Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.798
1.
J Physiol Pharmacol ; 75(2): 195-203, 2024 Apr.
Article En | MEDLINE | ID: mdl-38736266

Asthma is a common airway disease associated with allergic inflammation. Environmental factors, such as pollens, pollution, insect-borne antigens, or commercial chemicals, cause this disease. The common symptoms of this airway allergic reaction are increasing mucus, narrowing of the airway wall, coughing, and chest tightness. Medications, such as steroids, alleviate the disease but with severe side effects. Several studies have reported the anti-inflammatory effects of tree-based essential oil components, particularly 3-carene. Therefore, this study used 3-carene to determine if it alleviates asthmatic symptoms in the murine model. First, BALB/c mice were sensitized to an ovalbumin and aluminium hydroxide mixture on day 7th and 14th. From days 21st to 23rd, the mice were challenged with 3-carene and budesonide. The lung trachea, plasma, and bronchiolar lavage fluid (BAL fluid) were collected on day 24. The 3-carene treatment suppressed the cytokine gene expression, such as interleukin-4 (IL-4), IL-5, and IL-13, reducing the lung epithelial cell thickness in the asthmatic model. These results suggest that essential oil 3-carene has an anti-asthmatic effect.


Asthma , Bicyclic Monoterpenes , Interleukin-13 , Interleukin-4 , Interleukin-5 , Animals , Female , Mice , Anti-Asthmatic Agents/pharmacology , Anti-Asthmatic Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Asthma/drug therapy , Asthma/pathology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Disease Models, Animal , Interleukin-13/metabolism , Interleukin-4/metabolism , Interleukin-5/metabolism , Lung/drug effects , Lung/pathology , Mice, Inbred BALB C , Ovalbumin , Bicyclic Monoterpenes/pharmacology
2.
J Ethnopharmacol ; 330: 118105, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38631485

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine (TCM) XYQFT is composed of 10 herbs. According to the NHIRD, XYQFT is one of the top ten most commonly used TCM prescriptions for asthma treatment. AIM OF THE STUDY: The aim of this study was to explore whether XYQFT reduces asthma symptoms in a mouse model of chronic asthma and determine the immunomodulatory mechanism of mast cells. MATERIALS AND METHODS: BALB/c mice were intratracheally (it) stimulated with 40 µL (2.5 µg/µL) of Dermatophagoides pteronyssinus (Der p) once a week for 6 consecutive weeks and orally administered XYQFT at 1 g/kg 30 min before Der p stimulation. Airway hypersensitivity, inflammatory cells in the BALF and total IgE in the blood were assessed in mice. In addition, RBL-2H3 cells (mast cells) were stimulated with DNP-IgE, after which different concentrations of XYQFT were added for 30 min to evaluate the effect of XYQFT on the gene expression and degranulation of DNP-stimulated RBL-2H3 cells. After the compounds in XYQFT were identified using LC‒MS/MS, the PBD method was used to identify the chemical components that inhibited the expression of the GM-CSF and COX-2 genes in mast cells. RESULTS: The airway hypersensitivity assay demonstrated that XYQFT significantly alleviated Der p-induced airway hypersensitivity. Moreover, cell counting and typing of bronchoalveolar lavage fluid revealed a significant reduction in Der p-induced inflammatory cell infiltration with XYQFT treatment. ELISA examination further indicated a significant decrease in Der p-induced total IgE levels in serum following XYQFT administration. In addition, XYQFT inhibited the degranulation and expression of genes (IL-3, IL-4, ALOX-5, IL-13, GM-CSF, COX-2, TNF-α, and MCP-1) in RBL-2H3 cells after DNP stimulation. The compounds timosaponin AIII and genkwanin in XYQFT were found to be key factors in the inhibition of COX-2 and GM-CSF gene expression in mast cells. CONCLUSION: By regulating mast cells, XYQFT inhibited inflammatory cell infiltration, airway hypersensitivity and specific immunity in a mouse model of asthma. In addition, XYQFT synergistically inhibited the expression of the GM-CSF and COX-2 genes in mast cells through timosaponin AIII and genkwanin.


Asthma , Cyclooxygenase 2 , Drugs, Chinese Herbal , Granulocyte-Macrophage Colony-Stimulating Factor , Mast Cells , Mice, Inbred BALB C , Animals , Drugs, Chinese Herbal/pharmacology , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Mast Cells/drug effects , Mast Cells/metabolism , Asthma/drug therapy , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Mice , Rats , Immunoglobulin E/blood , Male , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Cell Line , Anti-Asthmatic Agents/pharmacology , Disease Models, Animal
3.
Inflamm Res ; 73(6): 1019-1031, 2024 Jun.
Article En | MEDLINE | ID: mdl-38656426

OBJECTIVE: Angiotensin-(1-7) [Ang-(1-7)] is a pro-resolving mediator. It is not known whether the pro-resolving effects of Ang-(1-7) are sustained and protect the lung from a subsequent inflammatory challenge. This study sought to investigate the impact of treatment in face of a second allergic or lipopolysaccharide (LPS) challenge. METHODS: Mice, sensitized and challenged with ovalbumin (OVA), received a single Ang-(1-7) dose at the peak of eosinophilic inflammation, 24 h after the final OVA challenge. Subsequently, mice were euthanized at 48, 72, 96, and 120 h following the OVA challenge, and cellular infiltrate, inflammatory mediators, lung histopathology, and macrophage-mediated efferocytic activity were evaluated. The secondary inflammatory stimulus (OVA or LPS) was administered 120 h after the last OVA challenge, and subsequent inflammatory analyses were performed. RESULTS: Treatment with Ang-(1-7) resulted in elevated levels of IL-10, CD4+Foxp3+, Mres in the lungs and enhanced macrophage-mediated efferocytic capacity. Moreover, in allergic mice treated with Ang-(1-7) and then subjected to a secondary OVA challenge, inflammation was also reduced. Similarly, in mice exposed to LPS, Ang-(1-7) effectively prevented the lung inflammation. CONCLUSION: A single dose of Ang-(1-7) resolves lung inflammation and protect the lung from a subsequent inflammatory challenge highlighting its potential therapeutic for individuals with asthma.


Angiotensin I , Lipopolysaccharides , Lung , Ovalbumin , Peptide Fragments , Animals , Angiotensin I/therapeutic use , Angiotensin I/pharmacology , Angiotensin I/administration & dosage , Peptide Fragments/pharmacology , Peptide Fragments/therapeutic use , Peptide Fragments/administration & dosage , Lung/drug effects , Lung/pathology , Lung/immunology , Ovalbumin/immunology , Mice , Male , Macrophages/drug effects , Macrophages/immunology , Eosinophils/drug effects , Eosinophils/immunology , Mice, Inbred BALB C , Inflammation/drug therapy , Eosinophilia/drug therapy , Eosinophilia/immunology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/cytology
4.
BMC Pharmacol Toxicol ; 25(1): 30, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38650035

BACKGROUND: Calycosin, a flavonoid compound extracted from Astragalus membranaceus, has shown anti-asthma benefits in house dust mite-induced asthma. Recent studies have suggested that innate-type cells, including group 2 innate lymphoid cells (ILC2s) and macrophages, serve as incentives for type 2 immunity and targets for drug development in asthma. This work focuses on the effects of calycosin on the dysregulated ILC2s and macrophages in allergic asthma. METHODS: In vivo, the asthmatic mouse model was established with ovalbumin (OVA) sensitization and challenge, and calycosin was intraperitoneally administered at doses of 20 and 40 mg/kg. In vivo, mouse primary ILC2s were stimulated with interleukin (IL)-33 and mouse RAW264.7 macrophages were stimulated with IL-4 and IL-13 to establish the cell models. Cells were treated with calycosin at doses of 5 and 10 µM. RESULTS: In vivo, we observed significantly reduced numbers of eosinophils, neutrophils, monocyte macrophages and lymphocytes in the bronchoalveolar lavage fluid (BALF) of OVA-exposed mice with 40 mg/kg calycosin. Histopathological assessment showed that calycosin inhibited the airway inflammation and remodeling caused by OVA. Calycosin markedly decreased the up-regulated IL-4, IL-5, IL-13, IL-33, and suppression tumorigenicity 2 (ST2) induced by OVA in BALF and/or lung tissues of asthmatic mice. Calycosin repressed the augment of arginase 1 (ARG1), IL-10, chitinase-like 3 (YM1) and mannose receptor C-type 1 (MRC1) levels in the lung tissues of asthmatic mice. In vivo, calycosin inhibited the IL-33-induced activation as well as the increase of IL-4, IL-5, IL-13 and ST2 in ILC2s. Calycosin also repressed the increase of ARG1, IL-10, YM1 and MRC1 induced by IL-4 and IL-13 in RAW264.7 macrophages. In addition, we found that these changes were more significant in 40 mg/kg calycosin treatment than 20 mg/kg calycosin. CONCLUSIONS: Collectively, this study showed that calycosin might attenuate OVA-induced airway inflammation and remodeling in asthmatic mice via preventing ILC2 activation and macrophage M2 polarization. Our study might contribute to further study of asthmatic therapy.


Asthma , Isoflavones , Lymphocytes , Macrophages , Mice, Inbred BALB C , Ovalbumin , Animals , Asthma/drug therapy , Asthma/immunology , Mice , Macrophages/drug effects , Macrophages/immunology , Isoflavones/pharmacology , Isoflavones/therapeutic use , RAW 264.7 Cells , Lymphocytes/drug effects , Lymphocytes/immunology , Immunity, Innate/drug effects , Female , Anti-Asthmatic Agents/pharmacology , Anti-Asthmatic Agents/therapeutic use , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Lung/drug effects , Lung/immunology , Lung/pathology , Interleukin-33
5.
Clin Respir J ; 18(4): e13742, 2024 Apr.
Article En | MEDLINE | ID: mdl-38664220

BACKGROUND: Allergic asthma is an important respiratory system problem characterized by airway inflammation, breathlessness, and bronchoconstriction. Allergic asthma and its outcomes are triggered by type 2 allergic immune responses. Tectorigenin is a methoxy-isoflavone with anti-inflammatory effects. In this study, we investigated the effects of tectorigenin on the pathophysiology of allergic asthma in an animal model. METHODS: Asthmatic mice were treated with tectorigenin. Then airway hyperresponsiveness (AHR), eosinophil percentage, levels of interleukin (IL)-33, IL-25, IL-13, IL-5, IL-4, total and ovalbumin (OVA)-specific immunoglobulin (Ig)E, and lung histopathology were evaluated. RESULT: Tectorigenin significantly (P 〈 0.05) reduced eosinophil infiltration (41 ± 7%) in the broncho-alveolar lavage fluid (BALF), serum IL-5 level (41 ± 5, pg/mL), and bronchial and vascular inflammation (scores of 1.3 ± 0.2 and 1.1 ± 0.3, respectively) but had no significant effects on AHR, serum levels of IL-33, -25, -13, and -4 (403 ± 24, 56 ± 7, 154 ± 11, and 89 ± 6 pg/mL, respectively), total and OVA-specific IgE (2684 ± 265 and 264 ± 19 ng/mL, respectively), goblet cell hyperplasia, and mucus production. CONCLUSION: Tectorigenin could control inflammation and the secretion of inflammatory mediators of asthma, so it can be regarded as a potential antiasthma treatment with the ability to control eosinophilia-related problems.


Anti-Inflammatory Agents , Antioxidants , Asthma , Disease Models, Animal , Isoflavones , Mice, Inbred BALB C , Ovalbumin , Animals , Asthma/drug therapy , Asthma/chemically induced , Asthma/metabolism , Asthma/immunology , Asthma/pathology , Mice , Ovalbumin/toxicity , Ovalbumin/adverse effects , Isoflavones/pharmacology , Isoflavones/therapeutic use , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Immunoglobulin E/blood , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Female , Lung/pathology , Lung/drug effects , Lung/metabolism , Lung/immunology , Cytokines/metabolism
6.
Int Immunopharmacol ; 133: 112126, 2024 May 30.
Article En | MEDLINE | ID: mdl-38669946

Type 17 helper T cells (Th17)-dominant neutrophilic airway inflammation is critical in the pathogenesis of steroid-resistant airway inflammation such as severe asthma. Small extracellular vesicles (sEV) derived from human mesenchymal stem cells (MSCs) display extensive therapeutic effects and advantages in many diseases. However, the role of MSC-sEV in Th17-dominant neutrophilic airway inflammation and the related mechanisms are still poorly studied. Here we found that MSC-sEV significantly alleviated the infiltration of inflammatory cells in peribronchial interstitial tissues and reduced levels of inflammatory cells, especially neutrophils, in bronchoalveolar lavage fluids (BALF) of mice with neutrophilic airway inflammation. Consistently, MSC-sEV significantly decreased levels of IL-17A in BALF and Th17 in lung tissues. Furthermore, we found that labelled MSC-sEV were taken up by human CD4+ T cells most obviously at 12 h after incubation, and distributed mostly in mouse lungs. More importantly, potential signaling pathways involved in the MSC-sEV mediated inhibition of Th17 polarization were found using RNA sequencing. Using Western blot, JAK2-STAT3 pathway was identified as an important role in the inhibition of Th17 polarization by MSC-sEV. We found that proteins in MSC-sEV were mostly involved in the therapeutic effects of MSC-sEV. In total, our study suggested that MSC-sEV could be a potential therapeutic strategy for the treatment of neutrophilic airway inflammation.


Extracellular Vesicles , Mesenchymal Stem Cells , Neutrophils , STAT3 Transcription Factor , Th17 Cells , Th17 Cells/immunology , Humans , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Mice , Neutrophils/immunology , STAT3 Transcription Factor/metabolism , Janus Kinase 2/metabolism , Interleukin-17/metabolism , Lung/immunology , Lung/pathology , Mice, Inbred C57BL , Cells, Cultured , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/cytology , Asthma/immunology , Asthma/therapy , Male , Signal Transduction , Female , Disease Models, Animal
7.
Immun Inflamm Dis ; 12(4): e1252, 2024 Apr.
Article En | MEDLINE | ID: mdl-38652015

We developed pulmonary emphysema and a type 2 airway inflammation overlap mouse model. The bronchoalveolar lavage (BAL) interleukin 13 (IL-13), IL-4, and IL-5 levels in the overlap model were higher than in the pulmonary emphysema model and lower than in the type 2 airway inflammation model, but IL-33 level in the lung was higher than in other models. IL-33 and interferon-γ (IFNγ) in lungs may control the severity of a type 2 airway inflammation in lung.


Disease Models, Animal , Interleukin-33 , Pulmonary Emphysema , Animals , Interleukin-33/metabolism , Mice , Pulmonary Emphysema/metabolism , Pulmonary Emphysema/pathology , Pulmonary Emphysema/etiology , Pulmonary Emphysema/immunology , Bronchoalveolar Lavage Fluid/immunology , Lung/pathology , Lung/immunology , Lung/metabolism , Inflammation/immunology , Inflammation/metabolism , Interferon-gamma/metabolism , Interferon-gamma/immunology , Mice, Inbred C57BL
8.
Int Immunopharmacol ; 132: 111903, 2024 May 10.
Article En | MEDLINE | ID: mdl-38579561

Bruton's Tyrosine kinase (BTK) plays a pivotal role as the key mediator in B cell signaling. Recent research has revealed that it is also expressed in cells critical to asthma development, such as T cells, and eosinophils. This study aims to investigate the potential of BTK inhibitor in eosinophilic asthma mouse model. BALB/c mice were sensitized with ovalbumin (OVA) via intraperitoneal injections and followed by OVA nebulizations. The mice were treated with 250 µg/ml or 500 µg/ml of ibrutinib before the second intraperitoneal injection and the first nebulization. Two days after the last OVA challenge, airway hyperresponsiveness (AHR) was assessed with methacholine, and differential cell count in bronchoalveolar lavage fluid (BALF) was performed. The cytokines were measured in BALF, and serum OVA-specific IgE and IgG antibody levels were evaluated by ELISA. The inhibitory effect of ibrutinib was also evaluated in splenic mononuclear cells, mast cells, eosinophils, and T cells in vitro. Treatment with ibrutinib significantly attenuated AHR and airway inflammation, compared to the OVA-induced positive control. The treatment also reduced IL-4, IL-5, IL-13 and IFN-γ cytokine levels and suppressed OVA-specific IgE and IgG production compared to the OVA-induced positive control. Additionally, ibrutinib decreased beta-hexosaminidase release from mast cells, type 2 cytokine productions from mononuclear cells and T cells, and eosinophilic activation markers in vitro. The results of this study suggest that ibrutinib treatment could exert anti-allergic effects by inactivating B cells and other BTK-expressing cells. Further studies are needed to investigate the potential therapeutic effect of ibrutinib on allergic diseases.


Adenine , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase , Asthma , Cytokines , Disease Models, Animal , Eosinophils , Immunoglobulin E , Mice, Inbred BALB C , Ovalbumin , Piperidines , Protein Kinase Inhibitors , Animals , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Asthma/drug therapy , Asthma/immunology , Piperidines/therapeutic use , Piperidines/pharmacology , Ovalbumin/immunology , Adenine/therapeutic use , Adenine/pharmacology , Immunoglobulin E/blood , Immunoglobulin E/immunology , Cytokines/metabolism , Eosinophils/immunology , Eosinophils/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mice , Pyrimidines/therapeutic use , Pyrimidines/pharmacology , Female , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Immunoglobulin G/blood , Anti-Asthmatic Agents/therapeutic use , Anti-Asthmatic Agents/pharmacology , Cells, Cultured , Humans , Mast Cells/drug effects , Mast Cells/immunology
9.
JCI Insight ; 9(8)2024 Mar 19.
Article En | MEDLINE | ID: mdl-38502186

BACKGROUNDSurvivors of pneumonia, including SARS-CoV-2 pneumonia, are at increased risk for cognitive dysfunction and dementia. In rodent models, cognitive dysfunction following pneumonia has been linked to the systemic release of lung-derived pro-inflammatory cytokines. Microglia are poised to respond to inflammatory signals from the circulation, and their dysfunction has been linked to cognitive impairment in murine models of dementia and in humans.METHODSWe measured levels of 55 cytokines and chemokines in bronchoalveolar lavage fluid and plasma from 341 patients with respiratory failure and 13 healthy controls, including 93 unvaccinated patients with COVID-19 and 203 patients with other causes of pneumonia. We used flow cytometry to sort neuroimmune cells from postmortem brain tissue from 5 patients who died from COVID-19 and 3 patients who died from other causes for single-cell RNA-sequencing.RESULTSMicroglia from patients with COVID-19 exhibited a transcriptomic signature suggestive of their activation by circulating pro-inflammatory cytokines. Peak levels of pro-inflammatory cytokines were similar in patients with pneumonia irrespective of etiology, but cumulative cytokine exposure was higher in patients with COVID-19. Treatment with corticosteroids reduced expression of COVID-19-specific cytokines.CONCLUSIONProlonged lung inflammation results in sustained elevations in circulating cytokines in patients with SARS-CoV-2 pneumonia compared with those with pneumonia secondary to other pathogens. Microglia from patients with COVID-19 exhibit transcriptional responses to inflammatory cytokines. These findings support data from rodent models causally linking systemic inflammation with cognitive dysfunction in pneumonia and support further investigation into the role of microglia in pneumonia-related cognitive dysfunction.FUNDINGSCRIPT U19AI135964, UL1TR001422, P01AG049665, P01HL154998, R01HL149883, R01LM013337, R01HL153122, R01HL147290, R01HL147575, R01HL158139, R01ES034350, R01ES027574, I01CX001777, U01TR003528, R21AG075423, T32AG020506, F31AG071225, T32HL076139.


COVID-19 , Cytokines , Microglia , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/complications , Microglia/metabolism , Microglia/immunology , Cytokines/metabolism , Cytokines/blood , Male , Female , Middle Aged , Aged , Lung/immunology , Lung/pathology , Lung/virology , Lung/metabolism , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/cytology , Cognitive Dysfunction/immunology , Cognitive Dysfunction/metabolism , Adult , Brain/metabolism , Brain/immunology , Brain/pathology
10.
Eur Respir J ; 63(5)2024 May.
Article En | MEDLINE | ID: mdl-38514095

INTRODUCTION: Patients with allergic bronchopulmonary aspergillosis (ABPA) suffer from repeated exacerbations. The involvement of T-cell subsets remains unclear. METHODS: We enrolled ABPA patients, asthma patients and healthy controls. T-helper type 1 (Th1), 2 (Th2) and 17 (Th17) cells, regulatory T-cells (Treg) and interleukin (IL)-21+CD4+T-cells in total or sorted subsets of peripheral blood mononuclear cells and ABPA bronchoalveolar lavage fluid (BALF) were analysed using flow cytometry. RNA sequencing of subsets of CD4+T-cells was done in exacerbated ABPA patients and healthy controls. Antibodies of T-/B-cell co-cultures in vitro were measured. RESULTS: ABPA patients had increased Th2 cells, similar numbers of Treg cells and decreased circulating Th1 and Th17 cells. IL-5+IL-13+IL-21+CD4+T-cells were rarely detected in healthy controls, but significantly elevated in the blood of ABPA patients, especially the exacerbated ones. We found that IL-5+IL-13+IL-21+CD4+T-cells were mainly peripheral T-helper (Tph) cells (PD-1+CXCR5-), which also presented in the BALF of ABPA patients. The proportions of circulating Tph cells were similar among ABPA patients, asthma patients and healthy controls, while IL-5+IL-13+IL-21+ Tph cells significantly increased in ABPA patients. Transcriptome data showed that Tph cells of ABPA patients were Th2-skewed and exhibited signatures of follicular T-helper cells. When co-cultured in vitro, Tph cells of ABPA patients induced the differentiation of autologous B-cells into plasmablasts and significantly enhanced the production of IgE. CONCLUSION: We identified a distinctly elevated population of circulating Th2-skewed Tph cells that induced the production of IgE in ABPA patients. It may be a biomarker and therapeutic target for ABPA.


Aspergillosis, Allergic Bronchopulmonary , B-Lymphocytes , Bronchoalveolar Lavage Fluid , Th2 Cells , Humans , Male , Female , Aspergillosis, Allergic Bronchopulmonary/immunology , Adult , Th2 Cells/immunology , Middle Aged , Case-Control Studies , B-Lymphocytes/immunology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/cytology , T-Lymphocytes, Regulatory/immunology , Asthma/immunology , Th17 Cells/immunology , T-Lymphocytes, Helper-Inducer/immunology
11.
Inflamm Res ; 73(5): 725-737, 2024 May.
Article En | MEDLINE | ID: mdl-38538755

OBJECTIVE: Asthma is an airway inflammatory disease caused by activation of numerous immune cells including macrophages. Bakuchicin (BKC) is known to exhibit anti-inflammatory effects and type 2 T helper (Th2) regulation, but has not been investigated for airway inflammation. This study aimed to evaluate the effects of BKC on airway inflammation and demonstrate the mechanisms of macrophage polarization. METHODS: The anti-inflammatory effects were determined using lipopolysaccharide (LPS)-stimulated macrophages. The ovalbumin (OVA)-induced asthma mouse model was used to evaluate the effects of BKC on airway inflammation and Th2 responses. Moreover, the effect of BKC on macrophage polarization was confirmed in bone marrow-derived macrophages (BMDMs) differentiation. RESULTS: BKC suppressed nitric oxide production and expression of pro-inflammatory cytokines by inhibiting signaling pathway in LPS-stimulated macrophages. In an OVA-induced asthma model, BKC treatment alleviated histological changes and mast cell infiltration and reduced the levels of eosinophil peroxidase, ß-hexosaminidase, and immunoglobulin levels. In addition, BKC alleviated Th2 responses and M2 macrophage populations in bronchoalveolar fluid. In BMDMs, BKC suppressed IL-4-induced M2 macrophage polarization and the expression of M2 markers such as arginase-1 and Fizz-1 through inhibiting sirtuin 2 levels. CONCLUSION: BKC could be a drug candidate for the treatment of allergic asthma.


Asthma , Macrophages , Mice, Inbred BALB C , Ovalbumin , Animals , Asthma/drug therapy , Asthma/chemically induced , Asthma/immunology , Macrophages/drug effects , Macrophages/immunology , Mice , Female , Cytokines/metabolism , Nitric Oxide/metabolism , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Th2 Cells/immunology , Th2 Cells/drug effects , Lipopolysaccharides , Lung/pathology , Lung/drug effects , Lung/immunology , Mice, Inbred C57BL
12.
J Leukoc Biol ; 115(5): 893-901, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38517856

Interleukin (IL)-33 is a key driver of T helper 2 (Th2) cell polarization. Endoplasmic reticulum (ER) stress plays a role in the skewed T cell activation. The objective of this project is to elucidate the role of IL-33 derived from macrophages in inducing Th2 polarization in the airways. In this study, bronchoalveolar lavage fluids (BALF) were collected from patients with asthma and healthy control subjects. Macrophages were isolated from the BALF by flow cytometry cell sorting. An asthmatic mouse model was established using the ovalbumin/alum protocol. The results showed that increased IL33 gene activity and ER stress-related molecules in BALF-derived M2a macrophages was observed in asthmatic patients. Levels of IL33 gene activity in M2a cells were positively correlated with levels of asthma response in asthma patients. Sensitization exacerbated the ER stress in the airway macrophages, which increased the expression of IL-33 in macrophages of airway in sensitized mice. Conditional ablation of Il33 or Perk or Atf4 genes in macrophages prevented induction of airway allergy in mice. In conclusion, asthma airway macrophages express high levels of IL-33 and at high ER stress status. Inhibition of IL-33 or ER stress in macrophages can effectively alleviate experimental asthma.


Asthma , Endoplasmic Reticulum Stress , Interleukin-33 , Macrophages , Th2 Cells , Adult , Animals , Female , Humans , Male , Mice , Asthma/immunology , Asthma/metabolism , Asthma/pathology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Cell Polarity , Disease Models, Animal , Endoplasmic Reticulum Stress/immunology , Interleukin-33/metabolism , Macrophages/metabolism , Macrophages/immunology , Mice, Inbred C57BL , Th2 Cells/immunology , Th2 Cells/metabolism , Young Adult , Middle Aged
13.
Environ Toxicol ; 37(9): 2178-2188, 2022 Sep.
Article En | MEDLINE | ID: mdl-35670047

Exposure to particulate matter 2.5 (PM2.5) potentially triggers airway inflammation. Peroxisome proliferator-activated receptor gamma (PPARγ) has been reported to regulate inflammatory responses in diverse cell types. Therefore, this work investigated the mechanisms of PPARγ in regulating traffic-related PM2.5-induced airway inflammation. Using the diffusion flame burner soot generation, traffic-related PM2.5 was generated and adsorbed. BALB/c male mice and human bronchial epithelial cells (16-HBE) were exposed to PM2.5 alone or co-treatment with rosiglitazone (RSG), an agonist of PPARγ. To the end of exposure, bronchoalveolar lavage fluid (BALF), venous blood and arterial blood, trachea, bronchus and lung tissues were collected. The levels of IL-1ß, IL-6, and IL-17 were detected by ELISA, and the cell types in BALF were counted. Hematoxylin-eosin (H&E) assay were used to analyze the pathological conditions of lung, bronchus, and pulmonary artery. Apoptosis was detected by TUNEL, and PPARγ expression in lung and bronchus was detected by immunohistochemical (IHC) staining. Western Blot was used to detect PPARγ, NF-kB, AP-1 and STAT3 expression in lung and bronchus. The viability was detected by MTT method. PM2.5 exposure caused pathological damage to the lung, bronchus and pulmonary artery tissue, which induced apoptosis of bronchial epithelial cells. PM2.5 exposure caused local inflammation of the whole body and airway. PPARγ expression increased after PM2.5 exposure. PM2.5 exposure regulated the downstream signaling pathways to affect the inflammatory response through PPARγ. Exposure to traffic-related PM2.5 caused respiratory damage via PPARγ-regulated inflammation.


Inflammation , Inhalation Exposure , Lung Diseases , PPAR gamma , Particulate Matter , Traffic-Related Pollution , Air Pollution/adverse effects , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , Humans , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Inhalation Exposure/adverse effects , Lung/metabolism , Lung/pathology , Lung Diseases/etiology , Lung Diseases/metabolism , Lung Diseases/pathology , Male , Mice , Mice, Inbred BALB C , PPAR gamma/agonists , PPAR gamma/metabolism , Particulate Matter/toxicity , Rosiglitazone/toxicity , Traffic-Related Pollution/adverse effects
14.
JCI Insight ; 7(4)2022 02 22.
Article En | MEDLINE | ID: mdl-35191395

The intensity and longevity of inflammatory responses to inhaled allergens is determined largely by the balance between effector and regulatory immune responses, but the mechanisms that determine the relative magnitudes of these opposing forces remain poorly understood. We have found that the type of adjuvant used during allergic sensitization has a profound effect on both the nature and longevity of the pulmonary inflammation triggered by subsequent reexposure to that same provoking allergen. TLR ligand adjuvants and house dust extracts primed immune responses characterized by a mixed neutrophilic and eosinophilic inflammation that was suppressed by multiple daily allergen challenges. During TLR ligand-mediated allergic sensitization, mice displayed transient airway neutrophilia, which triggered the release of TGF-ß into the airway. This neutrophil-dependent production of TGF-ß during sensitization had a delayed, suppressive effect on eosinophilic responses to subsequent allergen challenge. Neutrophil depletion during sensitization did not affect numbers of Foxp3+ Tregs but increased proportions of Gata3+CD4+ T cells, which, upon their transfer to recipient mice, triggered stronger eosinophilic inflammation. Thus, a neutrophil/TGF-ß axis acts during TLR-mediated allergic sensitization to fine-tune the phenotype of developing allergen-specific CD4+ T cells and limit their pathogenicity, suggesting a novel immunotherapeutic approach to control eosinophilia in asthma.


Allergens/immunology , CD4-Positive T-Lymphocytes/immunology , Neutrophils/metabolism , Respiratory Hypersensitivity/immunology , Th2 Cells/immunology , Transforming Growth Factor beta/immunology , Animals , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , CD4-Positive T-Lymphocytes/pathology , Disease Models, Animal , Lymphocyte Count , Male , Mice , Mice, Inbred C57BL , Neutrophils/pathology , Respiratory Hypersensitivity/pathology , Transforming Growth Factor beta/metabolism
16.
Int J Mol Sci ; 23(3)2022 Jan 29.
Article En | MEDLINE | ID: mdl-35163503

To investigate the effect of eupatilin in asthma treatment, we evaluated its therapeutic effect and related signal transduction in OVA-induced asthmatic mice and LPS-stimulated RAW264.7 cells. The BALF was tested for changes in lung inflammatory cells. Th2 cytokines in the BALF and OVA-IgE in the serum were measured by ELISA. H&E and PAS staining were used to evaluate histopathological changes in mouse lungs. The key proteins NF-κB, MAPK, and Nrf2 in lung tissues were quantitatively analyzed by Western blotting. Finally, we evaluated the effect of eupatilin on cytokines and related protein expression in LPS-stimulated RAW 264.7 cells in vitro. In OVA-induced asthmatic mice, eupatilin reduced the numbers of inflammatory cells, especially neutrophils and eosinophils. Eupatilin also decreased the levels of IL-5, IL-13 in the BALF and OVA-IgE in the serum. Furthermore, eupatilin inhibited the activation of NF-κB and MAPK pathways and increased the expression of Nrf2 in OVA-induced asthmatic mice. In vitro, eupatilin significantly reduced LPS-stimulated NO, IL-6, and ROS production. Additionally, the NF-κB, MAPK, and Nrf2 protein expression in LPS-stimulated RAW264.7 cells was consistent with that in OVA-induced asthmatic lung tissues. In summary, eupatilin attenuated OVA-induced asthma by regulating NF-κB, MAPK, and Nrf2 signaling pathways. These results suggest the utility of eupatilin as an anti-inflammatory drug for asthma treatment.


Asthma/drug therapy , Flavonoids/administration & dosage , Lipopolysaccharides/adverse effects , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Ovalbumin/adverse effects , Animals , Asthma/chemically induced , Asthma/immunology , Bronchoalveolar Lavage Fluid/immunology , Disease Models, Animal , Eosinophils/drug effects , Eosinophils/metabolism , Female , Flavonoids/chemistry , Flavonoids/pharmacology , Gene Expression Regulation/drug effects , Lipopolysaccharides/immunology , MAP Kinase Signaling System/drug effects , Mice , Molecular Structure , Neutrophils/drug effects , Neutrophils/metabolism , Ovalbumin/immunology , RAW 264.7 Cells , Reactive Oxygen Species/metabolism
17.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article En | MEDLINE | ID: mdl-35046017

Alveolar macrophages (AMs) are critical for lung immune defense and homeostasis. They are orchestrators of chronic obstructive pulmonary disease (COPD), with their number significantly increased and functions altered in COPD. However, it is unclear how AM number and function are controlled in a healthy lung and if changes in AMs without environmental assault are sufficient to trigger lung inflammation and COPD. We report here that absence of isthmin 1 (ISM1) in mice (Ism1-/- ) leads to increase in both AM number and functional heterogeneity, with enduring lung inflammation, progressive emphysema, and significant lung function decline, phenotypes similar to human COPD. We reveal that ISM1 is a lung resident anti-inflammatory protein that selectively triggers the apoptosis of AMs that harbor high levels of its receptor cell-surface GRP78 (csGRP78). csGRP78 is present at a heterogeneous level in the AMs of a healthy lung, but csGRP78high AMs are expanded in Ism1-/- mice, cigarette smoke (CS)-induced COPD mice, and human COPD lung, making these cells the prime targets of ISM1-mediated apoptosis. We show that csGRP78high AMs mostly express MMP-12, hence proinflammatory. Intratracheal delivery of recombinant ISM1 (rISM1) depleted csGRP78high AMs in both Ism1-/- and CS-induced COPD mice, blocked emphysema development, and preserved lung function. Consistently, ISM1 expression in human lungs positively correlates with AM apoptosis, suggesting similar function of ISM1-csGRP78 in human lungs. Our findings reveal that AM apoptosis regulation is an important physiological mechanism for maintaining lung homeostasis and demonstrate the potential of pulmonary-delivered rISM1 to target csGRP78 as a therapeutic strategy for COPD.


Intercellular Signaling Peptides and Proteins/metabolism , Lung/pathology , Macrophages, Alveolar/metabolism , Alveolar Epithelial Cells/metabolism , Animals , Apoptosis/immunology , Bronchoalveolar Lavage Fluid/immunology , Disease Models, Animal , Endoplasmic Reticulum Chaperone BiP/metabolism , Endoplasmic Reticulum Chaperone BiP/physiology , Female , Homeostasis , Inflammation , Intercellular Signaling Peptides and Proteins/physiology , Lung/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/physiology , Male , Mice , Mice, Inbred BALB C , Phagocytosis/physiology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Emphysema/metabolism , Smoke/adverse effects , Smoking/adverse effects , Nicotiana/adverse effects
18.
J Immunol ; 208(4): 979-990, 2022 02 15.
Article En | MEDLINE | ID: mdl-35046105

Calprotectin is released by activated neutrophils along with myeloperoxidase (MPO) and proteases. It plays numerous roles in inflammation and infection, and is used as an inflammatory biomarker. However, calprotectin is readily oxidized by MPO-derived hypohalous acids to form covalent dimers of its S100A8 and S100A9 subunits. The dimers are susceptible to degradation by proteases. We show that detection of human calprotectin by ELISA declines markedly because of its oxidation by hypochlorous acid and subsequent degradation. Also, proteolysis liberates specific peptides from oxidized calprotectin that is present at inflammatory sites. We identified six calprotectin-derived peptides by mass spectrometry and detected them in the bronchoalveolar lavage fluid of children with cystic fibrosis (CF). We assessed the peptides as biomarkers of neutrophilic inflammation and infection. The content of the calprotectin peptide ILVI was related to calprotectin (r = 0.72, p = 0.01, n = 10). Four of the peptides were correlated with the concentration of MPO (r > 0.7, p ≤ 0.01, n = 21), while three were higher (p < 0.05) in neutrophil elastase-positive (n = 14) than -negative samples (n = 7). Also, five of the peptides were higher (p < 0.05) in the bronchoalveolar lavage fluid from children with CF with infections (n = 21) than from non-CF children without infections (n = 6). The specific peptides liberated from calprotectin will signal uncontrolled activity of proteases and MPO during inflammation. They may prove useful in tracking inflammation in respiratory diseases dominated by neutrophils, including coronavirus disease 2019.


Bronchoalveolar Lavage Fluid/immunology , Cystic Fibrosis/immunology , Inflammation/immunology , Leukocyte L1 Antigen Complex/metabolism , Neutrophils/immunology , Peptides/metabolism , Respiratory System/metabolism , Child , Child, Preschool , Cystic Fibrosis/diagnosis , Female , Humans , Inflammation/diagnosis , Leukocyte L1 Antigen Complex/genetics , Leukocyte L1 Antigen Complex/immunology , Male , Neutrophil Activation , Oxidation-Reduction , Peptides/genetics , Peptides/immunology , Proteolysis
19.
Comput Math Methods Med ; 2022: 1452116, 2022.
Article En | MEDLINE | ID: mdl-35047052

OBJECTIVES: This study sought to examine whether ligustrazine was capable of inhibiting phosphodiesterase (PDE) activity and improving lung function in a rat model of asthma. METHODS: Rats were initially sensitized using ovalbumin (OVA) and then were challenged daily with aerosolized OVA beginning 14 days later (30 min/day) to generate a rat model of asthma. Changes in airway function following methacholine (MCh) injection were evaluated by monitoring lung resistance (R L) and dynamic lung compliance (C dyn) values using an AniRes2005 analytic system. In addition, serum IgE was measured via ELISA, while PDE expression was evaluated via qPCR and western blotting. Key Findings. Ligustrazine significantly impaired allergen-induced lung hyperresponsivity and inflammation in this asthma model system. Ligustrazine treatment was also associated with reduced expression of PDEs including PDE4 in the lungs of these rats. CONCLUSIONS: Ligustrazine suppresses airway inflammation and bronchial hyperresponsivity in this rat model system, and these changes are associated with decreased PDE expression at the protein and mRNA levels.


Asthma/drug therapy , Phosphodiesterase Inhibitors/pharmacology , Pyrazines/pharmacology , Airway Resistance/drug effects , Allergens/administration & dosage , Allergens/immunology , Animals , Asthma/immunology , Asthma/physiopathology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Computational Biology , Disease Models, Animal , Immunoglobulin E/blood , Lung/drug effects , Lung/pathology , Lung/physiopathology , Male , Ovalbumin/administration & dosage , Ovalbumin/immunology , Phosphoric Diester Hydrolases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Respiratory Hypersensitivity/drug therapy , Respiratory Hypersensitivity/physiopathology
20.
Life Sci ; 293: 120306, 2022 Mar 15.
Article En | MEDLINE | ID: mdl-35016883

Recent studies have shown that proper exercise significantly restricts inflammatory responses through regulation of the immune system. This review discusses mechanisms of protective effects of exercise in lipopolysaccharide (LPS)-induced lung injury. We performed a systematic search in PubMed, Scopus, and Web of Sciences using the search components "physical exercise", "lung" and "LPS" to identify preclinical studies, which assessed physical activity effects on LPS-induced pulmonary injury. Articles (n = 1240) were screened and those that had the eligibility criteria were selected for data extraction and critical appraisal. In all of the 21 rodent-model studies included, pulmonary inflammation was induced by LPS. Exercise protocols included low and moderate intensity treadmill training and swimming. The results showed that aerobic exercise would prevent LPS-induced oxidative stress and inflammation as well as airways resistance, exhaled nitric oxide, protein leakage, increase in total WBC, macrophage and neutrophil population, levels of interleukin (IL)-6, IL-1ß, IL-17, tumor necrosis factor-α, granulocyte-macrophage colony-stimulating factor and CXCL1/KC, and improved IL-10 and IL-ra in lung tissue, bronchoalveolar lavage fluid (BALF) and serum. In addition, in trained animals, the expression of some anti-inflammatory factors such as heat shock protein72, IL-10, triggering receptor expressed on myeloid cells-2 and irisin was increased, thus ameliorating lung injury complications. Aerobic exercise was shown to alleviate the LPS-induced lung injury in rodent models by suppressing oxidative stress and lowering the ratio of pro-inflammatory to anti-inflammatory cytokines.


Acute Lung Injury/chemically induced , Acute Lung Injury/therapy , Lipopolysaccharides/toxicity , Physical Conditioning, Animal/physiology , Pneumonia/chemically induced , Pneumonia/therapy , Acute Lung Injury/immunology , Animals , Bronchoalveolar Lavage Fluid/immunology , Inflammation Mediators/immunology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Physical Conditioning, Animal/methods , Pneumonia/immunology
...