. This study introduces electrodes made from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and polydimethylsiloxane (PDMS) that enable simultaneous monitoring of electrical and mechanical responses of gut tissue. The soft PDMS layers conform to tissue surfaces during gastrointestinal movement. Dopants, including Capstone FS-30 and polyethylene glycol, are explored to enhance the conductivity, electrical sensitivity to strain, and stability of the PEDOT:PSS. The devices are fabricated using shadow masks and solution-processing techniques, providing a faster and simpler process than traditional clean-room-based lithography. Tested on ex vivo mouse colon and human stomach, the device recorded voltage changes of up to 300 µV during contraction and distension consistent with muscle activity, while simultaneously recording resistance changes of up to 150% due to mechanical strain. These devices detect and respond to chemical stimulants and blockers, and can induce contractions through electrical stimulation. They hold great potential for studying and treating complex disorders like irritable bowel syndrome and gastroparesis.


Dimethylpolysiloxanes , Polystyrenes , Animals , Mice , Polystyrenes/chemistry , Humans , Dimethylpolysiloxanes/chemistry , Muscle Contraction/physiology , Electrodes , Gastrointestinal Tract/physiology , Stomach/physiology , Colon/physiology , Electric Conductivity , Polymers/chemistry , Electrophysiological Phenomena , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Thiophenes/chemistry , Thiophenes/pharmacology
17.
Blood ; 143(18): 1825-1836, 2024 May 02.
Article En | MEDLINE | ID: mdl-38211332

ABSTRACT: Venetoclax, the first-generation inhibitor of the apoptosis regulator B-cell lymphoma 2 (BCL2), disrupts the interaction between BCL2 and proapoptotic proteins, promoting the apoptosis in malignant cells. Venetoclax is the mainstay of therapy for relapsed chronic lymphocytic leukemia and is under investigation in multiple clinical trials for the treatment of various cancers. Although venetoclax treatment can result in high rates of durable remission, relapse has been widely observed, indicating the emergence of drug resistance. The G101V mutation in BCL2 is frequently observed in patients who relapsed treated with venetoclax and sufficient to confer resistance to venetoclax by interfering with compound binding. Therefore, the development of next-generation BCL2 inhibitors to overcome drug resistance is urgently needed. In this study, we discovered that sonrotoclax, a potent and selective BCL2 inhibitor, demonstrates stronger cytotoxic activity in various hematologic cancer cells and more profound tumor growth inhibition in multiple hematologic tumor models than venetoclax. Notably, sonrotoclax effectively inhibits venetoclax-resistant BCL2 variants, such as G101V. The crystal structures of wild-type BCL2/BCL2 G101V in complex with sonrotoclax revealed that sonrotoclax adopts a novel binding mode within the P2 pocket of BCL2 and could explain why sonrotoclax maintains stronger potency than venetoclax against the G101V mutant. In summary, sonrotoclax emerges as a potential second-generation BCL2 inhibitor for the treatment of hematologic malignancies with the potential to overcome BCL2 mutation-induced venetoclax resistance. Sonrotoclax is currently under investigation in multiple clinical trials.


Antineoplastic Agents , Bridged Bicyclo Compounds, Heterocyclic , Drug Resistance, Neoplasm , Hematologic Neoplasms , Proto-Oncogene Proteins c-bcl-2 , Sulfonamides , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Humans , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Animals , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Xenograft Model Antitumor Assays , Cell Line, Tumor , Mutation , Apoptosis/drug effects
19.
Leuk Lymphoma ; 65(5): 585-597, 2024 May.
Article En | MEDLINE | ID: mdl-38227293

Despite advances in treatment, a significant proportion of patients with chronic lymphocytic leukemia (CLL) will relapse with drug-resistant disease. The imipridones, ONC-201 and ONC-212, are effective against a range of different cancers, including acute myeloid leukemia (AML) and tumors of the brain, breast, and prostate. These drugs induce cell death through activation of the mitochondrial protease, caseinolytic protease (CIpP), and the unfolded protein response (UPR). Here we demonstrate that the novel imipridone analog, TR-57, has efficacy as a single agent and synergises with venetoclax against CLL cells under in vitro conditions that mimic the tumor microenvironment. Changes in protein expression suggest TR-57 activates the UPR, inhibits the AKT and ERK1/2 pathways and induces pro-apoptotic changes in the expression of proteins of the BCL-2 family. The study suggests that TR-57, as a single agent and in combination with venetoclax, may represent an effective treatment option for CLL.


Apoptosis , Bridged Bicyclo Compounds, Heterocyclic , Drug Synergism , Leukemia, Lymphocytic, Chronic, B-Cell , Sulfonamides , Humans , Sulfonamides/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Apoptosis/drug effects , Cell Line, Tumor , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Unfolded Protein Response/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Signal Transduction/drug effects
20.
Cytoskeleton (Hoboken) ; 81(2-3): 143-150, 2024.
Article En | MEDLINE | ID: mdl-37815120

Monomeric G-actin polymerizes into F-actin to perform various cellular functions. Actin depolymerization drugs, such as latrunculin-A (Lat-A), inhibit filament formation and disrupt the cytoskeleton. Interestingly, the green algae Chlamydomonas alternatively produces a non-conventional actin, NAP1, that responds to inhibition by latrunculin. However, the molecular mechanism underlying latrunculin resistance of NAP1 remains unclear because of the difficulty due to its low in vitro polymerizability. Instead of biochemical experiments, we performed molecular dynamics (MD) simulations to investigate whether NAP1 has a lower affinity for Lat-A than the conventional actins. Our phylogenetic comparison of the binding free energies shows that Lat-A is evolutionarily optimized for skeletal muscles. By decomposing the binding free energy into each amino acid residue, we found that some residues in NAP1 play an important role in latrunculin resistance, suggesting that the primary mechanism of latrunculin resistance is the loss of affinity for Lat-A due to substitutions. In conclusion, our binding-free-energy calculations using MD simulations provide the critical insight that loss of affinity is the direct mechanism of latrunculin resistance.


Actins , Molecular Dynamics Simulation , Naphthalenes , Oligopeptides , Actins/metabolism , Phylogeny , Thiazolidines/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology
...