Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Más filtros











Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1645-1652, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39235023

RESUMEN

In the hilly region of Chinese Loess Plateau, rainwater harvesting is a common ecological engineering measure utilized to reduce soil erosion and amplify the efficiency of water resource utilization. However, the effects on rainwater harvesting and the chief influencing factors of biocrusts as a potential material are unclear. In this study, we conducted a field simulation experiment with intensities of 40, 60, 80, and 100 mm·h-1 between bare soil and biocrusts developed in aeolian soils, with bare soil as a control to explore the differences of the initial abstraction time, cumulative rainfall amount, and rainfall harvesting efficiency. We further analyzed the influencing factors of the rainwater harvesting effect. The results showed that the biocrusted soil-surfaces significantly decreased the initial abstraction time. When compared with the cyano biocrusts and bare soil, the reduction of the initial abstraction time of moss biocrusts was decreased by 49.7%-77.5% and 89.7%-110.0% when the rainfall intensities ranged from 40 to 100 mm·h-1 and the slope was 40°. In addition, biocrusted soil surfaces significantly increased the cumulative rainfall amount and rainfall harvesting efficiency. These differences were considerable amongst the dissimilar surface cover types. In comparison to bare soil, when the rainfall intensity was 100 mm·h-1 and the slope was 40°, the cumulative rainfall harvesting efficiency of moss and cyano biocrusts was increased by 29.6% and 7.8%, respectively. Both moss and cyano biocrusts increased rainfall harvesting efficiency of 25.7% and 6.8%, respectively. Variance analysis demonstrated that the rainfall harvesting efficiency was appreciably affected by surface cover type, slope, and rainfall intensity. The interaction between these factors was considerable except for slope and rainfall intensity. Additionally, important considerations for the actual construction included slope length, slope, and biocrust cultivation. In conclusion, biocrusted soil-surfaces have a high rainfall harvesting efficiency, but moss biocrusts have a much greater rain-collecting effect that improves even more as the slope and intensity of the rain increases.


Asunto(s)
Lluvia , Suelo , China , Suelo/química , Conservación de los Recursos Naturales , Altitud , Erosión del Suelo/prevención & control , Ecosistema , Briófitas/crecimiento & desarrollo
2.
Ann Bot ; 134(3): 367-384, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38953500

RESUMEN

This review summarizes recent progress in our current understanding of the mechanisms underlying the cell death pathways in bryophytes, focusing on conserved pathways and particularities in comparison to angiosperms. Regulated cell death (RCD) plays key roles during essential processes along the plant life cycle. It is part of specific developmental programmes and maintains homeostasis of the organism in response to unfavourable environments. Bryophytes could provide valuable models to study developmental RCD processes as well as those triggered by biotic and abiotic stresses. Some pathways analogous to those present in angiosperms occur in the gametophytic haploid generation of bryophytes, allowing direct genetic studies. In this review, we focus on such RCD programmes, identifying core conserved mechanisms and raising new key questions to analyse RCD from an evolutionary perspective.


Asunto(s)
Briófitas , Briófitas/genética , Briófitas/fisiología , Briófitas/crecimiento & desarrollo , Muerte Celular/fisiología , Regulación de la Expresión Génica de las Plantas , Transducción de Señal , Modelos Biológicos , Muerte Celular Regulada/fisiología , Muerte Celular Regulada/genética , Magnoliopsida/genética , Magnoliopsida/fisiología , Magnoliopsida/crecimiento & desarrollo
3.
Glob Chang Biol ; 30(7): e17401, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39041207

RESUMEN

Climate change in high latitude regions leads to both higher temperatures and more precipitation but their combined effects on terrestrial ecosystem processes are poorly understood. In nitrogen (N) limited and often moss-dominated tundra and boreal ecosystems, moss-associated N2 fixation is an important process that provides new N. We tested whether high mean annual precipitation enhanced experimental warming effects on growing season N2 fixation in three common arctic-boreal moss species adapted to different moisture conditions and evaluated their N contribution to the landscape level. We measured in situ N2 fixation rates in Hylocomium splendens, Pleurozium schreberi and Sphagnum spp. from June to September in subarctic tundra in Sweden. We exposed mosses occurring along a natural precipitation gradient (mean annual precipitation: 571-1155 mm) to 8 years of experimental summer warming using open-top chambers before our measurements. We modelled species-specific seasonal N input to the ecosystem at the colony and landscape level. Higher mean annual precipitation clearly increased N2 fixation, especially during peak growing season and in feather mosses. For Sphagnum-associated N2 fixation, high mean annual precipitation reversed a small negative warming response. By contrast, in the dry-adapted feather moss species higher mean annual precipitation led to negative warming effects. Modelled total growing season N inputs for Sphagnum spp. colonies were two to three times that of feather mosses at an area basis. However, at the landscape level where feather mosses were more abundant, they contributed 50% more N than Sphagnum. The discrepancy between modelled estimates of species-specific N input via N2 fixation at the moss core versus ecosystem scale, exemplify how moss cover is essential for evaluating impact of altered N2 fixation. Importantly, combined effects of warming and higher mean annual precipitation may not lead to similar responses across moss species, which could affect moss fitness and their abilities to buffer environmental changes.


Asunto(s)
Briófitas , Cambio Climático , Fijación del Nitrógeno , Lluvia , Estaciones del Año , Tundra , Briófitas/fisiología , Briófitas/crecimiento & desarrollo , Suecia
4.
Sci Total Environ ; 947: 174617, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38992375

RESUMEN

Peat formation is the key process responsible for carbon sequestration in peatlands. In rich fens, peat is formed by brown mosses and belowground biomass of vascular plants. However, the impact of ecohydrological settings on the contribution of mosses and belowground biomass to peat formation remains an open question. We established seven transects in well-preserved fens in NE Poland along an ecohydrological gradient from mesotrophic sedge-moss communities with stable water levels, to more eutrophic tall sedge communities with higher water level fluctuations. In each transect, we measured the production of brown mosses (using the plug method), aboveground vascular plant biomass (one year after cutting) and belowground biomass (using ingrowth cores). Decomposition rates of all biomass fractions were assessed using litter bags. The first-year surplus of potentially peat-forming fractions, i.e., mosses and belowground biomass, decreased with increasing water level fluctuations and along a vegetation gradient from sedge-moss to tall sedge communities. Moss production was highest in the sedge-moss fen with a stable water level at the ground surface. We did not detect any difference in belowground biomass production across the gradient but found it to be consistently higher in the upper 0-5 cm than in the deeper layers. The decomposition rate also showed no response to the gradient, but differed between biomass types, with aboveground biomass of vascular plants decomposing 2.5 times faster than belowground biomass and mosses. Pattern of peat formation potential along the ecohydrological gradient in rich fen was strongly driven by brown moss production. Sedge-moss fens with a stable water level at the ground surface have the highest peat formation capacity compared to other vegetation types. In the part of the gradient that is poorer in nutrients, vascular plants invest in belowground production, and mosses dominate the aboveground layer.


Asunto(s)
Biomasa , Suelo , Humedales , Suelo/química , Polonia , Hidrología , Secuestro de Carbono , Monitoreo del Ambiente , Briófitas/crecimiento & desarrollo
5.
Planta ; 260(2): 45, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965075

RESUMEN

MAIN CONCLUSION: Developing bryophytes differentially modify their plasmodesmata structure and function. Secondary plasmodesmata formation via twinning appears to be an ancestral trait. Plasmodesmata networks in hornwort sporophyte meristems resemble those of angiosperms. All land-plant taxa use plasmodesmata (PD) cell connections for symplasmic communication. In angiosperm development, PD networks undergo an extensive remodeling by structural and functional PD modifications, and by postcytokinetic formation of additional secondary PD (secPD). Since comparable information on PD dynamics is scarce for the embryophyte sister groups, we investigated maturating tissues of Anthoceros agrestis (hornwort), Physcomitrium patens (moss), and Marchantia polymorpha (liverwort). As in angiosperms, quantitative electron microscopy revealed secPD formation via twinning in gametophytes of all model bryophytes, which gives rise to laterally adjacent PD pairs or to complex branched PD. This finding suggests that PD twinning is an ancient evolutionary mechanism to adjust PD numbers during wall expansion. Moreover, all bryophyte gametophytes modify their existing PD via taxon-specific strategies resembling those of angiosperms. Development of type II-like PD morphotypes with enlarged diameters or formation of pit pairs might be required to maintain PD transport rates during wall thickening. Similar to angiosperm leaves, fluorescence redistribution after photobleaching revealed a considerable reduction of the PD permeability in maturating P. patens phyllids. In contrast to previous reports on monoplex meristems of bryophyte gametophytes with single initials, we observed targeted secPD formation in the multi-initial basal meristems of A. agrestis sporophytes. Their PD networks share typical features of multi-initial angiosperm meristems, which may hint at a putative homologous origin. We also discuss that monoplex and multi-initial meristems may require distinct types of PD networks, with or without secPD formation, to control maintenance of initial identity and positional signaling.


Asunto(s)
Plasmodesmos , Plasmodesmos/ultraestructura , Plasmodesmos/metabolismo , Briófitas/crecimiento & desarrollo , Briófitas/fisiología , Briófitas/ultraestructura , Bryopsida/crecimiento & desarrollo , Bryopsida/fisiología , Bryopsida/ultraestructura , Marchantia/genética , Marchantia/crecimiento & desarrollo , Marchantia/fisiología , Marchantia/ultraestructura , Células Germinativas de las Plantas/crecimiento & desarrollo , Anthocerotophyta/fisiología , Anthocerotophyta/metabolismo , Meristema/crecimiento & desarrollo , Meristema/ultraestructura , Meristema/fisiología
6.
Sci Rep ; 14(1): 17754, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39085365

RESUMEN

The hyperaccumulation potential of zinc (Zn) and cadmium (Cd) and their synergistic effects were examined in relation to Christmas moss (Vesicularia montagnei (Bél) Broth., Hypnaceae), an aquatic and terrestrial moss, dosed with Cd (Cd1 and Cd2), Zn (Zn1 and Zn2) and combined Zn and Cd (Cd1Zn1 and Cd2Zn2). Zinc promoted plant growth and development, particularly in the highest Zn and combined Zn/Cd treatments (Zn2 and Cd2Zn2). The Zn treatment resulted in substantial moss chlorophyll content and highest percentage relative growth rate in biomass value (0.23 mg L-1 and 106.8%, respectively); however, the Cd2Zn2 treatment achieved maximal production of chlorophyll a and total chlorophyll (0.29 and 0.51 mg L-1, respectively) due to synergistic effects. These findings suggest that Christmas moss is a highly metal-tolerant and adaptable bryophyte species. Zinc was essential for reducing the detrimental effects of Cd while simultaneously promoting moss growth and biomass development. Furthermore, Christmas moss exhibited hyperaccumulation potential for Cd and Zn in the Cd2Zn2 and Zn alone treatments, as evidenced by highest Cd and Zn values in gametophores (1002 and 18,596 mg per colony volume, respectively). Using energy dispersive X-ray fluorescence (EDXRF) spectrometry, atomic percentages of element concentrations in moss gametophores in the Zn2, Cd2 and combined Zn/Cd treatments were generally in the order: K > Ca > P > Zn > Cd. When comparing the atomic percentages of Zn and Cd in gametophores, it is likely that the higher atomic percentage of Zn was because this element is essential for plant growth and development.


Asunto(s)
Biodegradación Ambiental , Cadmio , Zinc , Zinc/metabolismo , Cadmio/metabolismo , Biodegradación Ambiental/efectos de los fármacos , Clorofila/metabolismo , Biomasa , Bryopsida/efectos de los fármacos , Bryopsida/metabolismo , Bryopsida/crecimiento & desarrollo , Briófitas/crecimiento & desarrollo , Briófitas/metabolismo , Briófitas/efectos de los fármacos
7.
Curr Opin Plant Biol ; 81: 102565, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38824880

RESUMEN

The study of moss calyptra form and function began almost 250 years ago, but calyptra research has remained a niche endeavor focusing on only a small number of species. Recent advances have focused on calyptra cuticular waxes, which function in dehydration protection of the immature sporophyte apex. The physical presence of the calyptra also plays a role in sporophyte development, potentially via its influence on auxin transport. Progress developing genomic resources for mosses beyond the model Physcomitrium patens, specifically for species with larger calyptrae and taller sporophytes, in combination with advances in CRISPR-Cas9 genome editing will enable the influence of the calyptra on gene expression and the production of RNAs and proteins that coordinate sporophyte development to be explored.


Asunto(s)
Bryopsida , Bryopsida/crecimiento & desarrollo , Bryopsida/genética , Bryopsida/metabolismo , Regulación de la Expresión Génica de las Plantas , Briófitas/crecimiento & desarrollo , Briófitas/genética , Briófitas/metabolismo
8.
Plant Physiol Biochem ; 212: 108777, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38820915

RESUMEN

This study investigated the responses of Didymodon constrictus and Hypnum plumaeforme to different light qualities emitted by light-emitting diodes (LEDs), including white light (WL), red light (RL), blue light (BL), yellow light (YL), green light (GL), and a combination of red and blue light (R1B1L). The research analyzed the fluorescence imaging, photosynthetic pigments, coloration, and growth characteristics related to antioxidant enzymes in these two moss species. The results indicated that R1B1L significantly enhanced the content of photosynthetic pigments, maximum relative electron transport rate (rETRmax), saturation light intensity (IK), and the greenness of the moss. RL improved the maximum quantum yield (Fv/Fm), the light energy efficiency of H. plumaeforme and effective quantum yield in both moss species. In contrast, BL notably increased non-photochemical quenching (NPQ), photochemical quenching (qp), and the steady-state fluorescence decrease ratio (RFD) in H. plumaeforme. The application of GL significantly increases the maximum photon yield (Fv/Fm) in D. constrictus, as well as the light energy efficiency and elongation length, resulting in a shift in the color composition of both moss species towards yellow. Among the light treatments, R1B1L had the highest induction rate and promotional effect on the growth of both moss species. These mosses absorbed GL and RL effectively, while BL played a crucial role in the dissipation of heat and electron transfer in H. plumaeforme. This research provides valuable insights for the regulation of LED light environments and the physiological adaptability of moss in artificial cultivation.


Asunto(s)
Clorofila , Luz , Clorofila/metabolismo , Fluorescencia , Briófitas/metabolismo , Briófitas/efectos de la radiación , Briófitas/crecimiento & desarrollo , Fotosíntesis/efectos de la radiación , Fotosíntesis/fisiología , Bryopsida/metabolismo , Bryopsida/efectos de la radiación , Bryopsida/crecimiento & desarrollo
9.
Ying Yong Sheng Tai Xue Bao ; 35(3): 739-748, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646762

RESUMEN

Biological soil crust (biocrust) is widely distributed on the Loess Plateau and plays multiple roles in regulating ecosystem stability and multifunctionality. Few reports are available on the distribution characteristics of biocrust in this region, which limits the assessment of its ecological functions. Based on 388 sampling points in different precipitation zones on the Loess Plateau from 2009 to 2020, we analyzed the coverage, composition, and influencing factors of biocrust across different durations since land abandonment, precipitation levels, topography (slope aspect and position), and utilization of abandoned slopelands (shrubland, forest, and grassland). On this base, with the assistance of machine learning and spatial modeling methods, we generated a distribution map of biocrust and its composition at a resolution of 250 m × 250 m, and analyzed the spatial distribution of biocrust on the Loess Plateau. The results showed that the average biocrust coverage in the woodlands and grasslands was 47.3%, of which cyanobacterial crust accounted for 25.5%, moss crust 19.7%, and lichen crust 2.1%. There were significant temporal and spatial variations. Temporally, the coverage of biocrust in specific regions fluctuated with the extension of the abandoned durations and coverage of cyanobacterial crust, while moss crust showed a reverse pattern. In addition, the coverage of biocrust in the wet season was slightly higher than that in the dry season within a year. Spatially, the coverage of biocrusts on the sandy lands area on the Loess Plateau was higher and dominated by cyanobacterial crusts, while the coverage was lower in the hilly and gully area. Precipitation and utilization of abandoned land were the major factors driving biocrust coverage and composition, while slope direction and position did not show obvious effect. In addition, soil organic carbon content, pH, and texture were related to the distribution of biocrust. This study uncovered the spatial and temporal variability of biocrust distribution, which might provide important data support for the research and management of biocrust in the Loess Plateau region.


Asunto(s)
Ecosistema , Bosques , Líquenes , Suelo , Análisis Espacio-Temporal , China , Suelo/química , Líquenes/crecimiento & desarrollo , Pradera , Cianobacterias/crecimiento & desarrollo , Microbiología del Suelo , Altitud , Monitoreo del Ambiente , Briófitas/crecimiento & desarrollo , Árboles/crecimiento & desarrollo
10.
PLoS One ; 17(1): e0260543, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34990454

RESUMEN

In Canadian boreal forests, bryophytes represent an essential component of biodiversity and play a significant role in ecosystem functioning. Despite their ecological importance and sensitivity to disturbances, bryophytes are overlooked in conservation strategies due to knowledge gaps on their distribution, which is known as the Wallacean shortfall. Rare species deserve priority attention in conservation as they are at a high risk of extinction. This study aims to elaborate predictive models of rare bryophyte species in Canadian boreal forests using remote sensing-derived predictors in an Ensemble of Small Models (ESMs) framework. We hypothesize that high ESMs-based prediction accuracy can be achieved for rare bryophyte species despite their low number of occurrences. We also assess if there is a spatial correspondence between rare and overall bryophyte richness patterns. The study area is located in western Quebec and covers 72,292 km2. We selected 52 bryophyte species with <30 occurrences from a presence-only database (214 species, 389 plots in total). ESMs were built from Random Forest and Maxent techniques using remote sensing-derived predictors related to topography and vegetation. Lee's L statistic was used to assess and map the spatial relationship between rare and overall bryophyte richness patterns. ESMs yielded poor to excellent prediction accuracy (AUC > 0.5) for 73% of the modeled species, with AUC values > 0.8 for 19 species, which confirmed our hypothesis. In fact, ESMs provided better predictions for the rarest bryophytes. Likewise, our study revealed a spatial concordance between rare and overall bryophyte richness patterns in different regions of the study area, which have important implications for conservation planning. This study demonstrates the potential of remote sensing for assessing and making predictions on inconspicuous and rare species across the landscape and lays the basis for the eventual inclusion of bryophytes into sustainable development planning.


Asunto(s)
Biodiversidad , Briófitas/crecimiento & desarrollo , Simulación por Computador/estadística & datos numéricos , Ecosistema , Tecnología de Sensores Remotos/métodos , Taiga , Curva ROC , Desarrollo Sostenible
11.
Plant Signal Behav ; 16(10): 1943921, 2021 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-34159883

RESUMEN

As an adaptive innovation in plant terrestrialization, cuticle covers the plant surface and greatly contributes to the development and stress tolerance in land plants. Although past decades have seen great progress in understanding the molecular mechanism of cuticle biosynthesis in flowering plants with the contribution of cuticle biosynthesis mutants and advanced cuticle composition profiling techniques, origins and evolution of cuticle biosynthesis are poorly understood. Recent chemical, phylogenomic, and molecular genetic studies on cuticle biosynthesis in early-diverging extant land plant lineages, the bryophytes, shed novel light on the origins and evolution of plant cuticle biosynthesis. In this mini-review, we highlighted these recent advances in the molecular biology of cuticle biosynthesis in bryophytes, and provided evolutionary insights into plant cuticle biosynthesis.


Asunto(s)
Briófitas/crecimiento & desarrollo , Evolución Molecular , Epidermis de la Planta/crecimiento & desarrollo , Briófitas/genética , Briófitas/metabolismo , Bryopsida/genética , Bryopsida/crecimiento & desarrollo , Bryopsida/metabolismo , Epidermis de la Planta/metabolismo
12.
Plant Mol Biol ; 107(4-5): 227-244, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33825083

RESUMEN

KEY MESSAGE: Here we review, from a quantitative point of view, the cell biology of protonemal tip growth in the model moss Physcomitrium patens. We focus on the role of the cytoskeleton, vesicle trafficking, and cell wall mechanics, including reviewing some of the existing mathematical models of tip growth. We provide a primer for existing cell biological tools that can be applied to the future study of tip growth in moss. Polarized cell growth is a ubiquitous process throughout the plant kingdom in which the cell elongates in a self-similar manner. This process is important for nutrient uptake by root hairs, fertilization by pollen, and gametophyte development by the protonemata of bryophytes and ferns. In this review, we will focus on the tip growth of moss cells, emphasizing the role of cytoskeletal organization, cytoplasmic zonation, vesicle trafficking, cell wall composition, and dynamics. We compare some of the existing knowledge on tip growth in protonemata against what is known in pollen tubes and root hairs, which are better-studied tip growing cells. To fully understand how plant cells grow requires that we deepen our knowledge in a variety of forms of plant cell growth. We focus this review on the model plant Physcomitrium patens, which uses tip growth as the dominant form of growth at its protonemal stage. Because mosses and vascular plants shared a common ancestor more than 450 million years ago, we anticipate that both similarities and differences between tip growing plant cells will provide mechanistic information of tip growth as well as of plant cell growth in general. Towards this mechanistic understanding, we will also review some of the existing mathematical models of plant tip growth and their applicability to investigate protonemal morphogenesis. We attempt to integrate the conclusions and data across cell biology and physical modeling to our current state of knowledge of polarized cell growth in P. patens and highlight future directions in the field.


Asunto(s)
Briófitas/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Células Vegetales/fisiología , Raíces de Plantas/crecimiento & desarrollo , Tubo Polínico/crecimiento & desarrollo , Citoesqueleto de Actina/metabolismo , Algoritmos , Briófitas/citología , Briófitas/metabolismo , Meristema/citología , Meristema/metabolismo , Modelos Biológicos , Miosinas/metabolismo , Células Vegetales/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Tubo Polínico/citología , Tubo Polínico/metabolismo
13.
J Basic Microbiol ; 61(2): 157-164, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33393125

RESUMEN

The physiological responses of desert moss crusts under four artificial media (Beneck, Part, BG11, and Hogland) were investigated to evaluate the function of culture media during different culture periods. The results showed that the value of malondialdehyde (MDA) was at a maximum at 11d, on the contrary, chlorophyll-a, soluble protein, and soluble sugar were at a minimum. As the time increased, the value of MDA and soluble protein decreased faster in the Hogland, while the value of chlorophyll-a and soluble sugar increased. At the end of the culture period, the value of chlorophyll-a and soluble sugar was at a maximum in the Hogland, while the value of MDA and soluble protein was at a minimum. The results suggested that the Hogland medium had a promoting effect on the growth of desert moss crusts. The selected artificial cultivation medium towards wider and larger scale field applications of cultural desert biocrust was widely anticipated.


Asunto(s)
Briófitas/fisiología , Medios de Cultivo/farmacología , Briófitas/efectos de los fármacos , Briófitas/crecimiento & desarrollo , Briófitas/metabolismo , Clorofila/análogos & derivados , Clorofila/metabolismo , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Malondialdehído/metabolismo , Proteínas de Plantas/metabolismo , Azúcares/metabolismo
16.
Plant Physiol Biochem ; 159: 37-42, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33321376

RESUMEN

There have been several published reports regarding the growth promoting effect of humic acids (HA) on vascular plants; however, the effect of HA on bryophytes is still unknown. Due to the ecological importance of mosses, which dominate the Antarctic flora, we assessed the effectiveness of HA as a biostimulant using three moss species: Antarctic Ceratodon purpureus KMA5038, Arctic Bryum sp. KMR5045, and Physcomitrella patens which inhabits temperate regions. Natural HA (KS1-3_HA) were extracted through acidic precipitation of alkaline extracts from Antarctic tundra soil. Spectroscopic structural properties of KS1-3_HA were characterized and determined to possess several functional groups such as hydroxyl (R-OH) and carboxyl (R-COOH), implying they could have a growth-related biological function. For two polar mosses, increasing HA concentrations correlated with increased growth and photosynthesis. The efficiency for temperate moss increased at lower concentrations tested, but rather began to reduce at the highest HA concentration, indicating that effective concentrations of HA vary depending on the moss species and habitat. Based on these results, Antarctic HA may have ecological role in enhancing the growth and photosynthesis of Antarctic mosses. We believe this is the first study to establish a positive physiological effect of HA on mosses and hope it may serve as a basis for studying the role of HA in preserving the terrestrial ecosystem of Antarctica.


Asunto(s)
Briófitas , Sustancias Húmicas , Fotosíntesis , Suelo , Regiones Antárticas , Briófitas/crecimiento & desarrollo , Briófitas/metabolismo , Ecosistema , Fotosíntesis/fisiología , Suelo/química , Tundra
17.
Genes (Basel) ; 12(1)2020 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-33375487

RESUMEN

Somatic polyploidy or endopolyploidy is common in the plant kingdom; it ensures growth and allows adaptation to the environment. It is present in the majority of plant groups, including mosses. Endopolyploidy had only been previously studied in about 65 moss species, which represents less than 1% of known mosses. We analyzed 11 selected moss species to determine the spatial and temporal distribution of endopolyploidy using flow cytometry to identify patterns in ploidy levels among gametophytes and sporophytes. All of the studied mosses possessed cells with various ploidy levels in gametophytes, and four of six species investigated in sporophytic stage had endopolyploid sporophytes. The proportion of endopolyploid cells varied among organs, parts of gametophytes and sporophytes, and ontogenetic stages. Higher ploidy levels were seen in basal parts of gametophytes and sporophytes than in apical parts. Slight changes in ploidy levels were observed during ontogenesis in cultivated mosses; the youngest (apical) parts of thalli tend to have lower levels of endopolyploidy. Differences between parts of cauloid and phylloids of Plagiomnium ellipticum and Polytrichum formosum were also documented; proximal parts had higher levels of endopolyploidy than distal parts. Endopolyploidy is spatially and temporally differentiated in the gametophytes of endopolyploid mosses and follows a pattern similar to that seen in angiosperms.


Asunto(s)
Briófitas/genética , Cromosomas de las Plantas/genética , Organogénesis de las Plantas/genética , Poliploidía , Briófitas/crecimiento & desarrollo , Citometría de Flujo , Células Germinativas de las Plantas , Análisis Espacio-Temporal
18.
PLoS One ; 15(11): e0232922, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33232328

RESUMEN

Bryophytes (liverworts, mosses and hornworts) are one of the most diverse plant groups worldwide but one of the least studied in temperate forests from an ecological perspective. In comparison to vascular plants, bryophytes have a broader distribution and a longer altitudinal gradient, and their influence on the landscape is poorly understood. The objective was to evaluate environmental drivers that can influence bryophyte cover, richness, diversity, and nestedness in different forest canopy compositions in two typical landscapes across the natural distribution of bryophytes in Tierra del Fuego (Argentina). Three natural Nothofagus forest types (pure deciduous, pure evergreen, and mixed deciduous-evergreen) in two landscapes (coasts < 100 m.a.s.l. and mountains > 400 m.a.s.l.) were selected (N = 60 plots). In each plot, we established one transect (10 m length) to measure bryophyte cover (point-intercept method). Data were evaluated using generalized linear mixed models and multivariate analyses. The studied environmental drivers were mainly explained by the microclimate, with higher effective annual precipitation and relative air humidity in the coastal forests and higher soil moisture in the mountain forests. Greater liverwort richness was found in evergreen forests at the mountain (9 species) than at the coastal, while mosses showed higher richness in mixed deciduous-evergreen forests at the coastal (11 species) than at the mountain. However, the expected richness according to the rarefaction/extrapolation curves suggested that it is possible to record additional species, except for liverworts in pure deciduous forests on the coasts. Similarities and differences among the studied forest types and among plots of the same forest type and landscape were detected. These differences in the studied indexes (similarity that varied between 0 and 1) ranged from 0.09-0.48 for liverworts and 0.05-0.65 for mosses. Moreover, these results indicated that pure evergreen and mixed deciduous-evergreen forests presented higher moss cover (10.7% and 10.0%, respectively), mainly in the mountains than on the coast. These outputs highlight the need to explore differences at greater altitudinal ranges to achieve sustainability objectives conservation planning for bryophytes in southernmost forests.


Asunto(s)
Briófitas/clasificación , Briófitas/crecimiento & desarrollo , Conservación de los Recursos Naturales/métodos , Altitud , Argentina , Biodiversidad , Bosques , Modelos Lineales
19.
Planta ; 253(1): 1, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33245411

RESUMEN

MAIN CONCLUSION: Light, hormones and their interaction regulate different aspects of development in non-flowering plants. They might have played a role in the evolution of different plant groups by conferring specific adaptive evolutionary changes. Plants are sessile organisms. Unlike animals, they lack the opportunity to abandon their habitat in unfavorable conditions. They respond to different environmental cues and adapt accordingly to control their growth and developmental pattern. While phytohormones are known to be internal regulators of plant development, light is a major environmental signal that shapes plant processes. It is plausible that light-hormone crosstalk might have played an important role in plant evolution. But how the crosstalk between light and phytohormone signaling pathways might have shaped the plant evolution is unclear. One of the possible reasons is that flowering plants have been studied extensively in context of plant development, which cannot serve the purpose of evolutionary comparisons. In order to elucidate the role of light, hormone and their crosstalk in the evolutionary adaptation in plant kingdom, one needs to understand various light- and hormone-mediated processes in diverse non-flowering plants. This review is an attempt to outline major light- and phytohormone-mediated responses in non-flowering plant groups such as algae, bryophytes, pteridophytes and gymnosperms.


Asunto(s)
Luz , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas , Viridiplantae , Briófitas/crecimiento & desarrollo , Briófitas/efectos de la radiación , Chlorophyta/crecimiento & desarrollo , Chlorophyta/efectos de la radiación , Cycadopsida/crecimiento & desarrollo , Cycadopsida/efectos de la radiación , Desarrollo de la Planta/efectos de la radiación , Reguladores del Crecimiento de las Plantas/metabolismo , Tracheophyta/crecimiento & desarrollo , Tracheophyta/efectos de la radiación , Viridiplantae/crecimiento & desarrollo , Viridiplantae/efectos de la radiación
20.
Nat Commun ; 11(1): 5601, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33154374

RESUMEN

The extent to which species can balance out the loss of suitable habitats due to climate warming by shifting their ranges is an area of controversy. Here, we assess whether highly efficient wind-dispersed organisms like bryophytes can keep-up with projected shifts in their areas of suitable climate. Using a hybrid statistical-mechanistic approach accounting for spatial and temporal variations in both climatic and wind conditions, we simulate future migrations across Europe for 40 bryophyte species until 2050. The median ratios between predicted range loss vs expansion by 2050 across species and climate change scenarios range from 1.6 to 3.3 when only shifts in climatic suitability were considered, but increase to 34.7-96.8 when species dispersal abilities are added to our models. This highlights the importance of accounting for dispersal restrictions when projecting future distribution ranges and suggests that even highly dispersive organisms like bryophytes are not equipped to fully track the rates of ongoing climate change in the course of the next decades.


Asunto(s)
Briófitas/fisiología , Cambio Climático , Dispersión de las Plantas/fisiología , Briófitas/clasificación , Briófitas/crecimiento & desarrollo , Ecosistema , Europa (Continente) , Extinción Biológica , Predicción , Modelos Teóricos , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA